统计学课件 第四章 抽样分布作业
- 格式:ppt
- 大小:131.00 KB
- 文档页数:9
习题二(第四章—第六章)第四章:1、一组数据的分布特征可以从哪几个方面进行测度?答:一组数据的分布特征可以从以下三个方面进行测度:集中趋势的测度(众数、中位数、分位数、均值、几何平均数、切尾均值)离散程度测度(极差、内距、方差和标准差、离散系数)偏态与峰度测度(偏态及其测度、峰度及其测度)2、标准分数有哪些用途?答:标准分数给出了一组数据中各数值的相对位置。
在对多个具有不同量纲的变量进行处理时,常需要对各变量进行标准化处理。
它还可以用来判断一组数据是否有离群数据。
3、一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序如下:2 4 7 10 10 10 12 12 14 15(1)计算汽车销售量的众数、中位数和平均数;(2)根据定义公式计算四分位数;(3)计算销售量的标准差。
第四章统计数据的概括性描述4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下: 2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:(1)(2)(3)列1平均9.6 标准误差 1.318248中位数 10 众数 10标准差 4.168666 方差 17.37778 峰度 -0.25089 偏度 -0.69343区域 13 最小值 2 最大值 15 求和 96 观测数 10 最大(1) 15 最小(1) 2 1/4位数 7.75 2/4位数 10 3/4位数12第四章统计数据的概括性描述4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下: 2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
答:中位数 10 众数 10平均 9.6(2)根据定义公式计算四分位数。
统计学习题(抽样分布、参数估计)练习题第1章绪论(略)第2章统计数据的描述2.1某家商场为了解前来该商场购物的顾客的学历分布情况,随机抽取了100名顾客。
其学历表示为:1.初中;2.高中/中专;3.大专;4.本科及以上学历。
调查结果如下:4222434414 2244432422 3121441424 2332134344 3312424324 2322212244 2123333334 2343313232 4313434214 2242334121(1)制作一张频数分布表。
(2)绘制一张条形图,反映学历分布。
2.2为了解某电信客户对该电信公司的服务的满意度情况,某调查公司分别对两个地区的电信用户在以下五个方面对受访用户的满意情况进行了问卷调查得到的数据如下(表中数据为平均满意度打分,从1分到10分满意度依次递增):地区企业形象客户期望质量感知价值感知客户总体满意度A 8.269504 7.51773 9.2624117.9148948.411348B 7.447368 8.3684218.9736848.1052637.394737试用条形图反映将两地区的满意度情况。
2.3下面是一个班50个学生的经济学考试成绩:88569179699088718279 988534744810075956092 83646569996445766369 6874948167818453912484628183698429667594(1)对这50名学生的经济学考试成绩进行分组并将其整理成频数分布表,绘制直方图。
(2)用茎叶图将原始数据表现出来。
2.4如下数据反映的是某大学近视度数的情况,共120名受访同学,男女同学各60名。
男149 161761821310 80 951081414 0 144145151515161681882121 0 21211052121211116817521 0 356462121212121312121 0 2121212121375375383838 8 45566065120 30120 7521女120 3334537437538700 90700 60141516212121211517170 0 0 0 0 0 0 0 5 521 0 1752121214043451217517 8 181818518519195196202021 0 21212121212121333335 0 3636363840474865055(1)按近视度数分别对男女学生进行分组。
第四章抽样估计一、判断题1.抽样估计的目的是用以说明总体特征。
2.抽样分布就是样本分布。
3.既定总体在当抽样方法、抽样组织形式和样本容量确定时,样本均值的分布惟一确定。
4.样本容量就是样本个数。
5.在抽样中,样本容量是越大越好。
6.抽样的目的是判断样本估计值是否处于以总体指标为中心的某规定区域范围内。
7.当估计量有偏时,人们应该弃之不用。
8.对于一个确定的抽样分布,其方差是确定的,因而抽样标准误也是确定的。
9.抽样极限误差越大,用以包含总体参数的区间就越大,估计的把握程度也就越大,因此极限误差越大越好。
10.非抽样误差会随着样本容量的扩大而下降。
二、单项选择题1.想了解学生的眼睛视力状况,准备抽取若干学校、若干班级的学生进行测试,则()。
A.观测单位是学校B.观测单位是班级C.观测单位是学生D.观测单位可以是学校、也可班级或学生2.下列误差中属于非一致性的有()。
A.估计量偏差B.偶然性误差C.抽样标准误D.非抽样误差3.抽样估计中最常用的分布理论是()。
A.t分布理论B.二项分布理论C.正态分布理论D.超几何分布理论4.抽样标准误大小与下列哪个因素无关?()A.样本容量B.抽样方式、方法C.概率保证程度D.估计量5.下列关于抽样标准误的叙述哪个是错误的?()A.抽样标准误是抽样分布的标准差B.抽样标准误的理论值是惟一的,与所抽样本无关C.抽样标准误比抽样极限误差小D.抽样标准误只能衡量抽样中的偶然性误差的大小三、计算分析题1. 某小组5个工人的每周工资分别为520、540、560、580、600元,现从中用简单随机抽样形式(不重复抽样)随机抽取2个工人周工资构成样本。
要求:(1)计算总体平均工资的标准差;(2)列出全部可能的样本平均工资;(3)计算样本平均工资的平均数,并检验其是否等于总体平均工资;(4)计算样本平均工资的标准差;(5)用抽样平均误差的公式计算并验证是否等于(4)的结果。
2.从某大型企业中随机抽取100名职工,调查他们的工资。