最新-中考数学知识点汇总 北师大版 精品
- 格式:doc
- 大小:21.50 KB
- 文档页数:3
北师大版初中数学中考考点知识点梳理总结一、整数与有理数1.整数的加减法、乘除法和混合运算2.有理数的加减法、乘除法和混合运算3.绝对值的概念和运算4.有理数的比较和大小关系5.有理数的分数表示和分数的加减乘除运算二、代数方程与方程应用1.一元一次方程的解法和问题应用2.一元一次不等式的解法和问题应用3.二元一次方程组的解、解法和问题应用4.二元一次方程组的应用问题与探究5.平方根的定义、性质和运算6.一元二次方程的解法和问题应用7.一元二次不等式的解法和问题应用8.计数原理与概率初步9.函数概念与初步应用三、平面图形与空间图形1.点、线、角的性质与判断2.直线、平行线与垂直线的相互关系3.相交线、平行线和夹角的性质4.三角形的分类、性质和判定方法5.直角三角形的性质与判定6.三角形的面积计算与应用7.直角坐标系的建立与坐标计算8.平移、旋转和翻折的变换问题9.空间几何图形与展开图形的相互关系四、数列与函数1.等差数列与等比数列的概念和性质2.数列的通项和前n项和的计算3.等差数列的应用问题与探究4.函数的概念和函数关系的性质5.函数的图像与函数的性质分析6.线性函数与比例函数的概念和性质7.函数的增减性与最值问题8.函数的综合运用和问题解决五、统计与概率1.数据收集与整理的方法2.统计图的绘制和分析3.数据的平均数与中位数的计算与比较4.概率的基本概念和计算方法5.事件的包含关系和互斥关系6.随机事件的概率计算和应用总结起来,北师大版初中数学中考考点知识点主要包括整数与有理数、代数方程与方程应用、平面图形与空间图形、数列与函数以及统计与概率等五个部分。
其中,每个部分又有相应的子知识点。
掌握这些知识点,对于初中数学中考是非常重要的。
北师大九年级数学上册一、章节知识点总结。
1. 特殊平行四边形。
- 矩形。
- 定义:有一个角是直角的平行四边形是矩形。
- 性质:- 四个角都是直角。
- 对角线相等。
- 既是轴对称图形(对称轴有两条,对边中点连线所在直线)又是中心对称图形(对称中心是对角线交点)。
- 判定:- 有一个角是直角的平行四边形是矩形。
- 对角线相等的平行四边形是矩形。
- 有三个角是直角的四边形是矩形。
- 菱形。
- 定义:有一组邻边相等的平行四边形是菱形。
- 性质:- 四条边都相等。
- 对角线互相垂直,且每条对角线平分一组对角。
- 是轴对称图形(对称轴是两条对角线所在直线),也是中心对称图形。
- 判定:- 有一组邻边相等的平行四边形是菱形。
- 对角线互相垂直的平行四边形是菱形。
- 四条边都相等的四边形是菱形。
- 正方形。
- 定义:有一组邻边相等且有一个角是直角的平行四边形是正方形。
- 性质:- 四条边都相等,四个角都是直角。
- 对角线相等且互相垂直平分,每条对角线平分一组对角。
- 既是轴对称图形(有四条对称轴,两条对角线所在直线和两组对边中点连线所在直线)又是中心对称图形。
- 判定:- 有一组邻边相等的矩形是正方形。
- 有一个角是直角的菱形是正方形。
2. 一元二次方程。
- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程,一般形式为ax^2+bx + c=0(a≠0)。
- 解法:- 直接开平方法:对于形如x^2=k(k≥slant0)的方程,x=±√(k)。
- 配方法:将方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后求解。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其解为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥slant0)。
北师数学中考知识点归纳北师大版数学中考知识点归纳涵盖了初中数学的各个重要领域,包括数与代数、几何、统计与概率等。
以下是对这些知识点的详细归纳:数与代数1. 实数:包括有理数和无理数的概念,实数的分类和性质。
2. 代数式:包括代数式的运算法则,如加减乘除、乘方、开方等。
3. 方程与不等式:涉及一元一次方程、一元二次方程的解法,以及不等式的解集。
4. 函数:包括函数的概念、性质、图像,以及线性函数、二次函数等基本函数类型。
5. 数列:包括等差数列和等比数列的定义、通项公式和求和公式。
几何1. 平面图形:涉及线段、角、三角形、四边形、圆等基本平面图形的性质和计算。
2. 立体图形:包括立体图形的表面积和体积计算,如正方体、长方体、圆柱、圆锥等。
3. 图形变换:涉及平移、旋转、反射等几何变换的性质和应用。
4. 相似与全等:包括相似三角形、全等三角形的判定和性质。
5. 坐标几何:坐标系中点的位置、线段的斜率、图形的平移和旋转等。
统计与概率1. 数据收集与处理:包括数据的收集、分类、整理和描述。
2. 统计图表:涉及条形图、折线图、饼图等统计图表的绘制和解读。
3. 平均数、中位数和众数:包括这些统计量的定义、计算方法和应用。
4. 方差和标准差:涉及数据的离散程度的度量方法。
5. 概率:包括事件的概率、条件概率、独立事件等基本概念。
解题技巧与策略1. 审题:仔细阅读题目,理解题目要求。
2. 画图:对于几何问题,画图可以帮助直观理解问题。
3. 列出已知条件:明确已知条件和需要求解的目标。
4. 选择解题方法:根据问题类型选择适当的解题方法。
5. 检查:解题后要检查答案是否合理,是否符合所有条件。
结束语北师大版数学中考知识点的归纳是帮助学生系统复习和掌握初中数学知识的重要工具。
通过这些知识点的学习和练习,学生可以更好地准备中考,提高解题能力和数学素养。
希望每位学生都能在中考中取得优异的成绩。
北师数学中考知识点
北师大数学中考的知识点主要包括:
1.整式的计算:包括整数运算、分数运算、加减乘除和乘方等。
2.快速算术:包括快速计算加减法、乘法、除法等。
3.基本代数运算:包括整式的四则运算、同底数幂的乘法、除法、负
指数幂的分数运算、分式与整式的运算等。
4.实数的认识:包括正数、负数、绝对值、相反数等的认识,以及实
数的大小比较。
5.算术平方根和平方根的认识:包括算术平方根的概念、求算术平方
根的方法,以及平方根的概念、平方根的性质等。
6.一元一次方程的解:包括一元一次方程的概念、一元一次方程的解
的求解方法,以及应用题等。
7.二元一次方程组的解:包括二元一次方程组的概念、二元一次方程
组的解的求解方法,以及应用题等。
8.百分数:包括百分数的概念、百分数的转化及其应用等。
9.利率和利息的计算:包括利息的计算公式、利率的计算公式,以及
利率和利息的实际问题等。
10.图形的认识:包括直线、射线、线段、角的概念及性质,平行线
的概念及性质等。
11.平面图形:包括三角形、四边形、多边形等的辨认、性质及计算,以及解简单平面几何问题等。
12.空间图形:包括正方体、长方体、棱柱、棱锥等的辨认、计算,以及解简单空间几何问题等。
13.概率的认识:包括事件的概念、概率的计算及其应用等。
14.统计的认识:包括统计调查的方法、频数、频率、平均数等的计算与应用等。
以上只是北师大数学中考的主要知识点,具体的知识点还需根据不同学校和地区的要求来确定。
希望以上内容对您有所帮助!。
初中数学考点总结第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如…等; (4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数新 课 标 第 一 网如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
初三数学知识点归纳北师大版初三数学知识点归纳北师大版涵盖了初中数学的核心内容,为学生提供了一个系统性的复习框架。
以下是北师大版初三数学的主要知识点归纳:1. 数与式- 实数的概念和分类,包括有理数和无理数。
- 绝对值的性质和运算法则。
- 代数式的运算,包括加减乘除和乘方运算。
- 因式分解的方法,如提公因式法、公式法和分组分解法。
2. 方程与不等式- 一元一次方程的解法,包括移项和合并同类项。
- 一元二次方程的解法,如直接开平方法、配方法、公式法和因式分解法。
- 不等式的基本性质和解法,包括一元一次不等式和一元二次不等式。
- 含绝对值的不等式的解法。
3. 函数- 函数的概念,包括定义域、值域和对应法则。
- 一次函数的图象和性质,以及一次函数与一元一次方程的关系。
- 二次函数的图象和性质,包括开口方向、顶点坐标和对称轴。
- 反比例函数的图象和性质,以及反比例函数与一次函数的关系。
4. 几何图形- 线段、射线和直线的性质和关系。
- 角的概念和分类,包括锐角、直角、钝角和平角。
- 多边形的性质,如三角形的内角和定理和多边形的内角和定理。
- 圆的性质,包括圆心角、弧长和扇形面积的计算。
5. 统计与概率- 数据的收集和整理,包括统计表和统计图的绘制。
- 描述性统计,如众数、中位数和平均数的计算。
- 概率的基本概念,包括随机事件和概率的计算方法。
- 简单事件的概率计算,如古典概型和几何概型。
通过以上知识点的归纳,学生可以对初三数学有一个清晰的认识和掌握,为中考做好充分的准备。
在复习过程中,建议学生结合实际例题进行练习,以加深对知识点的理解和应用能力。
同时,定期进行模拟测试,以检验学习效果和查漏补缺。
九年级中考数学知识点汇总一、平行四边形1、定义:两组对边分别平行的四边形是平行四边形。
2、性质:(1)平行四边形的对边平行且相等。
(2)平行四边形的对角相等,邻角互补。
(3)平行四边形的对角线互相平分,两条对角线把平行四边形分成四个面积相等的三角形。
(4)平行四边形是中心对称图形。
3、判定:(1)两组对边分别平行的四边形是平行四边形。
(2)两组对边分别相等的四边形是平行四边形。
(3)一组对边平行且相等的四边形是平行四边形。
(4)两组对角分别相等的四边形是平行四边形。
(5)对角线互相平分的四边形是平行四边形。
二、菱形1、定义:有一组邻边相等的平行四边形是菱形。
2、性质:(1)菱形具有平行四边形的所有性质。
(2)菱形的四条边都相等。
(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;两条对角线把菱形分成四个全等的直角三角形。
(4)菱形既是中心对称图形,又是轴对称图形(两条)。
3、判定:(1)有一组邻边相等的平行四边形是菱形。
(2)对角线互相垂直的平行四边形是菱形。
(3)四条边都相等的四边形是菱形。
4、面积:S菱形=底ⅹ高;S菱形=对角线乘积的一半三、矩形1、定义:有一个角是直角的平行四边形是矩形。
2、性质:(1)矩形具有平行四边形的所有性质。
(2)矩形的四个角都是直角。
(3)矩形的对角线相等且互相平分,两条对角线把矩形分成四个面积相等的等腰三角形。
(4)推论:直角三角形斜边上的中线等于斜边的一半。
(5)矩形既是中心对称图形,又是轴对称图形(两条)。
3、判定:(1)有一个角是直角的平行四边形是矩形。
(2)对角线相等的平行四边形是矩形。
(3)有三个角是直角的四边形是矩形。
4、面积:S矩形=底ⅹ高四、正方形1、定义:有一组邻边相等,且有一个角是直角的平行四边形是正方形。
2、性质:(1)正方形具有菱形和矩形的所有性质。
(2)正方形的四条边都相等,四个角都是直角。
(3)正方形的对角线互相垂直平分且相等,两条对角线把正方形分成四个全等的等腰直角三角形。
一、数与代数1.数的概念与数的读法2.数的比较大小3.整数的四则运算4.分数的概念与分数的四则运算5.小数的概念与小数的四则运算6.百分数的概念与百分数的四则运算7.有理数的概念与有理数的四则运算8.正数、负数与绝对值9.代数式与代数方程10.一次代数方程的解11.二次根式的概念与运算12.分式的概念与运算13.根式的概念与运算14.简单的函数与函数的图象二、几何1.平行线与平行四边形2.相交线与相交角3.三角形的分类与性质4.角的概念与角的分类5.直角三角形与斜角三角形6.相似三角形与比例7.圆的概念与性质8.圆内接四边形与正多边形9.三视图与棱柱、棱锥、棱台、圆柱、圆锥、圆台的概念三、统计与概率1.统计调查与统计图表2.频率分布直方图与频率分布折线图3.统计数据的分析与统计平均数、中位数、众数4.概率的概念与概率的计算四、函数与方程1.函数的概念与函数的性质2.函数关系与函数图象3.函数与方程的思想与方法4.一次函数的概念与性质5.一次函数图象与应用6.一次函数方程与问题7.二次函数的概念与性质8.二次函数的图象与应用9.二次函数方程与问题的解法五、计量与单位1.长度、面积与体积2.常用度量单位与换算3.时间与速度4.英制单位与国际单位六、解析几何初步1.平面直角坐标系2.点的坐标与位置关系3.直线的方程与性质4.圆的方程与性质5.解直线与圆的方程及几何应用七、三角函数的初步研究1.角的三要素2.角度与弧度3.正弦定理与余弦定理4.解三角形的问题以上是北师大版九年级数学的主要知识点汇总,涵盖了数与代数、几何、统计与概率、函数与方程、计量与单位、解析几何初步、三角函数的初步研究等各个方面。
对于学生来说,掌握这些知识点将有助于他们在九年级数学学习中取得更好的成绩。
北师大版中考数学知识点总结一.必修一1.整式加减乘除1)同类项的合并与分离2)利用整式的代数性质进行计算2.一元一次方程1)解一元一次线性方程的步骤与方法2)列方程、解方程并应用于实际问题3.平方根与立方根1)正数的平方根与立方根2)计算含有平方根和立方根的式子4.数据分析1)直方图、折线图、饼图的读图与画图2)描述数值数据的中心与离散程度5.算式的字母代换1)字母的代数意义2)利用字母代数意义变形解决实际问题6.几何图形的变换1)平移、旋转、翻折的概念与性质2)利用变换解决实际问题7.二次根式1)二次根式的概念与性质2)二次根式的加减乘除8.算式的乘方1)乘方的定义与性质2)乘方的运算律9.一元二次方程1)解一元二次方程的步骤与方法2)利用一元二次方程解决实际问题10.圆的性质1)圆的定义与性质2)圆内接正多边形的面积与周长关系11.空间几何体的计算1)平行四边形、长方体、棱柱的计算2)利用空间几何体计算实际问题二.必修二1.实数的性质与运算1)实数的分类与性质2)实数的运算规律与法则2.一次函数与方程1)一次函数与一次方程的概念2)用函数与方程解决实际问题3.数与图的关系1)数据与图像的对应关系2)利用函数图像解决实际问题4.三角形的性质1)三角形内角和定理与外角定理2)利用三角形性质解决实际问题5.一元二次不等式1)解一元二次不等式的步骤与方法2)利用一元二次不等式解决实际问题6.合并与分解因式1)整式的乘法公式2)合并与分解因式的基本法则与技巧7.比例与相似1)比例与比例的性质2)相似三角形的性质与判定8.函数的概念与性质1)函数的定义与性质2)一次函数、指数函数、反比例函数的图像与性质9.数和式的巧算1)加减乘除的巧算技巧2)巧算结题10.数据的表示与传递1)数据的调查与表示方法2)利用数据传递解决实际问题11.圆的性质与切线1)圆的切线定义与性质2)圆周角、弧度弧长的关系这就是北师大版中考数学知识点的总结。
中考数学知识点汇总
一、数与式
(一)有理数
1、数轴的定义与应用
2、相反数
3、倒数
4、绝对值
5、有理数的大小比较(比差、比商)
(二)实数
6、科学记数法
7、近似数与有效数字
8、平方根与算术根和立方根
9、零指数次幂、负指数次幂
(三)整式
10、幂的有关运算性质
11、乘法公式(尤其是完全平方公式的灵活运用)
12、因式分解(方法及步骤)
(四)分式
13、分式的定义 14、分式的基本性质 15、分式何时有意义、值为零、无意义。
(五)二次根式
16、二次根式的意义 17、根式的基本性质 18、根式的运算及化简
二、方程和不等式
17、各种方程都会解(1)一元二次方程(解法、根的判别、根与系数关系)
(2)分式方程(结果要检验、关于增根的题型)
18、列方程解应用题的关键是找等量关系
19、理解函数与方程的关系(一元方程、一元二次方程的解是函数与x轴的交点坐标)
20、会解不等式
21、会列不等式解应用题(关键是找不等关系)
22、理解不等式与函数的关系
三、函数
(一)
23、平面直角坐标系内点的特征
24、象限角平分线点的特点
25、对称问题:关于谁谁不变,关于原点都要变。
(二)一次函数与正比例函数
26、一次函数图像的性质
27、一次函数与坐标轴的交点坐标
28、待定系数法求一次函数的解析式(一设二列三解四回)
29、一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)(三)反比例函数
30、反比例函数解析式的确定(一点)
31、反比例函数与正比例函数交点关于原点对称
32、反比例函数的性质
33、反比例函数的实际应用(面积问题)
(四)二次函数
34、二次函数的三种表达式(一般式、顶点式、交点式)
35、二次函数解析式的确定(待定系数法)
36、二次函数的性质(增减性的描述以对称轴为分界)
37、二次函数y=ax2+bx+c(a≠0)中a、b、c、△与特殊式子的符号与图象位置关系
38、求二次函数的顶点坐标、对称轴、最值
39、二次函数的交点问题
40、二次函数的对称问题
41、二次函数的最值问题(实际应用)
42、二次函数的平移问题
43、二次函数的综合应用
(1)二次函数与方程综合;(2)二次函数与其它函数综合
(3)二次函数与不等式的综合;(4)二次函数与几何综合
几何知识:
1,过两点有且只有一条直线
2,两点之间线段最短
3,同角或等角的补角相等
4,同角或等角的余角相等
5,过一点有且只有一条直线和已知直线垂直
6,直线外一点与直线上各点连接的所有线段中,垂线段最短
7,经过直线外一点,有且只有一条直线与这条直线平行
8,如果两条直线都和第三条直线平行,这两条直线也互相平行
9,平行线的判定和性质
10,三角形三边关系
11,三角形三个内角的和等180°
12,直角三角形的两个锐角互余
13,三角形的一个外角等于和它不相邻的两个内角的和
14,三角形的一个外角大于任何一个和它不相邻的内角
15,全等三角形的性质和判定
16,角平分线的性质及判定
17,等腰三角形的三线合一
18,已知等边三角形边会求面积
19,直角三角形斜边上的中线等于斜边上的一半
20,线段垂直平分线性质和判定
21,对称全等、折叠全等
22、勾股定理及逆定理,记住特殊直角三角形的边之比和角的度数
23、多边形的外角和等于360°,n边形的内角的和等于(n-2)×180°
24,平行四边形性质及判定
25,矩形的性质及判定
26,菱形的性质及判定
27,菱形面积=对角线乘积的一半,底乘高
28,正方形的性质及判定
29,等腰梯形的性质及判定,做辅助线的方法
30,三角形的中位线定理梯形中位线定理
31, 相似三角形性质和判定
32,相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比;
33,相似三角形周长的比等于相似比;
34,相似三角形面积的比等于相似比的平方;
35,特殊三角函数值要记住
36,同弧所对的圆心角与圆周角的关系;
37, 垂径定理
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;
38,圆的两条平行弦所夹的弧相等;有弦就作弦心距;有直径就作直径所对的圆周角。
39,如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;
40,圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;
41,直线和圆的位置关系:
①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
42,有切点就连圆心;
43,圆的外切四边形的两组对边的和相等;
44,圆与圆的位置关系的判断:
①两圆外离;②两圆外切;③两圆相交;
④两圆内切;⑤两圆内含;
45,弧长计算公式: ;
46,扇形面积公式:。