8.如图,在Rt△ABC中,∠A=90°,AB=6,AC =8,点D为边BC的中点,DE⊥BC交边AC于点E ,点P为射线AB上的一动点,点Q为边AC上的一动 点,且∠PDQ=90°.
(1)求ED,EC的长; (2)若BP=2,求CQ的长; (3)记线段PQ与线段DE的交点为F,若△PDF为 等腰三角形,求BP的长.
(1)求证:△APQ∽△CDQ; (2)P点从A点出发沿AB边以每秒1个单位长度的速 度向B点移动,移动时间为t秒. ①当t为何值时,DP⊥AC? ②设S△APQ+S△DCQ=y,写出y与t之间的函数解析 式.
【解析】(1)根据图形特点,只要证两对角相等即 可;(2)①当垂直时,易得三角形相似,利用对应 边成比例得到方程解决;②观察两三角形无固定组 合规则图形,则考虑作高分别求S△APQ和S△DCQ. 解:(1)∵四边形ABCD是矩形,∴AB∥CD, ∴∠QPA=∠QDC,∠QAP=∠QCD, ∴△APQ∽△CDQ
坐标为(3,3),设抛物线解析式为y=ax2+bx,
则
96a4a++38bb==30,,解得
a b
= =
-
8 5
1, 5 ,
抛物线的
解析式为y=-x2+x 3 设点P到x轴的距离为h,
则SVPOB=
1 2
8h=8,解得h=2,当点P在x轴上方时,
-
1 5
x
2+
8 5
x=2,整理得x
2-8x+10=0,解得x1=4-
5.(2014·上海)如图,在平行四边形ABCD中,AB =5,BC=8,cosB= ,4点P是边BC上的动点,以 CP为半径的圆C与边AD交5于点E,F(点F在点E的右 侧),射线CE与射线BA交于点G.