量子力学3-1
- 格式:ppt
- 大小:662.00 KB
- 文档页数:20
量子力学三个基本原理
:
(1)第一原理:哈密顿量子力学原理。
它认为,实现物理量子力学的本质,是把所有的物理系统的运动,状态和能量都用哈密顿算子形式来描述和表达,这是受到群论的指导的,它定义了物理系统的特征和特性和规律。
(2)第二原理:波动力学原理。
它认为,一切物理量子都是以波动的形式存在的,并以波函数形式来描述它们的性质,以及其受到实现它们性质改变的外界影响。
在量子力学上要求,性质必须是连续变化的,而不能被分割成任何具有明确数字量的基本量子个体。
(3)第三原理:不确定原理。
它认为,由于物理量子的波函数状态,其运动轨迹和性质都是不可确定的,所以它们只能被统计概率来描述,不能被精确地描述。
量子力学教程课后习题答案量子力学习题及解答第一章量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长与温度T成反比,即T=b(常量);并近似计算b的数值,准确到二位有效数字。
解根据普朗克的黑体辐射公式,(1)以及,(2),(3)有这里的的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时,取得极大值,因此,就得要求对λ的一阶导数为零,由此可求得相应的λ的值,记作。
但要注意的是,还需要验证对λ的二阶导数在处的取值是否小于零,如果小于零,那么前面求得的就是要求的,具体如下:如果令x= ,则上述方程为这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有把x以及三个物理常量代入到上式便知这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K附近,钠的价电子能量约为3eV,求其德布罗意波长。
解根据德布罗意波粒二象性的关系,可知E=h,如果所考虑的粒子是非相对论性的电子(),那么如果我们考察的是相对性的光子,那么E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV,远远小于电子的质量与光速平方的乘积,即,因此利用非相对论性的电子的能量——动量关系式,这样,便有在这里,利用了以及最后,对作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
1.3 氦原子的动能是(k为玻耳兹曼常数),求T=1K时,氦原子的德布罗意波长。
第三章 力学量用算符表达§3.1 算符的运算规则一、算符的定义:算符代表对波函数进行某种运算或变换的符号。
ˆAuv = 表示Â把函数u 变成 v , Â就是这种变换的算符。
为强调算符的特点,常常在算符的符号上方加一个“^”号。
但在不会引起误解的地方,也常把“^”略去。
二、算符的一般特性 1、线性算符满足如下运算规律的算符Â,称为线性算符11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。
例如:动量算符ˆpi =-∇, 单位算符I 是线性算符。
2、算符相等若两个算符Â、ˆB对体系的任何波函数ψ的运算结果都相同,即ˆˆA B ψψ=,则算符Â和算符ˆB 相等记为ˆˆAB =。
3、算符之和若两个算符Â、ˆB对体系的任何波函数ψ有:ˆˆˆˆˆ()A B A B C ψψψψ+=+=,则ˆˆˆA B C +=称为算符之和。
ˆˆˆˆAB B A +=+,ˆˆˆˆˆˆ()()A BC A B C ++=++ 4、算符之积算符Â与ˆB之积,记为ˆˆAB ,定义为 ˆˆˆˆ()()ABA B ψψ=ˆC ψ= ψ是任意波函数。
一般来说算符之积不满足交换律,即ˆˆˆˆABBA ≠。
5、对易关系若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。
若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。
若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。
例如:算符x , ˆx pi x∂=-∂不对易证明:(1) ˆ()x xpx i x ψψ∂=-∂i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂i i x xψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= 因为ψ是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -=,ˆˆz z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。
第三章 量子力学中的力学量3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。
解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμωμωμωαμωαπαπαμω ⋅==⋅=22222241212121221ω 41=(2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x22222122221)(21ααμπα⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x x ααααμπα ]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222ω 41= 或 ωωω 414121=-=-=U E T(3)*(,)()()p c p t x x dx ψψ=⎰ 2222x iit px e dx αωαππ∞----∞=⎰22122i i x px t ee dxeαωαππ∞----∞=⎰2222221()222ip p i x t edxe αωαααππ-+-∞--∞=⎰2222221()222p ip ix t e edxeαωαααππ--+∞--∞=⎰222222p i t e ωαααππ--=22222p i t e eωααπ--=动量几率分布函数为 2222()(,)p p c p t eαωαπ-==3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。
解:(1) ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr e a e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω0/2030)22(4)(a r re r a a dr r d --=ω 令0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。
第三章 算符和力学量算符3.1 算符概述设某种运算把函数u 变为函数v ,用算符表示为:ˆFuv = (3.1-1) ˆF 称为算符。
u 与v 中的变量可能相同,也可能不同。
例如,11du v dx=,22xu v =3v =,(,)x t ϕ∞-∞,(,)x i p x hx edx C p t -=,则ddx,x dx ∞-∞⎰,x ip x he-⋅都是算符。
1.算符的一般运算(1)算符的相等:对于任意函数u ,若ˆˆFuGu =,则ˆˆG F =。
(2)算符的相加:对于任意函数u ,若ˆˆˆFuGu Mu +=,则ˆˆˆM F G =+。
算符的相加满足交换律。
(3)算符的相乘:对于任意函数u ,若ˆˆˆFFu Mu =,则ˆˆˆM GF =。
算符的相乘一般不满足交换律。
如果ˆˆˆˆFGGF =,则称ˆF 与ˆG 对易。
2.几种特殊算符 (1)单位算符对于任意涵数u ,若ˆIu=u ,则称ˆI 为单位算符。
ˆI 与1是等价的。
(2)线性算符对于任意函数u 与v ,若**1212ˆˆˆ()F C u C v C Fu C Fv +=+,则称ˆF 为反线性算符。
(3)逆算符对于任意函数u ,若ˆˆˆˆFG u G F u u ==则称ˆF 与ˆG 互为逆算符。
即1ˆˆG F -=,111ˆˆˆˆˆˆ,1FG FF F F ---===。
并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。
对于非齐次线性微分方程:ˆ()()Fux af x =,其中ˆF 为ddx与函数构成的线性算符,a 为常数。
其解u 可表示为对应齐次方程的通解u 。
与非齐次方程的特解υ之和,即0u u v =+。
因0ˆ0Fu =,所以不存在1ˆF -使100ˆˆF Fu u -=。
一般说来,在特解υ中应允许含有对应齐次方程的通解成分,但如果当a=0时,υ=0,则υ中将不含对应齐次方程的通解成分,这时存在1ˆF-使11ˆˆˆˆFFv FF v v --==,从而由ˆFvaf =得:1ˆF af υ-=。
四个量子数是指量子力学中描述原子、分子、原子核等微观粒子运动状态的基本物理量。
它们分别是:主量子数、角动量量子数、磁量子数和自旋量子数。
下面通过几个例题和解析来帮助你理解这四个量子数。
例题1:一个氢原子中,主量子数n为3,角动量量子数l为1,磁量子数m为-1,求该氢原子的能级。
解析:根据量子力学中的能级公式,氢原子的能级与主量子数n有关,而n越大,能级越高。
同时,角动量量子数l决定原子轨道的形状,磁量子数m则表示在每个l下的具体轨道。
因此,在上述例子中,n为3的氢原子的能级可以由下式给出:E(n) = -13.6 * (1/n2)这里的E(n)是能级,-13.6是氢原子的基态能量。
因此,该氢原子的能级为E(3) = -13.6 * (1/32) = -0.45 eV。
例题2:一个氦原子中,主量子数n为2,角动量量子数l的取值范围是什么?求自旋磁量子数。
解析:根据角动量取值公式,角动量量子数l的取值范围是0到n-1。
对于氦原子,主量子数为2,因此角动量量子数l的取值范围是0到1。
考虑到氦原子基态是两个电子在同一个轨道上填充,所以自旋磁量子数应等于自旋方向与z轴的夹角的余弦值。
因此,该氦原子的自旋磁量子数为√2/2或-√2/2。
例题3:一个钾原子中,主量子数n为5,角动量量子数l的最大值为3,求钾原子的总角动量。
解析:钾原子的总角动量等于每个电子的角动量之和。
对于钾原子来说,主量子数为5,因此钾原子的总角动量为l(钾原子) + l(电子) = 5 + 3 = 8。
例题4:一个钛原子中,角动量量子数的最小值为2,自旋磁量子数的最大值为3/2,求钛原子的能级图。
解析:钛原子中角动量量子数的最小值为2,表示钛原子的可能电子轨道是多种可能的形状。
同时自旋磁量子数的最大值为3/2表明自旋方向有两个可能的取向。
因此,钛原子的能级图可以根据上述信息绘制出来。
总结:通过以上四个例题的解析,我们可以更好地理解量子力学中的四个基本量子数及其在描述微观粒子运动状态中的应用。