大学物理第16章
- 格式:pdf
- 大小:255.66 KB
- 文档页数:5
习题1616-1.如图所示,金属圆环半径为R ,位于磁感应强度为B 的均匀磁场中,圆环平面与磁场方向垂直。
当圆环以恒定速度v 在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端a 、b 间的电势差。
解:(1)由法拉第电磁感应定律i d dt εΦ=-,考虑到圆环内的磁通量不变,所以,环中的感应电动势0i ε=;(2)利用:()aab b v B dlε=⨯⋅⎰,有:22ab Bv R Bv Rε=⋅=。
【注:相同电动势的两个电源并联,并联后等效电源电动势不变】16-2.如图所示,长直导线中通有电流A I 0.5=,在与其相距cm 5.0=d 处放有一矩形线圈,共1000匝,设线圈长cm 0.4=l ,宽cm 0.2=a 。
不计线圈自感,若线圈以速度cm/s 0.3=v 沿垂直于长导线的方向向右 运动,线圈中的感生电动势多大?解法一:利用法拉第电磁感应定律解决。
首先用0l B dl I μ⋅=∑⎰求出电场分布,易得:02I B r μπ=, 则矩形线圈内的磁通量为:00ln 22x axI I l x a l dr r x μμππ++Φ=⋅=⎰,由i d Nd t εΦ=-,有:011()2i N I l d xx a x dt μεπ=--⋅+∴当x d =时,有:041.92102()i N I l a vVd a μεπ-==⨯+。
解法二:利用动生电动势公式解决。
由0l B dl Iμ⋅=∑⎰求出电场分布,易得:02I B r μπ=,考虑线圈框架的两个平行长直导线部分产生动生电动势,近端部分:11NB l v ε=, 远端部分:22NB lvε=,则:12εεε=-=00411() 1.921022()N I N I a l v l v Vd d a d d a μμππ--==⨯++。
16-3.如图所示,长直导线中通有电流强度为I 的电流,长为l 的金属棒ab 与长直导线共面且垂直于导线放置,其a 端离导线为d ,并以速度v 平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a 、U b 的电势大小。
第十六章 从经典物理到量子物理一、基本要求1. 了解描述热辐射的几个物理量及绝对黑体辐射的两条实验规律。
2. 理解普朗克的“能量子”假设的内容,了解普朗克公式。
3. 理解光电效应和康普顿效应的实验规律,以及爱因斯坦的光子理论对这两个效应的解释。
4. 理解爱因斯坦光电效应方程;红限概念和康普顿散射公式。
5. 理解光的波粒二象性以及光子的能量,质量和动量的计算。
6. 掌握氢原子光谱的实验规律,理解玻尔氢原子理论的三条基本假设的内容;并由三条假设出发,推导出氢原子的光谱规律。
二、基本内容1. 黑体辐射(1)绝对黑体在任何温度下都能全部吸收照射在其上的任何波长的电磁波的物体,称为绝对黑体。
绝对黑体是一种理想模型,其在任何温度下对任何波长入射辐射能的吸收比均为1。
(2)黑体辐射的实验规律斯特藩-玻尔兹曼定律40)(T T M σ=式中)(0T M 为绝对黑体在一定温度下的辐射出射度,σ=5.67×10-8W ·m -2·K -1为斯特藩常量。
维恩位移定律b T m =λ式中m λ为相应于)(0T M λ曲线极大值的波长,31089.2-⨯=b m ·K(3)普朗克的能量子假说辐射黑体是由原子分子组成的。
这些原子和分子的振动可看作线性谐振子,这些谐振子的能量只能是某一最小能量ε的整数倍,即ε,2ε,3ε...,n ε,物体发射或吸收的能量必须是这个最小单元的整数倍。
ε称为能量子,n 为正整数,叫量子数。
在黑体辐射理论中,能量子ε=hv ,其中h 是普朗克常量,v 是特定波长的辐射所对应的频率。
(4)普朗克黑体辐射公式)(0T M λ=11252-⋅T k hce hc λλπ 式中h 为普朗克常量,k 为玻尔兹曼常量,c 为真空中光速。
由此公式可推导出斯特藩-玻尔兹曼定律和维恩位移定律,而且在低频和高频情况下可分别化为瑞利-金斯公式和维恩公式。
2. 光电效应金属及其化合物在电磁辐射下发射电子的现象称为光电效应。
昆明理工大学物理习题集(下)第十六章元答案第十六章量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A )频率高的光子易显示波动性(B )个别光子产生的效果以显示粒子性(C )光的衍射说明光具有粒子性(D )光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A )入射光的频率(B )入射光的强度(C )金属的逸出功(D )入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比(B )与入射光的强度成正比(C )与入射光的频率成线性关系(D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同(B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同(D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加(B )逸出的光电子初动能增大(C )光电效应的红限频率增大(D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B )1ν<2ν (C )1ν=2ν (D )不能确定8. 当照射光的波长从4000?变到3000?时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。