抛物线圆综合(中考压轴大题)
- 格式:doc
- 大小:110.50 KB
- 文档页数:5
2022-2023学年人教版中考数学复习《圆综合压轴题》专题提升训练(附答案)1.锐角三角形△ABC的外心为O,外接圆直径为d,延长AO,BO,CO,分别与对边BC,CA,AB交于D,E,F.(1)求的值;(2)求证:.2.如图,AB是⊙O的直径,点C在⊙O上,CP是⊙O的切线.点P在AB的延长线上.(1)求证:∠COB=2∠PCB;(2)若M是弧AB的中点,CM交AB于点N,若AB=6.求MC•MN的值.3.如图,AC为⊙O的直径,CF切⊙O于点C,AF交⊙O于点D,点B在DF上,BC交⊙O于点E,且∠CAF=2∠BCF,BG⊥CF于点G,连接AE.(1)求∠AEB的度数;(2)求证:△CBG∽△ABE;(3)若∠F=60°,GF=2,求⊙O的半径长.4.如图,△ABC内接于⊙O,BC是⊙O的直径,E是上一点,弦BE交AC于点F,弦AD⊥BE于点G,连接CD、CG,且∠CBE=∠ACG.(1)求证:∠CAG=∠ABE;(2)求证:CG=CD;(3)若AB=4,BC=2,求GF的长.5.如图,△ABC为⊙O的内接三角形,AD⊥BC,垂足为D,直径AE平分∠BAD,交BC于点F,连结BE.(1)求证:∠AEB=∠AFD;(2)若AB=10,BF=5,求DF的长;(3)若点G为AB的中点,连结DG,若点O在DG上,求BF:FC的值.6.如图,△ABC为⊙O的内接等腰三角形,AB=AC,CD为⊙O的直径,DF∥AC交AB、BC于点E、F.(1)求证:DE=EF;(2)若sin∠B=,⊙O的半径为5,求CF的长.7.如图,⊙O为△ABC的外接圆,AB为⊙O直径,AC=BC,点D在劣弧BC上,CE⊥CD交AD于E,连接BD.(1)求证:△ACE≌△BCD.(2)若CD=2,BD=3,求⊙O的半径.8.如图,在△ABC中,∠ACB=90°,点D在BC边上(不包括端点B,C),过A,C,D三点的⊙O交AB于另一点E,连接AD,DE,CE,且CE⊥AD于点G,过点C作CF∥DE交AD于点F,连接EF.(1)求证:四边形DCFE是菱形;(2)当tan∠AEF=,AC=4时,求⊙O的直径长.9.如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F,连接BE.(1)求证:DC=DE;(2)若AE=4,.求:①BE的长;②cos∠BDF的值.10.如图,AB是半圆的直径,AC为半圆的切线,AC=AB、在半圆上任取一点D,作DE⊥CD,交直线AB 于点F,BF⊥AB,交线段AD的延长线于点F.(1)设是x°的弧,并要使点E在线段BA的延长线上,则x的取值范围是;(2)不论D点取在半圆什么位置,图中除AB=AC外,还有两条线段一定相等,指出这两条相等的线段,并予证明.11.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接P A,PB,AB,已知∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.12.如图,点C是以AB为直径的圆O上一点,直线AC与过B点的切线相交于D,点E是BD的中点,直线CE交直线AB于点F.(1)求证:CF是⊙O的切线;(2)若ED=3,cos F=,求⊙O的半径.13.如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)连接AE并延长与BC的延长线交于点G(如图②所示).若AB=,CD=9,求线段BC和EG 的长.14.如图,AB为⊙O的直径,AB=10,C为⊙O上一点,AD⊥CD,垂足为D,且交⊙O于E,C是的中点.(1)求证:DC是⊙O的切线;(2)若AC=8,请直接写出CD的长.(3)若DC+DE=6,求AE的长.15.如图,AB为⊙O的直径,点P是⊙O外一点,PD与⊙O相切于点C,与BA的延长线交于点D,DE ⊥PO,交PO的延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)若PB=3,DB=4,求⊙O的半径.16.如图,点P是⊙O外一点,P A切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O 于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=cm,AC=8cm,点E是的中点,连接CE,求CE的长.17.如图,点O是等腰△ABC的外心,AD是圆O的切线,切点为A,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,连接AD,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=12,BC=8.求PC的长.18.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.19.如图1,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如图2,如果∠BED=60°,PD=,求P A的长.20.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.21.如图,AB是⊙O的直径,延长BA至点P,过点P作⊙O的切线PC,切点为C,过点B向PC的延长线作垂线BE交该延长线于点E,BE交⊙O于点D,已知P A=1,PC=OC,(1)求BE的长;(2)连接DO,延长DO交⊙O于F,连接PF,①求DE的长;②求证:PF是⊙O的切线.参考答案1.(1)解:由于AD,BE,CF交于点O,∴=,=,=,∴++=1;(2)证明:如图,延长AD交⊙O于M,设R为△ABC的外接圆半径,AD,BE,CF交于点O.∵==1﹣=1﹣,同理有:=1﹣,=1﹣,代入++=1,得(1﹣)+(1﹣)+(1﹣)=1,∴++=2,∴++==.2.(1)证明:∵CP是⊙O的切线,∴OC⊥CP,∴∠PCB+∠OCB=90°,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠ACO=∠PCB,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠COB=2∠A=2∠PCB;(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴=,∴AM2=MC•MN,∵AB是⊙O的直径,∴∠AMB=90°,∵AM=BM,AB=6.∴2AM2=62,∴AM2=18,∴MC•MN=18.3.解:(1)如图,∵AC是⊙O的直径,∴∠AEC=∠AEB=90°.(2)如图∵CF与⊙O相切,∴∠ACF=90°.∴∠BCF=90°﹣∠ACE=∠CAE.∵∠CAF=2∠BCF.∴∠CAF=2∠CAE.∴∠CAE=∠BAE.∴∠BCF=∠BAE.∵BG⊥BF,AE⊥BC,∴∠CGB=∠AEB=90°.∵∠BCF=∠BAE,∠CGB=∠AEB,∴△CBG∽△ABE.(3)连接BD,如图2所示.∵∠DAE=∠DCE,∠DAE=∠BCF,∴∠DCE=∠BCF.∵AC是⊙O的直径,∴∠ADC=90°.∴CD⊥AF.∵∠DCB=∠BCF,CD⊥AF,BGCBF,∴BD=BG.∵∠F=60°,GF=2,∠BGF=90°,∴tan∠F==BG=tan60°=,∵BG=2,∴BD=BG=2.∵∠AFC=60°,∠ACF=90°,∴∠CAF=30°.∵∠ADC=90°,∠CAF=30°,∴AC=2CD.∵∠CAE=∠BAE,∠AEC=∠AEB,∴∠ACE=∠ABE.∴AB=AC.设⊙O的半径为r,则AC=AB=2r,CD=r.∵∠ADC=90°,∴AD=r.∴DB=AB﹣AD=2r﹣r=(2﹣)r=2.∴r=4+6.∴⊙O的半径长为4+6.4.(1)证明:∵BC是⊙O的直径,∴∠CAB=90°,∴∠CAG+∠BAG=90°,∵AD⊥BE,∴∠AGB=90°,∴∠BAG+∠ABE=90°,∴∠CAG=∠ABE;(2)证明:∵∠CGD=∠CAG+∠ACG,∠ABC=∠ABE+∠CBE,由(1)知,∠CAG=∠ABE,∵∠CBE=∠ACG,∴∠CGD=∠ABC,∵∠ABC=∠D,∴∠DGC=∠D,∴CG=CD;(3)解:连接AE、CE,∵BC是直径,∴∠BEC=90°,∴∠AGE=∠BEC,∴AD∥CE,∵∠CAE=∠EBC,∠ACG=∠EBC,∴∠CAE=∠ACG,∴AE∥CG,∴四边形AGCE是平行四边形,∴AF=AC,∵AC2=BC2﹣AB2,∴AC2=﹣42,∴AC=6,∴AF=×6=3,∵BF2=AF2+AB2,∴BF2=32+42,∴BF=5,∵∠ABG=∠ABF,∠AGB=∠BAF,∴△BAG∽△BF A,∴BA:BF=BG:BA,∴4:5=BG:4,∴BG=,∵FG=BF﹣BG,∴FG=5﹣=.5.(1)证明:∵AE为⊙O的直径,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∵AD⊥BC,∴∠ADF=90°,∴∠AFD+∠F AD=90°,∵AE平分∠BAD,∴∠BAE=∠F AD,∴∠AEB=∠AFD;(2)解:如图1,过点F作BM⊥AB于点M.则∠AMF=90°,∵∠AFD=∠BFE,∠AFD=∠AEB,∴∠BFE=∠AEB,∴BF=BE=5,∵∠ABE=∠AMF=90°,∠BAE=∠MAF,∴△AMF∽△ABE,∴,即,设MF=x,则AM=2x,∴BM=10﹣2x,∵BM2+MF2=BF2,∴(10﹣2x)2+x2=52,解得x=3,即MF=3,∵AE平分∠ABD,AD⊥BC,∴DF=MF=3;(3)解:∵∠ADB=90°,G为AB的中点,∴AG=DG=BG,OG⊥AB,∴∠BGD=∠AGD=90°,∴△ADG为等腰直角三角形,∴∠GAD=45°,∴∠ABD=45°,过点F作FH⊥AB于点H,如图2,∵AF平分∠BAD,∴FD=FH,∵∠ABD=45°,∴BF=FH=FD,∵∠AFD=∠AEB,∠AEB=∠C,∴∠AFD=∠C,∴AF=AC,又∵AD⊥BC,∴FD=DC,设FD=DC=x,则BF=x,∴.6.(1)证明:如图,连接DB,∵CD为⊙O的直径,∴∠DBC=90°,∵DF∥AC,AB=AC,∴∠ABC=∠ACB=∠DFB,∴EB=EF,∵∠DBF=90°,∴∠DBE+∠EBF=∠EDB+∠EFB,∴∠DBE=∠EDB,∴DE=EB,∴DE=EF;(2)解:如图,连接AO,EO,延长AO交BC于点G,∵AB=AC,∴AG⊥BC,∵OC=OD,DE=EF,∴OE∥FC,FC=2OE,∴∠AEO=∠B,∵OE⊥OA,在Rt△AEO中,sin∠AEO=,∵sin∠B=,⊙O的半径为5,∴=,∴AE=,∴OE===.∴CF=2OE=.7.解:(1)证明:∵AB为⊙O直径,∴∠ACB=90°,∵CE⊥CD,∴∠ECD=90°,∴∠ACE=90°﹣∠ECB=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(ASA);(2)∵△ACE≌△BCD,∴CE=CD,AE=BD,∵CE⊥CD,∴△ECD是等腰直角三角形,∵CD=2,BD=3,∴DE=2,AE=3,∴AD=5,∵AB为⊙O直径,∴∠ADB=90°,∴AB==2,∴⊙O的半径为.8.解:(1)证明:∵CE⊥AD,∴EG=CG,∵CF∥DE,∴∠DEG=∠FCG,∵∠FGC=∠DGE,∴△DEG≌△FCG(ASA),∴ED=FC,∴四边形DCFE为平行四边形,又∵CE⊥DF,∴四边形DCFE是菱形;(2)∵AG⊥EC,EG=CG,∴AE=AC=4,∵四边形AEDC内接于⊙O,∴∠BED=∠BCA=90°,∵四边形DCFE是菱形,∴EF∥DC,DE=DC,∴∠AEF=∠ABC,∴tan∠ABC=tan∠AEF=,在Rt△BED中,设DE=3a,则BE=4a,∴DC=3a,BD==5a,∵BC2+AC2=AB2,∴(5a+3a)2+42=(4a+4)2,解得a=或a=0(舍去),∴DE=DC=2,∴AD===2.即⊙O的直径长为2.9.解:(1)证明:连接OD,BE,∵OD⊥AC,且DH是⊙O的切线,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)①由(1)可知:OD∥AC,∴∠AEF=∠ODF,∴∠AFE=∠OFD,∴△AFE∽△OFD,∴,∵AE=4,∴OD=6,∵AB为⊙O的直径,∴;∴BE的长为8;②在Rt△AEB中,,∵∠BDF=∠BAE,∴.10.解:(1)0<x<90,(2)连接BD,可证△BDF∽△ADB,得=,∵∠DBE=∠DAC,∴∠BDE=∠ADC=90°﹣∠ADE,∴△BDE∽△ADC,∴=,∴=,∴BE=BF.11.(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴=,即=,∴BC=2.12.(1)证明:连CB、OC,如图,∵BD为⊙O的切线,∴DB⊥AB,∴∠ABD=90°,∵AB是直径,∴∠ACB=90°,∴∠BCD=90°,∵E为BD的中点,∴CE=BE,∴∠BCE=∠CBE,而∠OCB=∠OBC,∴∠OBC+∠CBE=∠OCB+∠BCE=90°,∴OC⊥CF,∴CF是⊙O的切线;(2)解:CE=BE=DE=3,在Rt△BFE中,cos F=,tan F==,∴BF=4,∴EF==5,∴CF=CE+EF=8,在Rt△OCF中,tan F==,∴OC=6,即⊙O的半径为6.13.(1)证明:如图1,连接OE,OC;∵CB=CE,OB=OE,OC=OC∴△OEC≌△OBC(SSS)∴∠OBC=∠OEC又∵DE与⊙O相切于点E∴∠OEC=90°∴∠OBC=90°∴BC为⊙O的切线.(2)解:如图2,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∵AD,DC,BG分别切⊙O于点A,E,B∴DA=DE,CE=CB,在Rt△DFC中,CF==1,设AD=DE=BF=x,则x+x+1=9,x=4,∵AD∥BG,∴∠DAE=∠EGC,∵DA=DE,∴∠DAE=∠AED;∵AD∥BG,∵∠AED=∠CEG,∴∠EGC=∠CEG,∴CG=CE=CB=5,∴BG=10,在Rt△ABG中,AG==6,∵AD∥CG,∴==,∴EG=×6=.14.(1)证明:连接OC.∵C是的中点,∴AC平分∠DAB,∴∠DAC=∠OAC,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OCA,∴DA∥OC,∵AD⊥DC,∴∠ADC=90°,∴∠OCD=90°,即OC⊥DC,∵OC为半径,∴DC为⊙O的切线.(2)解:∵AB是⊙O的直径,∴AB=10,∠ACB=90°=∠ADC,∴BC==6,又∵∠DAC=∠OAC,∴△ACD∽△ABC,∴=,即=,解得:CD=4.8.(3)如图,连接EC,作CF⊥AB于F.∵CA平分∠BAD,CD⊥AD,CF⊥AB,∴CD=CF,∵=,∴CE=BC,∴Rt△CDE≌Rt△CFB,∴DE=BF,∴CF+BF=CD+DE=6,设BF=x,则CF=6﹣x,由△ACF∽△CBF,可得CF2=AF•BF,∴(6﹣x)2=(10﹣x)•x,解得x=2或9(舍弃),∴BF=DE=2,CD=CF=4,易证AF=AD=8,∴AE=AD﹣DE=6.15.(1)证明:∵∠EDB=∠EPB,∠DOE=∠POB,∴∠DEO=∠PBO,∵DE⊥PE,∴∠DEO=90°,∴∠PBO=90°,∴PB是⊙O的切线;(2)由(1)知,PB是⊙O的切线,∴∠PBD=90°,∵PB=3,DB=4,∴PD=5,∵PC和PB都是⊙O的切线,∴PC=PB=3,∠OCD=90°,∴CD=2,设⊙O的半径为x,则OC=x,OD=4﹣x,则22+x2=(4﹣x)2,解得,x=,即⊙O的半径是.16.(1)证明:如图,连接OC,∵P A切⊙O于A.∴OA⊥P A,∴∠P AO=90°,∵OP∥BC,∴∠AOP=∠OBC,∠COP=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP,在△P AO和△PCO中,∴△P AO≌△PCO(SAS),∴∠P AO=∠PCO=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:连接EA、EB,作BH⊥CE于H,如图,∵AB是⊙O的直径,∴∠ACB=∠AEB=90°,∵OP∥BC,∴PO⊥AC,∴AD=CD=AC=4,在Rt△P AD中,P A===,∵∠APO=∠DP A,∴Rt△P AD∽Rt△POA,∴P A:PO=PD:P A,即:PO=:,解得PO=,∴OD=PO﹣PD=3,∵AO=BO,OD∥BC,∴BC=2OD=6,在Rt△ACB中,AB==10,∵点E是的中点,∴∠BCE=∠ACE=∠ACB=45°,∴AE=BE,∴△BCH和△ABE都是等腰直角三角形,∴CH=BH=BC=3,BE=AB=5,在Rt△BEH中,EH==4,∴CE=CH+EH=3+4=7.17.解:(1)直线PC与圆O相切,理由为:过C点作直径CE,连接EB,如图,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(2)∵AD是⊙O的切线,切点为A,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM=BC=4,∴AC=AB=12,在Rt△AMC中,AM==8,设圆O的半径为r,则OC=r,OM=AM﹣r=8﹣r,在Rt△OCM中,OM2+CM2=OC2,即42+(8﹣r)2=r2,解得:r=,∴CE=2r==9,OM=8﹣=,∴BE=2OM=7,∵∠E=∠MCP,∴Rt△PCM∽Rt△CEB,∴=,即=∴PC=.18.解:(1)证明:连接OD,∵OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD,交OE于M,在Rt△ODE中,∵OD=,DE=2,∴OE===,∵OE∥AB,∴△COE∽△CAB,∴=,∴AB=5,∵AC是直径,∴∠ADC=90°,∴cos∠BAC===,∴AD=,∴CD==,∵EF∥AB,∴,∴CM=DM=CD=,∴EF=OE+OF=4,BD=AB﹣AD=5﹣=,∴S△ADF=S梯形ABEF﹣S梯形DBEF=(AB+EF)•DM﹣(BD+EF)•DM=×(5+4)×﹣×(+4)×=.∴△ADF的面积为.19.解:(1)直线PD是否为⊙O的切线.理由如下:连接OD,如图1,∵OD=OB,∴∠1=∠OBD,∵∠PDA=∠PBD,∴∠1=∠PDA,∵AB为直径,∴∠ADB=90°,即∠2+∠1=90°,∴∠PDA+∠2=90°,即∠PDO=90°,∴OD⊥PD,∴PD为⊙O的切线;(2)如图2,连接OD,∵ED和EB为⊙O的切线,∴ED=EB,而∠BED=60°,∴△EDB为等边三角形,∴∠EBD=60°,∴∠PBD=30°,∴∠PDA=30°,而∠ADB=90°,∴∠P=30°,在Rt△OAD中,OD=PD=×=1,OP=2OD=2,∴P A=PO﹣OA=2﹣1=1.20.证明:(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;解:(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.21.解:(1)设圆的半径是r,则OP=P A+r=1+r,OC=r,PC=r.∵PC是圆的切线,∴∠PCO=90°,∴在直角△PCO中,PC2+OC2=OP2,即(r)2+r2=(1+r)2,解得:r=1或r=﹣(舍去负值).在直角△OPC中,cos∠POC==,∴∠POC=60°,∵∠PCO=90°,BE⊥BC,∴BE∥OC,∴△OPC∽△BPE,∠B=∠POC=60°,∴==,∴BE=OC=;(2)①在△OBD中,OB=OD,∠B=60°,∴△OBD是等边三角形,BD=OB=1,∠BOD=60°.∴DE=BE﹣BD=﹣1=;②∵在△OPC和△OPF中,,∴△OPC≌△OPF(SAS),∴∠OFP=∠OCP=90°,∴PF是⊙O的切线.。
二次函数与圆的综合题(中考数学压轴题必考)例1.如图,已知抛物线与x轴交于A,B两点(A在左边),抛物线经过点D以AB为直径画⊙P,试判定点D与⊙P的位置关系,并证明.练习1.如图,二次函数y=ax2﹣(a+1)x(a为常数,且0<a<1)的图象过原点O并与x轴交于点P;过点A(1,﹣1)的直线l垂直y轴于点B,并与二次函数的图象交于点Q,以OA为直径的⊙C交x轴于点D,连接DQ.(1)点B与⊙C的位置关系是;(2)点A是否在二次函数的图象上;(填“是”或“否”)(3)若DQ恰好为⊙C的切线,①猜想:四边形OAQD的形状是,证明你的猜想;②求二次函数的表达式.例2.如图示已知点M的坐标为(4,0),以M为圆心,以2为半径的圆交x轴于A、B,抛物线过A、B两点且与y轴交于点C.过C点作⊙M 的切线CE,求直线OE的解析式.练习2.平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴,设平行于x轴的直线交抛物线y=﹣x2﹣x+2于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.练习3.如图,抛物线y=﹣x2﹣x+2与x轴交于A(﹣4,0),B(2,0),与y 轴交于点C(0,2).以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.练习4.如图,抛物线y=﹣x2+x+2.经过A、B、C三点,A点坐标为(4,0),B点坐标为(﹣1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C,M为抛物线的顶点,试说明直线MC与⊙P的位置关系,并证明你的结论.练习5.如图,抛物线与x轴交于A、B两点,与y轴交于C点.以AB为直径作⊙M.(1)求出M的坐标并证明点C在⊙M上;(2)若P为抛物线上一动点,求出当CP与⊙M相切时P的坐标;练习6.在平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C,过点C作圆的切线交x轴于点D.(1)求点C的坐标和过A,B,C三点的抛物线的析式;(2)求点D的坐标:(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.练习7.如图,在平面直角坐标系中,已知OA=n,OC=m,⊙M与y轴相切于点C,与x轴交于A,B两点,∠ACD=90°,抛物线y=ax2+bx+c经过A,B,C三点.(1)求证:∠OCA=∠OBC;(2)若A(x1,0),B(x2,0),且x1,x2满足x1+x2=5,x1•x2=4,求点C 的坐标和抛物线的解析式;(3)若△ACD≌△ABD,在四边形ABDC内有一点P,且点P到四边形四个顶点的距离之和P A+PB+PC+PD最小,求此时距离之和的最小值及P点的坐标(用含n的式子表示).练习8.已知二次函数y=mx2+(m﹣3)x﹣3(m>0)(1)求证:它的图象与x轴必有两个交点;(2)这条抛物线与x轴交于两点A、B(A在B左),与y轴交于点C,顶点为D,sin∠ABD=,⊙M过A、B、C三点,求⊙M的面积;(3)在(2)的条件下,抛物线上是否存在点P,使P A是⊙M的切线?若存在,求出P点的坐标,若不存在,说明理由.例3.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN 为等腰三角形时,求圆心P的纵坐标.练习9.已知:如图,抛物线y=ax2+bx+1的图象关于y轴对称,且抛物线过点(2,2),点P为抛物线上的动点,以点P为圆心的⊙P与x轴相切,当点P运动对,⊙P始终经过y轴上的一个定点E.(1)求抛物线的解析式;(2)当⊙P的半径为时,⊙P与y轴交于M、N两点,求MN的长;(3)求定点E到直线y=kx﹣8k的距离的最大值.练习10.已知:直线y=﹣x﹣4分别交x、y轴于A、C两点,抛物线y=ax2+bx (a>0)经过A、O两点,且顶点B的纵坐标为﹣2(1)判断点B是否在直线AC上,并求该抛物线的函数关系式;(2)以点B关于x轴的对称点D为圆心,以OD为半径作⊙D,试判断直线AC与⊙D的位置关系,并说明理由;(3)若E为⊙D的优弧AO上一动点(不与A、O重合),连接AE、OE,问在抛物线上是否存在点P,使∠POA:∠AEO=2:3?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.练习11.已知A是x轴正半轴上一个动点,以线段OA为直径作⊙B,圆心为点B,直径OA=m,线段EF是⊙B的一条弦,EF∥x轴,点C为劣弧EF的中点,过点E作DE垂直于EF,交抛物线C1:y=ax2+bx(a>0)于点G,抛物线经过点O和点A.(1)求证:DG=m;(2)拖动点A,如果抛物线C1与⊙B除点O和点A外有且只有一个交点,求b的值;(3)拖动点A,抛物线C1交⊙B于点O、E、F、A,①求证:DE=m﹣;②直接写出FC2的值(用a,m的代数式表示)练习13.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A.B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3),求出抛物线的解析式;(4)在该抛物线上是否存在一点D点,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.例4.如图1,抛物线y=ax2+3ax(a为常数,a<0)与x轴交于O,A两点,点B 为抛物线的顶点,点D是线段OA上的一个动点,连接BD并延长与过O,A,B三点的⊙P相交于点C,过点C作⊙P的切线交x轴于点E.(1)①求点A的坐标;②求证:CE=DE;(2)如图2,连接AB,AC,BE,BO,当,∠CAE=∠OBE时,①求证:AB2=AC•BE;②求的值.练习14.如图1,已知圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E 四点,B为OD中点.(1)求过A,B,C三点的抛物线解析式;(2)如图2,连接BC,AC.点P在第一象限且为圆O上一动点,连接BP,交AC于点M,交OC于点N,当MC2=MN•MB时,求M点的坐标;(3)如图3,若抛物线与圆O的另外两个交点分别为H,F,请判断四边形CFEH的形状,并说明理由.练习15.如图,二次函数与x轴的一个交点A的坐标为(﹣3,0),以点A为圆心作圆A,与该二次函数的图象相交于点B,C,点B,C的横坐标分别为﹣2,﹣5,连接AB,AC,并且满足AB⊥AC.过点B作BM⊥x轴于点M,过点C作CN⊥x轴于点N.(1)求该二次函数的关系式;(2)经过点B作直线BD,在A点右侧与x轴交于点D,与二次函数的图象交于点E,使得∠ADB=∠ABM,连接AE,求证:AE=AD;(3)若直线y=kx+1与圆A相切,请求出k的值.例5.已知抛物线y=ax2+bx+5(a≠0)经过A(5,0),B(6,1)两点,且与y 轴交于点C.(1)求抛物线y=ax2+bx+5(a≠0)的函数关系式;(2)如图1,连接AC,E为线段AC上一点且横坐标为1,⊙P是△OAE外接圆,求圆心P点的坐标;(3)如图2,连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F;①点E在运动过程中四边形OEAF的面积是否为定值?如果是,请求出这个定值;如果不是,请说明理由;②求出当△AEF的面积取得最大值时,点E的坐标.练习16.如图1,已知抛物线y=﹣x2+bx+c经过点A(1,0),B(﹣5,0)两点,且与y轴交于点C.(1)求b,c的值.(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由.(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O 三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.练习17.如图1,抛物线y=+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C,顶点为D.(1)求抛物线的解析式;(2)如图2,以AB为直径在x轴上方画半圆交y轴于点E,圆心为G,P为半圆上一动点,连接DP,点Q为PD的中点.①判断点C、D与⊙G的位置关系,并说明原因;②当点P沿半圆从点B运动到点A时,求线段AQ的最小值.练习18.如图1,二次函数y=ax2﹣3ax+b(a、b为参数,其中a<0)的图象与x 轴交于A、B两点,与y轴交于点C,顶点为D.(1)若b=﹣10a,求tan∠CBA的值(结果用含a的式子表示);(2)若△ABC是等腰三角形,直线AD与y轴交于点P,且AP:DP=2:3.求抛物线的解析式;(3)如图2,已知b=﹣4a,E、F分别是CA和CB上的动点,且EF=AB,若以EF为直径的圆经过点C,并交x轴于M、N两点,求MN的最大值.课后练习1.抛物线y=ax2+bx﹣4交x轴于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是介于B、C之间的抛物线上的动点(包括B、C两点),点E是△ABP 的外接圆圆心.(1)求抛物线的解析式;(2)如图1,当P为抛物线的顶点时,求圆心E的坐标;(3)如图2,作PH⊥x轴于点H,延长PH交⊙E于点Q,当P从C点出发,沿该抛物线运动到B点,求点Q在这个运动过程中的路径长.2.如图,在正方形OABC中,AB=4,点E是线段OA(不含端点)边上一动点,作△ABE的外接圆交AC于点D.抛物线y=ax2﹣x+c过点O,E.(1)求证:∠BDE=90°;(2)如图1,若抛物线恰好经过点B,求此时点D的坐标;(3)如图2,AC与BE交于点F.①请问点E在运动的过程中,CF•AD是定值吗?如果是,请求出这个值,如果不是,请说明理由;②若,求点E坐标及a的值.。
一、解答题1.在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点(1,0)A -和点B ,与y 轴交于点C ,顶点D 的坐标为(1,4)-.(1)直接写出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足,求点P 的坐标; (3)如图2,M 是直线BC 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC 上一个动点,当为等腰直角三角形时,直接写出此时点M 及其对应点Q 的坐标2.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标;(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.3.在平面直角坐标系xOy 中,⊙O 的半径为1.对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到⊙O 的弦B ′C ′(B ′,C ′分别是B ,C 的对应点),则称线段BC 是⊙O 的以点A 为中心的“关联线段”.(1)如图,点A ,B 1,C 1,B 2,C 2,B 3,C 3的横、纵坐标都是整数.在线段B 1C 1,B 2C 2,B 3C 3中,⊙O 的以点A 为中心的“关联线段”是 ;(2)△ABC 是边长为1的等边三角形,点A (0,t ),其中t ≠0.若BC 是⊙O 的以点A 为中心的“关联线段”,求t 的值;(3)在△ABC 中,AB =1,AC =2.若BC 是⊙O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.4.综合与探究如图,在平面直角坐标系中,点()0,10A ,点B 是x 轴的正半轴上的一个动点,连接AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .过点B 作x 轴的垂线交直线AC 于点D .设点B 坐标是(),0t(1)当6t =时,点M 的坐标是 ;(2)用含t 的代数式表示点C 的坐标;(3)是否存在点B ,使四边形AOBD 为矩形?若存在,请求出点B 的坐标;若不存在,请说明理由;(4)在点B 的运动过程中,平面内是否存在一点N ,使得以A 、B 、N 、D 为顶点的四边形是菱形?若存在,请直接写出点N 的纵坐标(不必要写横坐标);若不存在,请说明理由.5.如图(1),在菱形ABCD 中,∠ABC =60°,点E 在边CD 上(不与点C ,D 重合),连结AE ,交BD 于点F .(1)如图(2),若点M 在BC 边上,且DE =CM ,连结AM ,EM .求证:三角形AEM 为等边三角形;(2)设DF x BF=,求tan ∠AFB 的值(用x 的代数式表示); (3)如图(3),若点G 在线段BF 上,且FG =2BG ,连结AG 、CG ,DF x BF =,四边形AGCE 的面积为S 1,ABG 的面积为S 2,求12S S 的最大值.6.如图,在平面直角坐标系中,ABC 的边AB 在x 轴上,且OB OA >,以AB 为直径的圆过点C .若点C 的坐标为()0,4,10AB =,(1)求抛物线的解析式;(2)点P 为该函数在第一象限内的图象上一点(不与BC 重合),过点P 作PQ BC ⊥,垂足为点Q ,连接PC .若以点P 、C 、Q 为顶点的三角形与COA 相似,求点P 的坐标;(3)若ACB ∠平分线所在的直线l 交x 轴与点E ,过点E 任作一直线l '分别交射线CA ,CB (点C 除外)于点M ,N .则11CM CN+的是否为定值?若是,求出该定值;若不是,请说明理由.7.如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P 、Q 两点(Q 在P 、H 之间).我们把点Q 称为⊙I 关于直线a 的“近点”,点P 称为⊙I 关于直线a 的“远点”把PQ ·QH 的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,3).半径为1的⊙O 与两坐标轴交于点A 、B 、C 、D .①过点E 画垂直于y 轴的直线m ,则⊙O 关于直线m 的“近点”“远点”分别是点_____和_____(填“A ”、“B ”、“C ”或“D ”),⊙O 关于直线m 的“特征数”为_____;②若直线n 的函数表达式为33y x =-+.求⊙O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点M (1,2),点F 是坐标平面内一点,以F 5为半径作⊙F .若⊙F 与直线l 相离,点N (1-,0)是⊙F 关于直线l 的“近点”.且⊙F 关于直线l 的“特征数”是6,求直线l 的函数表达式.8.如图,抛物线y=-x2+bx+c与x轴交于A,B两点,其中A(3,0),B(-1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A、C,连接CD.(1)分别求抛物线和直线AC的解析式;(2)在直线AC下方的抛物线上,是否存在一点P,使得△ACP的面积是△ACD面积的2倍,若存在,请求出点P的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且点A1恰好落在该抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.9.已知:如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b(b>0)交x轴于点A,交y轴于点C,以OA,OC为边作矩形ABCO,矩形ABCO的面积是36.(1)求直线AC的解析式.(2)点P为线段AB上一点,点Q为第一象限内一点,连接PO,PQ,∠OPQ=90°,且OP=PQ,设AP的长为t,点Q的横坐标为d,求d与t的函数关系式.(不要求写出自变量t的取值范围)(3)在(2)的条件下,过点Q作QE∥PO交AB的延长线于点E,作∠POC的平分线OF 交PE于点F,交PQ于点K,若KQ=2EF,求点Q的坐标.10.如图,平面直角坐标系中,点O为原点,抛物线交x轴于()2,05,0B两点,交y轴于点C.A-、()(1)求抛物线解析式;(2)点P在第一象限内的抛物线上,过点P作x轴的垂线,垂足为点H,连AP交y轴于点E,设P点横坐标为t,线段EC长为d,求d与t的函数解析式;(3)在(2)条件下,点M在CE上,点Q在第三象限内抛物线上,连接PC、PQ、PM,PQ与y轴交于W,若,,,求点Q的坐标.11.已知:如图1,点A(a,b),AB x⊥轴于点B2++-+=.a b a b24(8)0(1)试判断△AOB的形状,并说明理由;(2)如图2,若点C为线段AB的中点,连OC并作OD OC⊥,且OD OC=,连AD交x轴于点E,试求点E的坐标;(3)如图3,若点M为点B的左边x轴负半轴上一动点,以AM为一边作45∠=︒交MANy轴负半轴于点N,连MN,在点M运动过程中,试猜想式子OM MN ON+-的值是否发生变化?若不变,求这个不变的值;若发生变化,试求它变化的范围.12.直角三角板ABC的斜边AB的两个端点在⊙O上,已知∠BAC=30°,直角边AC与⊙O 相交于点D,且点D是劣弧AB的中点.(1)如图1,判断直角边BC所在直线与⊙O的位置关系,并说明理由;(2)如图2,点P是斜边AB上的一个动点(与A、B不重合),DP的延长线交⊙O于点Q,连接QA、QB.①AD=6,PD=4,则AB= ;PQ= ;②当点P在斜边AB上运动时,求证:QA+QB=3QD.13.如图,已知四边形ABCD内接于⊙O,直径DF交BC于点G.(1)如图1,求证:∠BAD-∠BCF=90°;(2)如图2,连接AC,当∠BAC=∠CFD+∠ACD时,求证:CA=CB;(3)如图3,在(2)的条件下,AC交DF于点H,∠BAC=∠DGB,45CGBG,AC=9,求△CDH的面积.14.同学们学过正方形与等腰三角形发现它们都是轴对称图形,它们之间有很多相似,在正边形ABCD中,E是对角线AC上一点(不与点A、C重合),以AD、AE为邻边作平行四边形AEGD,GE交CD于点M,连接CG.(1)如图1,当12AE AC<时,过点E作EF BE⊥交CD于点F,连接GF并延长交AC于点H.求证:EB EF=;(2)在ABC中,AB AC=,90BAC∠=︒.过点A作直线AP,点C关于直线AP的对称点为点D,连接BD,CD直线BD交直线AP于点E.如图2,①依题意补全图形;②请用等式表示线段EB,ED,BC之间的数量关系,并予以证明.15.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式.(2)若点P为第三象限内抛物线上一动点,作PD⊥x轴于点D,交AC于点E,过点E作AC 的垂线与抛物线的对称轴和y轴分别交于点F、G,设点P的横坐标为m.①求PE2的最大值;②连接DF、DG,若∠FDG=45°,求m的值.16.【问题提出】如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围.【问题解决】解决此问题可以用如下方法:延长AD 到点E ,使DE =AD ,再连结BE (或将△ACD 绕着点D 逆时针旋转180°得到△EBD ),把AB 、AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断.由此得出中线AD 的取值范围是__________【应用】如图②,如图,在△ABC 中,D 为边BC 的中点、已知AB =10,AC =6,AD =4,求BC 的长.【拓展】如图③,在△ABC 中,∠A =90°,点D 是边BC 的中点,点E 在边AB 上,过点D 作D F⊥DE 交边AC 于点F ,连结EF .已知BE =5,CF =6,则EF 的长为__________.17.已知二次函数()20y x bx c a =++≠的图象与x 轴的交于A 、B (1,0)两点,与y 轴交于点()03C -,.(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,若点D 的横坐标为m ,ACD △的面积为S ,求S 与m 之间的函数关系式,并写出ACD △的面积取得最大值时点D 的坐标;(3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N .使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).18.如图,在平面直角坐标系中,已知二次函数图像222(1)2y x a x a a =-+++的顶点为P ,点B 39(2,)16- 是一次函数5119216y x =+上一点.(1)当a =0时,求顶点P 坐标;(2)若a >0,且一次函数2y x b =-+的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程);(3)作直线OC :12y x =与一次函数5119216y x =+交于点C .连结OB ,当抛物线与△OBC 的边有两个交点时,求a 的取值范围.19.已知O 为ABC ∆的外接圆,AC BC =,点D 是劣弧AB 上一点(不与点A ,B 重合),连接DA ,DB ,DC .(1)如图1,若AB 是直径,将ACD ∆绕点C 逆时针旋转得到BCE ∆.若4CD =,求四边形ADBC 的面积;(2)如图2,若AB AC =,半径为2,设线段DC 的长为x .四边形ADBC 的面积为S . ①求S 与x 的函数关系式;②若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置.DMN ∆的周长有最小值t ,随着点D 的运动,t 的值会发生变化.求所有t 值中的最大值,并求此时四边形ADBC 的面积S .20.如图,在ABCD 中,90ABD ∠=︒,5cm AD =,8cm BD =.点P 从点A 出发,沿折线AB BC -向终点C 运动,点P 在AB 边、BC 边上的运动速度分别为1cm/s 、5cm /s .在点P 的运动过程中,过点P 作AB 所在直线的垂线,交边AD 或边CD 于点Q ,以PQ 为一边作矩形PQMN ,且2QM PQ =,MN 与BD 在PQ 的同侧.设点P 的运动时间为t (秒),矩形PQMN 与ABCD 重叠部分的面积为()2cm S .(1)求边AB 的长.(2)当04t <<时,PQ = ,当48t <<时,PQ = .(用含t 的代数式表示)(3)当点M 落在BD 上时,求t 的值.(4)当矩形PQMN 与ABCD 重叠部分图形为四边形时,求S 与t 的函数关系式.【参考答案】参考答案**科目模拟测试一、解答题1.(1)223y x x =--;(2),; (3),;,;,;,; ,;,. 【解析】【分析】(1)根据顶点的坐标,设抛物线的解析式为y =a (x ﹣1)2﹣4,将点A (﹣1,0)代入,求出a 即可得出答案;(2)利用待定系数法求出直线BD 解析式为y =2x ﹣6,过点C 作CP 1∥BD ,交抛物线于点P 1,再运用待定系数法求出直线CP 1的解析式为y =2x ﹣3,联立方程组即可求出P 1(4,5),过点B 作y 轴平行线,过点C 作x 轴平行线交于点G ,证明△OCE ≌△GCF(ASA),运用待定系数法求出直线CF解析式为y=12x﹣3,即可求出P2(52,﹣74);(3)利用待定系数法求出直线AC解析式为y=﹣3x﹣3,直线BC解析式为y=x﹣3,再分以下三种情况:①当△QMN是以NQ为斜边的等腰直角三角形时,②当△QMN是以MQ为斜边的等腰直角三角形时,③当△QMN是以MN为斜边的等腰直角三角形时,分别画出图形结合图形进行计算即可.(1)解:∵顶点D的坐标为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,得0=a(﹣1﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3,∴该抛物线的解析式为y=x2﹣2x﹣3;(2)解:∵抛物线对称轴为直线x=1,A(﹣1,0),∴B(3,0),设直线BD解析式为y=kx+e,∵B(3,0),D(1,﹣4),∴,解得:,∴直线BD解析式为y=2x﹣6,过点C作CP1∥BD,交抛物线于点P1,设直线CP1的解析式为y=2x+d,将C(0,﹣3)代入,得﹣3=2×0+d,解得:d=﹣3,∴直线CP1的解析式为y=2x﹣3,结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=2x﹣3,解得:x1=0(舍),x2=4,故P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,∵OB=OC,∠BOC=∠OBG=∠OCG=90°,∴四边形OBGC是正方形,设CP1与x轴交于点E,则2x﹣3=0,解得:x=32,∴E(32,0),在x轴下方作∠BCF=∠BCE交BG于点F,∵四边形OBGC是正方形,∴OC=CG=BG=3,∠COE=∠G=90°,∠OCB=∠GCB=45°,∴∠OCB﹣∠BCE=∠GCB﹣∠BCF,即∠OCE=∠GCF,∴△OCE≌△GCF(ASA),∴FG=OE=32,∴BF=BG﹣FG=3﹣32=32,∴F(3,﹣32),设直线CF解析式为y=k1x+e1,∵C(0,﹣3),F(3,﹣32),∴,解得:,∴直线CF解析式为y=12x﹣3,结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=12x﹣3,解得:x1=0(舍),x2=52,∴P2(52,﹣74),综上所述,符合条件的P点坐标为:(4,5)或(52,﹣74);(3)解:(3)设直线AC解析式为y=m1x+n1,直线BC解析式为y=m2x+n2,∵A(﹣1,0),C(0,﹣3),∴,解得:,∴直线AC解析式为y=﹣3x﹣3,∵B(3,0),C(0,﹣3),∴,解得:,∴直线BC解析式为y=x﹣3,设M(t,t﹣3),则N(t,t2﹣2t﹣3),∴MN=|t2﹣2t﹣3﹣(t﹣3)|=|t2﹣3t|,①当△QMN是以NQ为斜边的等腰直角三角形时,此时∠NMQ=90°,MN=MQ,如图2,∵MQ∥x轴,∴Q(﹣13t,t﹣3),∴|t2﹣3t|=|t﹣(﹣13t)|,∴t2﹣3t=±43t,解得:t=0(舍)或t=53或t=133,∴,;,;②当△QMN是以MQ为斜边的等腰直角三角形时,此时∠MNQ=90°,MN=NQ,如图3,∵NQ∥x轴,∴Q(,t2﹣2t﹣3),∴NQ=|t﹣|=13|t2+t|,∴|t2﹣3t|=13|t2+t|,解得:t=0(舍)或t=5或t=2,∴M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);③当△QMN是以MN为斜边的等腰直角三角形时,此时∠MQN=90°,MQ=NQ,如图4,过点Q作QH⊥MN于H,则MH=HN,∴H(t,),∴Q(,),∴QH=|t﹣|=16|t2+5t|,∵MQ=NQ,∴MN=2QH,∴|t2﹣3t|=2×16|t2+5t|,解得:t=7或1,∴M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3);综上所述,点M及其对应点Q的坐标为:,;,;M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3).【点睛】本题是二次函数综合题,主要考查了待定系数法求一次函数和二次函数解析式,求一次函数与二次函数图象交点坐标,全等三角形判定和性质,正方形判定和性质,等腰直角三角形性质等,本题属于中考压轴题,综合性强,难度较大,熟练掌握待定系数法、等腰直角三角形性质等相关知识,运用数形结合思想、分类讨论思想是解题关键.2.(1)224233y x x =--+;(2)35(,)22P -(3)存在,12(1,0),(5,0)Q Q --,34(27,0),(27,0)Q Q .【解析】【分析】(1)根据待定系数法求抛物线解析式;(2)设224(,)33P t t --根据(1)的结论求得C 的坐标,进而求得AC 的解析式,过P 作PD ⊥x 轴交AC 于点D ,进而求得PD 的长,根据12APC C A S PD x x =⋅⋅-△求得APC S 的表达式,进而根据二次函数的性质求得取得最大值时,t 的值,进而求得P 点的坐标;(3)分情况讨论,①//CM AQ ,②//AC MQ ,根据抛物线的性质以及平行四边形的性质先求得M 的坐标进而求得Q 点的坐标.【详解】(1)二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,则093202a b a b =-+⎧⎨=++⎩解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴抛物线解析式为224233y x x =--+ (2)抛物线224233y x x =--+与y 轴交于点C ,令0x =,则2y = (0,2)C ∴设直线AC 的解析式为y kx b =+,由(3,0)A -,(0,2)C ,则302k b b -+=⎧⎨=⎩解得232k b ⎧=⎪⎨⎪=⎩ ∴直线AC 的解析式为223y x =+, 如图,过P 作PD ⊥x 轴交AC 于点D ,设224(,)33P t t --,则2(,2)3D t t +, 2224222223333PD t t t t t ⎛⎫∴=--+-+=-- ⎪⎝⎭∴12APC C A S PD x x =⋅⋅-△212(2)323t t =⨯--⨯2239324t t t ⎛⎫=--=-++ ⎪⎝⎭ ∴当32t =-时,APC S 取得最大值,此时222423435223332322t t ⎛⎫⎛⎫--+=-⨯--⨯-+= ⎪ ⎪⎝⎭⎝⎭ ∴35(,)22P - (3)存在,理由如下抛物线解析式为224233y x x =--+()228133x =-++ ∴抛物线的对称轴为直线1x =①如图,当//CM AQ 时,Q 点在x 轴上,//CM x 轴∴,M C 关于抛物线的对称轴直线1x =对称,(0,2)C(2,2)M ∴-2CM ∴=122AQ AQ ∴==(3,0)A -12(1,0),(5,0)Q Q ∴--②当//AC MQ 时,如图,设M 的纵坐标为n ,四边形ACQM 是平行四边形,点A ,Q 在x 轴上,则,AQ MC 的交点也在x 轴上, 202n +∴= 解得2n =-设(,2)M m -,2242233x x ∴-=--+ 解得17x =-(17,2)M ∴--A 点到C 点是横坐标加3,纵坐标加2∴M 点到Q 点也是横坐标加3,纵坐标加2 即(173,0)Q -±34(27,0),(27,0)Q Q ∴综上所述,存在点Q ,使得以A C M Q 、、、为顶点的四边形是平行四边形,Q 点的坐标为12(1,0),(5,0)Q Q --,34(27,0),(27,0)Q Q .【点睛】本题考查了二次函数综合,待定系数法,二次函数最值,二次函数的图象与性质,平行四边形的性质,综合运用以上知识是解题的关键.3.(1)B 2C 2;(233-3)OA 最小值为1,相应的3BC =OA 最大值为2,相应的6BC =【解析】【分析】(1)结合题意,根据旋转和圆的性质分析,即可得到答案;(2)根据题意,分B C ''在x 轴上方和x 轴上方两种情况;根据等边三角形、勾股定理、全等三角形的性质,得32AD OD ==,从而完成求解; (3)结合题意,得当AC '为⊙O 的直径时,OA 取最小值;当A 、B '、O 三点共线时,OA 取最大值;根据勾股定理、等腰三角形的性质计算,即可得到答案.【详解】(1)线段B 1C 1绕点A 旋转得到的11B C '',均不能成为⊙O 的弦∴线段B 1C 1不是⊙O 的以点A 为中心的“关联线段”;线段B 2C 2绕点A 旋转得到的22B C '',如下图:∴线段B 2C 2是⊙O 的以点A 为中心的“关联线段”;线段B 3C 3绕点A 旋转得到的33B C '',均不能成为⊙O 的弦∴线段B 3C 3不是⊙O 的以点A 为中心的“关联线段”;故答案为:B 2C 2;(2)∵△ABC 是边长为1的等边三角形,点A (0,t ),⊙O 的半径为1 ∴//B C x ''轴分B C ''在x 轴上方和x 轴上方两种情况:当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:∵1OB OC ''==∴1122B D B C '''== ∴2232OD OB B D ''=-=∵△ABC 是边长为1的等边三角形,即△AB C ''是边长为1的等边三角形, ∴AC D OC D ''∠=∠,AD B C ''⊥ ∴AC D OC D ''△≌△∴32AD OD == ∴3AO AD OD =+=∴3t =;当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:同理,3AO AD OD =+=∴()0,3A -;∴t 3=-;∴3t =或3-;(3)当AC '为⊙O 的直径时,OA 取最小值,如下图:∴OA 最小值为1,90AB C ''∠=︒ ∴223BC B C AC AB ''''==-=;当A 、B '、O 三点共线时,OA 取最大值,2OA AC '== ,如下图:作AE OC '⊥交OC '于点E ,作C F AO '⊥交AO 于点F ,如下图∵2OA AC '==∴1122OE OC '==∴2215AE AO OE - ∵11222AE OC OB C F '''⨯=⨯⨯ ∴1152C F AE '==∴2214OF OC C F ''=-=∴34B F OB OF ''=-=∴262BC B C C F B F ''''==+=∴OA 最小值为1,相应的3BC =;OA 最大值为2,相应的62BC =. 【点睛】本题考查了旋转、圆、等边三角形、勾股定理、全等三角形、等腰三角形的知识;解题的关键是熟练掌握旋转、圆周角、等腰三角形三线合一、勾股定理的性质,从而完成求解.4.(1)(3,5)M ,(2)1(5,)2C t t +;(3)(20,0)B ;(4)154或10. 【解析】 【分析】(1)利用中点坐标公式计算即可.(2)如图1中,作ME OB ⊥于E ,CF x ⊥轴于F .证明()MEB BFC AAS ∆≅∆,利用全等三角形的性质即可解决问题.(3)如图2中,存在.由题意当CF OA =时,可证四边形AOBD 是矩形,构建方程即可解决问题.(4)分三种情形:①如图3中,当AD BD =时,以AB 为对角线可得菱形ADBN ,此时点N 在y 轴上.②如图4中,当AD AB =时,以BD 为对角线可得菱形ABND .此时点N 的纵坐标为6.③因为BD AB ≠,所以不存在以AD 为对角线的菱形. 【详解】解:(1)如图1中,(0,10)A ,(6,0)B ,AM BM =, (3,5)M ∴,(2)如图1中,作ME OB ⊥于E ,CF x ⊥轴于F .//ME OA ,AM BM =, 12OE EB t ∴==,152ME OA ==,90MEB CFB CBM ∠=∠=∠=︒,90MBE CBF ∴∠+∠=︒,90MBE BME ∠+∠=︒, BME CBF ∴∠=∠,()MEB BFC AAS ∴∆≅∆,5BF ME ∴==,12CF BE t ==,5OF OB BF t ∴=+=+, 1(5,)2C t t ∴+.(3)存在.如图2中,作ME OB ⊥于E ,CF x ⊥轴于F .理由:由题意当=10CF OA =时,//OA CF , ∴四边形AOFC 是平行四边形,90AOF ∠=︒,∴四边形AOFC 是矩形,90DAO AOB DBO ∴∠=∠=∠=︒,∴四边形AOBD 是矩形,又∵由(2)得12CF BE t ==, 即:1102t =,解得:20t =.(20,0)B ∴.(4)①如图3中,当AD BD =时,以AB 为对角线可得菱形ADBN ,此时点N 在y 轴上.AD BD =, BAD ABD ∴∠=∠,OAB ABD ∴∠=∠,OAB BAD ∴∠=∠. tan tan OAB BAD ∴∠=∠, ∴12OB BC OA BA ==,即1102t =,5t ∴=,5OB ∴=,设AN NB m ==,在Rt OBN △中,则有2225(10)m m =+-, 解得254m =, 25151044ON OA AN ∴=-=-=, ∴点N 的纵坐标为154. ②如图4中,当AD AB =时,以BD 为对角线可得菱形ABND .此时点N 的纵坐标为10.③BD AB ≠,∴不存在以AD 为对角线的菱形. 综上所述,满足条件的点N 的纵坐标为154或10. 【点睛】本题属于四边形综合题,考查了矩形的判定和性质,菱形的判定和性质,翻折变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.5.(1)证明见解析;(23333xx;(3)194【解析】 【分析】(1)如图,连接,AC 证明,ACB ACD 都为等边三角形,可得,AC AD = 再证明,ACM ADE ≌从而可得答案;(2)如图,记,AC BD 交于点,O 设,,DFa OFb 四边形ABCD 为菱形,60,ABC ∠=︒表示33,33OA OB a b 利用,2DF ax BF a b则2,1a xb x再利用三角函数的定义可得答案;(3)如图,设,DFESn 证明,DFE BFA ∽ 2,BFAnSx 再表示2222,,33ABGAGFn nSS S x x 结合菱形的轴对称的性质可得:2=,3CBG nS x 表示,AFDn S x可得2=,BCD ABDn n S Sxx 可得2212243334,3nn n S x x x x n S x 再利用二次函数的性质可得答案.【详解】证明:(1)如图,连接,AC 菱形ABCD 中,∠ABC =60°,,60,120,60,AB BC CDAD ABC ADC BAD BCD BAC CAD ACB,ACB ACD 都为等边三角形,,AC AD ∴=,60,DE CM ACM ADE,ACM ADE ≌ ,,AMAE MAC EAD 60,MACCAECAEEADAME ∴是等边三角形(2)如图,记,AC BD 交于点,O设,,DF a OF b 四边形ABCD 为菱形,60,ABC ∠=︒,,30,ACBD OB OD a b ABO33,33OAOB a b ,2DF a x BFa b1221,a b bx a a 11,22b ax 则2,1ax bx333tan 13a b OAa AFBOFbb32331,3133xxxx(3)如图,设,DFESn四边形ABCD 是平行四边形,,DFE BFA ∽22=,BFAn DF x S BF2,BFAn SxFG =2BG , 2222,,33ABGAGFn n SS S xx根据菱形的轴对称的性质可得:2=,3CBG n S x ,AFD ABFS DF x SBF2,AFDn n S x x x 2=,BCDABD n n SSxx1222224=333n n n n n nS nn x x x x x x, 2212243334,3n n n S x x x x n S x 30,a所以12S S 有最大值, 当31232x时,最大值为:1119334.424【点睛】本题考查的是菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,相似三角形的判定与性质,列二次函数关系式,二次函数的性质,锐角三角函数的应用,灵活运用以上知识解题是解本题的关键.6.(1)213442y xx =-++;(2)点P 的坐标为:(6,41,2);(3)11NC MC +=【解析】 【分析】(1)根据题意,先证明AOC ∆∽COB ∆,得到AO OCCO OB=,求出点A 、B 的坐标,然后利用待定系数法,即可求出抛物线解析式;(2)根据题意,可分为两种情况:AOC ∆∽PQC ∆或AOC ∆∽CQP ∆,结合解一元二次方程,相似三角形的判定和性质,分别求出点P 的坐标,即可得到答案;(3)过点E 作EI ⊥AC 于I ,EJ ⊥CN 于J ,然后由角平分线的性质定理,得到EI =EJ ,再证明△MEI ∽△MNC ,△NEJ ∽△NMC ,得到111NC MC EI+=,然后求出EI 一个定值,即可进行判断. 【详解】解:(1)∵以AB 为直径的圆过点C , ∴∠ACB =90°, ∵点C 的坐标为()0,4, ∴CO ⊥AB ,∴∠AOC =∠COB =90°,∴∠ACO +∠OCB =∠ACO +∠OAC =90°, ∴∠OCB =∠OAC , ∴AOC ∆∽COB ∆,∴AO OCCO OB=, ∵4CO =,10AO BO AB +==, ∴10AO OB =-, ∴1044OB OB-=, 解得:2OB =或8OB =, 经检验,满足题意, ∵OB OA >, ∴8OB =,∴点A 为(2-,0),点B 为(8,0).设抛物线的解析式为2y ax bx c =++,把点A 、B 、C 三点的坐标代入,有44206480c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得:14324a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式为213442y x x =-++;(2)根据题意,如图:当AOC ∆∽PQC ∆时, ∴ACO PCQ ∠=∠, ∵90ACO OCB ∠+∠=︒, ∴90PCQ OCB ∠+∠=︒, ∴PC ⊥OC , ∴点P 的纵坐标为4,当4y =时,有2134442x x -++=,解得:16x =或20x =(舍去); ∴点P 的坐标为(6,4);当AOC ∆∽CQP ∆时,则此时BC 垂直平分OP ,作PG ⊥y 轴,垂足为G ,如上图, ∴90CQP AOC ∠=∠=︒,∴AC ∥OP , ∴∠ACO =∠POG , ∵90PGO AOC ∠=∠=︒, ∴AOC ∆∽PGO ∆, ∴AO OCPG GO=, 设点P 为(x ,213442x x -++), ∴PG x =,213442GO x x =-++,∴22413442x x x =-++, 解得:171x =±-, ∵点P 在第一象限, ∴171x =-,∴2134217242x x -++=-,∴点P 的坐标为(171-,2172-);综合上述,点P 的坐标为:(6,4)或(171-,2172-); (3)过点E 作EI ⊥AC 于I ,EJ ⊥CN 于J ,如图:∵CE 是∠ACB 的角平分线, ∴EI =EJ ,∵EI ∥CN ,EJ ∥CM ,∴△MEI ∽△MNC ,△NEJ ∽△NMC , ∴EI ME NC MN =,EJ NE MC MN =, ∴1EI EJ ME NENC MC MN MN +=+=, ∴1EI EI NC MC +=, ∴111NC MC EI+=, ∵△ACO ∽△AEI ,∴12AI AO EI CO ==,∵AC = ∵AC AI IC AI EI =+=+,12=,解得:EI =∴111NC MC EI +==∴11NC MC+是一个定值. 【点睛】本题考查了二次函数的综合应用,求二次函数的解析式,二次函数的性质,相似三角形的判定和性质,解一元二次方程,角平分线的性质定理等知识,解题的关键是熟练掌握题意,正确的作出辅助线,运用数形结合的思想进行解题.7.(1)①B ;D ;4;②1;(2)1522y x =-+或24y x =-+【解析】 【分析】(1)①根据“近点”、“远点”以及“ 特征数”的定义判断即可;②过点O 作OH ⊥直线n 于点H ,交O 于点Q ,P .先分别求得点E 、F 的坐标,进而可求得EF 的长,再利用等积法求得OH 的长,进而即可解决问题;(2)如图,先求得“近点”N 到直线l 的距离NH AOB AHN △∽△即可求得答案. 【详解】解:(1)①由题意,点B 是O 关于直线m 的“近点”, 点D 是O 关于直线m 的“远点”, ∵点E 的坐标为(0,3).⊙O 的半径为1, ∴OE =3,OB =OD =1,∴BE =OE -OB =2,DB =OB +OD =2,O 关于直线m 的特征数224DB BE =⋅=⨯=, 故答案为:B ;D ;4;②如图,过点O 作OH ⊥直线n 于点H ,交O 于点Q ,P ,设直线33y x =-+交x 轴于点F ,交y 轴于点E , 令y =0,则x =3;令x =0,则y =3, ∴(3F ,0),(0,3)E ,3OE ∴=,3OF =,22223(3)23EF OE OF ∴=+=+=,∵1122EOF S OE OF EF OH =⋅=⋅△, ∴11332322OH ⨯⨯=⨯⋅, 解得:32OH =, 12QH OH OQ ∴=-=, 又∵2PQ OQ OP =+=,O ∴关于直线n 的“特征数” 1212PQ QH =⋅=⨯=;(2)如图,设直线l 交x 轴于点A ,交y 轴于点B ,过点F 作FH ⊥直线l ,垂足为点H ,交⊙F 于N ,G ,∵⊙F 5,∴FN =FG 5,∴GN =FN +FG 5∵⊙F 关于直线l 的“特征数”是6, ∴GN·NH =6,NH =6, 解得:NH设直线l 的解析式是y kx b =+, ∵直线l 经过点M (1,2),∴将(1,2)代入y kx b =+,得:2k b +=, 2b k ∴=-,(2)y kx k ∴=+-,∴当0x =时,2y k =-,∴点B 坐标为(0,2-k ),|2|OB k ∴=-,当0y =时,(2)0kx k +-=, 解得:2k x k-=, ∴点A 坐标为(2k k-,0), 2||k OA k -∴=,22|(1)||1|k k AN k k--=--=+,AB ∴2||k k-= BAO NAH ∠=∠,90AOB AHN ∠=∠=︒, AOB AHN ∴△∽△,∴NH ANOB AB=,∴|2|522|1|||k k k k k-=--+, 整理,得:22520k k ++=,解得:12k =-或2k =-,∴直线l 的解析式为1522y x =-+或24y x =-+.【点睛】本题属于圆综合题,考查了一次函数的性质,相似三角形的判定和性质运用以及勾股定理的运用,远点,近点,特征数等新定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.8.(1)y =-x 2+2x +3,y =-x +3;(2)存在,(-1,0)或(4,-5);(3)存在,(1,2)或(1,-3) 【解析】 【分析】(1)将点A ,B 坐标代入抛物线解析式中,求出b ,c 得出抛物线的解析式,进而求出点C 的坐标,再将点A ,C 坐标代入直线AC 的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD AD =,进而判断出ABC 的面积和ACP △的面积相等,即可得出结论;(3)分点Q 在x 轴上方和在x 轴下方,构造全等三角形即可得出结论. 【详解】(1)把(30)A ,、(10)B -,代入2y x bx c =-++, 解得2b =、3c =∴抛物线的解析式为2y x 2x 3=-++则C 点为(0,3),又(30)A ,,代入1y kx b =+, 得1k =-,13b =, ∴直线AC 的解析式为3y x =-+, (2)如图,连接BC ,∵点D 是抛物线的对称轴与x 轴的交点, ∴AD BD =, ∴2ABCACDSS=,∵2ACP ACD S S =△△,∴ACP ABC S S =△△,此时,点P 与点B 重合, 即:(10)P -,, 过B 点作PB AC ∥交抛物线于点P ,则直线BP 的解析式为1y x =--①, ∵抛物线的解析式为2y x 2x 3=-++②,联立①②解得,10x y =-⎧⎨=⎩或45x y =⎧⎨=-⎩,∴P (4,﹣5),∴即点P 的坐标为(﹣1,0)或(4,﹣5); (3)由(1)可知,抛物线解析式为()214y x =--+ 把1x =代入直线AC 解析式3y x =-+得AC 与抛物线对称轴的交点(1,2)M ,如下图所示:22222BM AM ==+,4AB =即222BM AM AB +=则MAB △是等腰直角三角形,符合题意,M 点即为所求Q 点的一种情况,当Q 点在x 轴下方时,设Q 为(1,)m ,0m <, 因为线段AQ 绕Q 点顺时针旋转90°得到线段1QA 过A1作直线DQ 的垂线于E 点,则1ADQ QEA ≌ ∴2AD QE ==,1DQ EA m ==- ∴12(1)A m m --,∵点A1恰好落在抛物线2y x 2x 3=-++上, 代入,解得m=-3或2m = (舍去) ∴Q (1,-3)综上,Q 点坐标为(1,2)或(1,-3), 【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,全等三角形的判定与性质,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.9.(1)直线AC 的解析式为y =﹣x +6;(2)d =4-t ;(3)Q (212,1). 【解析】 【分析】(1)先由解析式求出得A 、C 点的坐标,得OA =OC ,得四边形ABCO 为正方形,再根据正方形的面积求得边长,便可得b 的值;(2)过点Q 作QG ⊥AB 交AB 延长沿于点G ,证明Rt △AOP ≌Rt △GPQ (AAS ),得到AP =GQ ,进而求得结论便可;(3)过点P 作PH ⊥OF 于点H ,延长PH 交EQ 的延长线于点R ,EQ 的延长线与x 轴交于点N ,过Q 作QM ⊥x 轴于点M .证明Rt △AOP ≌Rt △GPQ (CCS ),得PK =QR ,∠R=∠OKP,再证明∠R=∠FPR,得EP=ER,再证FE=NR,设FE=NR=k,NQ=m,在Rt△PQE中,由勾股定理列出方程,得到k与m的关系,解Rt△PQE得tan∠PEQ,进而把这个函数值运用到△OAP中,求得t的值,再运用(2)中结论得Q的纵坐标d的值,再运用到△QNM中求得NM,NQ的值,进而求得ON,便可得Q的横坐标的值.【详解】解:(1)∵直线y=﹣x+b(b>0)交x轴于点A,交y轴于点C,A b C b,∴(,0),(0,)∴OA=OC=b,∴矩形ABCO为正方形,∵矩形ABCO的面积是36.∴b=6,即直线AC的解析式为y=﹣x+6;(2)如图,过点Q作QG⊥AB交AB延长沿于点G,∵∠OPQ=90°,∴∠APO+∠GPQ=90°,∵∠APO+∠AOP=90°,∴∠AOP=∠GPQ,∵在矩形ABCO,∠OAP=90°,QG⊥AB,∴∠QGP=∠OAP=90°,∵PQ=OP,∴Rt△AOP≌Rt△GPQ(AAS),∴AP=GQ,∵AP=t,∴GQ=t,∴d=4-t;(2)过点P作PH⊥OF于点H,延长PH交EQ的延长线于点R,EQ的延长线与y轴交于点N,过Q作QM⊥y轴于点M.则AP=t,QM=d,且d=6-t.∵OF 平分∠POC , ∴∠POF =∠COF =∠PFO , ∴PF =PO ,∵PH ⊥OF ,∠OPQ =90°, ∴∠OPH =∠FPH ,∠KPH =∠POH , 在△OPK 和△PQR 中, 90OPK PQR PO QP POK QPR ∠∠︒⎧⎪⎨⎪∠∠⎩====, ∴△OPK ≌△PQR (ASA ), ∴PK =QR ,∠R =∠OKP ,∵∠OKP +∠POK =∠POK +∠OPH =90°, ∴∠OKP =∠OPH , ∴∠R =∠OPH , ∵PO =PF ,PH ⊥OF , ∴∠OPH =∠FPH , ∴∠R =∠FPR , ∴EP =ER ,∵PE ∥ON ,OP ∥EN , ∴四边形OPEN 是平行四边形, ∴EN =PO =PF , ∴PE -PF =ER -EN , ∴FE =NR ,设FE =NR =k ,则KQ =2FE =2k , 又设NQ =m ,∴PK=QR=m+k,∴PQ=m+3k,∴PO=EN=PF=m+3k,∴QE=EN-QR=m+3k-m=3k,PE=PF+FE=4k+m,在Rt△PQE中,∵PE2=PQ2+QE2,∴(4k+m)2=(3k+m)2+(3k)2,∴k1=0(舍去),k2=m,∴PQ=4m,QE=3m,∴tan∠PEN=43 PQQE=,∵OP∥EN,∴∠OPA=∠PEN,∴tan∠APO=43,∵AO=6,∴AP=4.5,∴t=4.5,∴QM=d=6-t=1.5,∵PE∥OC,∴∠QNM=∠PEN,∴tan∠QNM=tan∠PEN=43,∴NM=9 tan8QMQNM=∠,∴m=NQ158 =,∴PE=ON=4k+m=5m=758,∴OM=ON+NM=212,∴Q(212,1).【点睛】本题是一次函数与四边形的综合题,主要考查了一次函数的图象与性质,全等三角形的性质与判定,正方形的性质,旋转的性质,解直角三角形的应用,等腰三角形的性质与判定,平行四边形的性质与判定,是一道综合性极强的题目,解决这类问题常用到数形结合、方程和转化等数学思想方法.构造全等三角形是解题的关键,也是问题的突破口.10.(1);(2);(3)【解析】 【分析】(1)由抛物线的二次项系数 再根据交点式可得抛物线为从而可得答案;(2)先画好图形,证明利用相似三角形的性质求解从而可得答案;(3)如图,过P 作轴于,K 过M 作于,N 证明即再求解则,再解方程可得 4,t = 再求解的解析式,再联立解析式解方程可得答案. 【详解】 解:(1) 抛物线交x 轴于()2,0A -、()5,0B 两点,所以可得抛物线为:(2)如图,过P 作于,H 连AP 交OC 于则,x 则令0,(3)如图,过P作轴于,K过M作于,N 由(2)得:,,轴,则轴,,即结合(1)可得:四边形为矩形,。
2023年九年级数学中考专题:二次函数与圆综合压轴题1.如图1,在平面直角坐标系中,O为坐标原点,已知抛物线与x轴交于,两点,与y轴交于点C.(1)求抛物线解析式;(2)如图2,M是抛物线顶点,的外接圆与x轴的另一交点为D,与y轴的另一交点为E.①求;②若点N是第一象限内抛物线上的一个动点,在射线上是否存在点P,使得与相似?如果存在,请求出点P的坐标;(3)点Q是拋物线对称轴上一动点,若为锐角,且,请直接写出点Q 纵坐标的取值范围.2.【概念学习】在平面直角坐标系中,对于已知的点和图形,给出如下定义:如果图形上存在一点,使得当时,,则称点为图形的一个“垂近点”.(1)【初步理解】若图形为线段,,,在点、、、中,是线段的“垂近点”的为________;(2)【知识应用】若图形为以坐标原点为圆心,2为半径的圆,直线与轴交于点、与轴交于点,如果线段上的点都是的“垂近点”,求的取值范围;(3)若图形为抛物线,以点为中心,半径为的四边形,轴,轴,如果正四边形上存在“垂近点”,直接写出的取值范围.3.在平面直角坐标系xOy中,已知抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y 轴交于C点,D为抛物线顶点.(1)连接AD,交y轴于点E,P是抛物线上的一个动点.①如图一,点P是第一象限的抛物线上的一点,连接PD交x轴于F,连接,若,求点P的坐标.②如图二,点P在第四象限的抛物线上,连接AP、BE交于点G,若,则w 有最大值还是最小值?w的最值是多少?(2)如图三,点P是第四象限抛物线上的一点,过A、B、P三点作圆N,过点作轴,垂足为I,交圆N于点M,点在运动过程中,线段是否变化?若有变化,求出MI的取值范围;若不变,求出其定值.(3)点Q是抛物线对称轴上一动点,连接OQ、AQ,设AOQ外接圆圆心为H,当的值最大时,请直接写出点H的坐标.4.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx-4(a≠0)经过点A(-2,0)和点B(4,0).(1)求这条抛物线所对应的函数表达式;(2)点P为抛物线上第一象限内一点,若S△ABC=2S△PBC,求点P的坐标;(3)如图2,点D是第二象限内抛物线上一点,过点D作DF⊥x轴,垂足为F,△ABD 的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.5.如图,抛物线经过点,,直线AC的解析式为,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作轴交AC于点F.(1)求抛物线的解析式;(2)点H是y轴上一动点,连结EH,HF,当点E运动到什么位置时,四边形EAFH 是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M为上以动点,求的最小值.6.已知二次函数的图象经过点A(2,0),B(,0),C(0,4),点为二次函数第二象限内抛物线上一动点,轴于点,交直线于点,以为直径的圆⊙M与交于点.(1)求这个二次函数的关系式;(2)当三角形周长最大时.求此时点点坐标及三角形的周长;(3)在(2)的条件下,点N为⊙M上一动点,连接BN,点Q为BN的中点,连接HQ,求HQ的取值范围.7.如图,在平面直角坐标系中,抛物线,y与轴交于A、B两点,与轴交于点C.(1)求点A、B、C的坐标;(2)如图1,连接BC,点D是抛物线上一点,若∠DCB=∠ABC,求点D的坐标;(3)如图2,若点P在以点O为圆心,OA长为半径作的圆上,连接BP、CP,请你直接写出CP+BP的最小值.8.如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于、、、四点,点坐标为.抛物线与轴交于点,与直线交于点、,且、分别与圆相切于点和点.(1)求抛物线的解析式.(2)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.(3)抛物线对称轴交轴于点,连接并延长交于点,求点的坐标.9.如图,在平面直角坐标系中,抛物线交y轴于点,交x轴于两点.(1)求此抛物线的解析式;(2)已知点P是抛物线上的一个动点,且位于A、C两点之间,问:当点P运动到什么位置时,的面积最大?并求出此时P点的坐标和的最大面积;(3)过点B作线段的垂线交抛物线于点D,如果以点C为圆心的圆与直线相切,请判断抛物线的对称轴l与有怎样的位置关系,并给出证明.10.如图,直线与x轴交于点B,与y轴交于点C,抛物线经过B、C两点,且与x轴交于另一点A.(1)求抛物线的解析式.(2)点P是线段BC下方的抛物线上的动点(不与点B、C重合),过P作PD∥y轴交BC 于点D,以PD为直径的圆交BC于另一点E,求DE的最大值及此时点P的坐标;(3)当(2)中的DE取最大值时,将△PDE绕点D旋转,当点P落在坐标轴上时,求点E的坐标.11.直角坐标系xOy中,有反比例函数上的一动点P,以点P为圆心的圆始终与y轴相切,设切点为A(1)如图1,⊙P运动到与x轴相切时,求OP2的值.(2)设圆P运动时与x轴相交,交点为B、C,如图2,当四边形ABCP是菱形时,①求出A、B、C三点的坐标.②设一抛物线过A、B、C三点,在该抛物线上是否存在点Q,使△QBP的面积是菱形ABCP 面积的?若存在,求出所有满足条件的Q点的坐标;若不存在,说明理由.12.已知:如图,在平面直角坐标系xOy中,以点P(2,)为圆心的圆与y轴相切于点A,与x轴相交于B、C两点(点B在点C的左边).(1)求经过A、B、C三点的抛物线的解析式;(2)在(1)中的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.如果存在,请直接写出所有满足条件的M点的坐标;如果若不存在,请说明理由;(3)如果一个动点D自点P出发,先到达y轴上的某点,再到达x轴上某点,最后运动到(1)中抛物线的顶点Q处,求使点D运动的总路径最短的路径的长.13.已知,如图,二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),B(3,0),点E为二次函数第一象限内抛物线上一动点,EH⊥x轴于点H,交直线BC于点F,以EF为直径的圆⊙M与BC交于点R.(1)求这个二次函数关系式.(2)当△EFR周长最大时.①求此时点E点坐标及△EFR周长.②点P为⊙M上一动点,连接BP,点Q为BP的中点,连接HQ,求HQ的最大值.14.如图所示,对称轴为直线的抛物线与轴交于、两点,与轴交于点,点在抛物线对称轴上并且位于轴的下方,以点为圆心作过、两点的圆,恰好使得弧的长为周长的.(1)求该抛物线的解析式;(2)求的半径和圆心的坐标,并判断抛物线的顶点与的位置关系;(3)在抛物线上是否存在一点,使得?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.15.已知抛物线y=ax2+bx+5(a≠0)经过A(5,0),B(6,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+5(a≠0)的函数关系式;(2)如图1,连接AC,E为线段AC上一点且横坐标为1,⊙P是△OAE外接圆,求圆心P 点的坐标;(3)如图2,连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F;①点E在运动过程中四边形OEAF的面积是否为定值?如果是,请求出这个定值;如果不是,请说明理由;②求出当△AEF的面积取得最大值时,点E的坐标.16.如图1,已知圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E四点,B 为OD中点.(1)求过A,B,C三点的抛物线解析式;(2)如图2,连接BC,AC.点P在第一象限且为圆O上一动点,连接BP,交AC于点M,交OC于点N,当MC2=MN•MB时,求M点的坐标;(3)如图3,若抛物线与圆O的另外两个交点分别为H,F,请判断四边形CFEH的形状,并说明理由.17.已知一次函数:与轴交于点,与轴交于点.抛物线(、为常数)过定点,连接,点为线段上一动点.(1)求出点的坐标;(2)过作于点,于点,设点横坐标为,长度为,试求关于的函数解析式;(3)①当,时,该抛物线上存在唯一的点使,求此时抛物线的解析式;②过点作交线段于点,连接并延长交的外接圆于点,当点在上移动时,求的最大值.18.已知抛物线经过,,三个点.(1)求抛物线的解析式;(2)如图1,作的外接圆,为上方半圆上一点,当时,求的长;(3)如图2,直线与抛物线交于,两点,与轴交于点,作轴的平行线,分别与线段、抛物线交于,两点(点与点,不重合),点为射线上一点,当与相似时,求的最大面积.参考答案:1.(1)(2)①;②存在,或或或(3)或2.(1),;(2);(3)或时,正方形上存在抛物线的“垂近点”.3.(1)①,②w有最小值,w的最值是(2)不变,(3)或4.(1);(2);(3)为定值.5.(1);(2),;(3)6.(1);(2)F(,4),△EFD的周长为;(3).7.(1),,;(2),;(3)8.(1);(2)点在抛物线上;(3)9.(1);(2),;(3)相交,10.(1)y=x2﹣x﹣2;(2)m=2时,DE有最大值,此时P;(3),或E或11.(1)16;(2)①A(0,),B(2,0),C(6,0);②存在,满足条件的Q点有(0,),(14,),(8,)和(6,0).12.(1).(2)存在,点M的坐标为(0,),(3,0),(4,),(7,).(3).13.(1)y=﹣x2+2x+3;(2)①E(,),周长为+;②HQ的最大值大为:+.14.(1)(2)2,,点在上(3)存在,,,15.(1)抛物线解析式为y=x2﹣x+5(2)圆心P点的坐标为(,)(3)①四边形OEAF的面积是定值,这个定值为;②当△OEF的面积取得最小值时,E点坐标为(,)16.(1)y=﹣x2+x+2;(2)M(,);(3)四边形CFEH是矩形.17.(1);(2)();(3)①;②18.(1);(2);(3).。
近6年全国各地中考数学真题压轴题训练——圆及其方程(100题)(原卷版)1.如图,在Rt ABC 中,90ACB D ∠︒=,为AB 的中点,以CD 为直径O 的分别交AC BC ,于点E F ,两点,过点F 作FG AB ⊥于点G . ()1试判断FG 与O 的位置关系,并说明理由.()2若3 2.5AC CD =,=,求FG 的长.2.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.3.已知△ABC,以AB 为直径的⊙O 分别交AC 于D ,BC 于E ,连接ED ,若ED=EC .(1)求证:AB=AC ;(2)若AB=4,BC= ,求CD 的长.4.如图,AB ,AC 分别是半⊙O 的直径和弦,OD ⊥AC 于点D ,过点A 作半⊙O 的切线AP ,AP 与OD 的延长线交于点P .连接PC 并延长与AB 的延长线交于点F .(1)求证:PC 是半⊙O 的切线;(2)若∠CAB=30°,AB=10,求线段BF 的长.5.(2015崇左)如图,在平面直角坐标系中,点M 的坐标是(5,4),⊙M 与y 轴相切于点C ,与x 轴相交于A 、B 两点.(1)则点A 、B 、C 的坐标分别是A (__,__),B (__,__),C (__,__);(2)设经过A 、B 两点的抛物线解析式为21(5)4y x k =-+,它的顶点为F ,求证:直线F A 与⊙M 相切; (3)在抛物线的对称轴上,是否存在点P ,且点P 在x 轴的上方,使△PBC 是等腰三角形.如果存在,请求出点P 的坐标;如果不存在,请说明理由.6.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=,求弦AD的长.7.如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求的值.8.如图,点O在∠APB的平分线上,⊙O与P A相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.9.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.10.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB 是的切线.(2)若PB=6,DB=8,求⊙O 的半径.11.如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 相交于点D ,与CA 的延长线相交于点E ,过点D 作DF ⊥AC 于点F .(1)试说明DF 是⊙O 的切线;(2)若AC =3AE ,求tan C .12.如图,点A B C 、、在半径为8的O 上,过点B 作BD AC ∕∕,交OA 延长线于点D .连接BC ,且30BCA OAC ∠=∠=︒.(1)求证:BD 是O 的切线;(2)求图中阴影部分的面积.13.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;(3)在(2)的条件下,求线段BC 扫过的面积(结果保留π).14.如图,AB 为⊙O 直径,AC 为⊙O 的弦,过⊙O 外的点D 作DE ⊥OA 于点E ,交AC 于点F ,连接DC 并延长交AB 的延长线于点P ,且∠D =2∠A ,作CH ⊥AB 于点H .(1)判断直线DC 与⊙O 的位置关系,并说明理由;(2)若HB =2,cos D =35,请求出AC 的长.15.⊙O 为△ABC 的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC ;(2)如图2,直线l 与⊙O 相切于点P ,且l ∥BC .16.如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE .(1)求证:DE 是⊙O 的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.17.如图,⊙O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC 、.求证:⑴AD BC =;⑵AE CE =.18.如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,∠AC 平分∠BAD ,连接BF .(1)求证:AD ⊥ED ;(2)若CD=4,AF=2,求⊙O 的半径.19.如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,且OD ∥BC ,OD 与AC 交于点E .(1)若∠B=70°,求∠CAD 的度数;(2)若AB=4,AC=3,求DE 的长.20.如图,点C 为△ABD 外接圆上的一动点(点C 不在BD 上,且不与点B ,D 重合),∠ACB=∠ABD=45°.(1)求证:BD 是该外接圆的直径;(2)连结CD ,求证:AC=BC+CD ;(3)若△ABC 关于直线AB 的对称图形为△ABM ,连接DM ,试探究222DM AM BM ,,,三者之间满足的等量关系,并证明你的结论.21.已知四边形ABCD 是⊙O 的内接四边形,AC 是⊙O 的直径,DE ⊥AB ,垂足为E .(1)延长DE 交⊙O 于点F ,延长DC ,FB 交于点P ,如图1.求证:PC=PB ;(2)过点B 作BG ⊥AD ,垂足为G ,BG 交DE 于点H ,且点O 和点A 都在DE 的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE 的大小.22.如图,⊙O 的弦AB 、CD 的延长线相交于点P ,且AB =CD .求证PA =PC .23.如图,在等腰ABC ∆中,AB AC =,以AC 为直径作O 交BC 于点D ,过点D 作DE AB ⊥,垂足为E .(1)求证:DE 是O 的切线.(2)若DE =30C ∠=︒,求AD 的长. 24.如图1,AB 是⊙O 的直径,点C 在AB 的延长线上,AB=4,BC=2,P 是⊙O 上半部分的一个动点,连接OP ,CP .(1)求△OPC 的最大面积;(2)求∠OCP 的最大度数;(3)如图2,延长PO 交⊙O 于点D ,连接DB ,当CP=DB 时,求证:CP 是⊙O 的切线.25.如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交AB 于点D ,交BC 于点E .(1)求证:BE=CE ;(2)若BD=2,BE=3,求AC 的长.26.如图,在Rt ABC ∆中,90C ︒∠=,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:A ADE ∠∠=;(2)若85AD DE =,=,求BC 的长.27.如图,在等腰ABC △中,120BAC ∠=︒,AD 是BAC ∠的角平分线,且6AD =,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F ,(1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .28.如图,M ,N 是以AB 为直径的⊙O 上的点,且AN =BN ,弦MN 交AB 于点C ,BM 平分∠ABD ,MF ⊥BD 于点F .(1)求证:MF 是⊙O 的切线;(2)若CN =3,BN =4,求CM 的长.29.如图,AB是⊙O的直径,点D是弧AE上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF·DB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长.=.30.如图ABC内接于O,60B∠=,CD是O的直径,点P是CD延长线上一点,且AP AC()1求证:P A是O的切线;()2若PD=O的直径.31.如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠DAC;(2)若AF=10,BC=tan∠BAD的值.32.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.33.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点.∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于AB的什么位置时,四边形APBC的面积最大?求出最大面积.34.如图,AB 是⊙O 的直径,AC 与⊙O 交于点F ,弦AD 平分BAC ∠,DE AC ⊥,垂足为E .(1)试判断直线DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为2,60BAC ︒∠=,求线段EF 的长. 35.如图,在ABC △中,,120AB AC BAC =∠=︒,点D 在BC 边上,D 经过点A 和点B 且与BC 边相交于点E .(1)求证:AC 是D 的切线;(2)若CE =D 的半径.36.如图,在以线段AB 为直径的⊙O 上取一点,连接AC 、BC .将△ABC 沿AB 翻折后得到△ABD .(1)试说明点D 在⊙O 上;(2)在线段AD 的延长线上取一点E ,使AB 2=AC·AE.求证:BE 为⊙O 的切线;(3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若BC=2,AC=4,求线段EF 的长.37.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若DF=3,求图中阴影部分的面积.38.如图所示,⊙O 的半径为4,点A 是⊙O 上一点,直线l 过点A ;P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l 于点B ,交⊙O 于点E ,直径PD 延长线交直线l 于点F ,点A 是DE 的中点.(1)求证:直线l 是⊙O 的切线;(2)若PA=6,求PB 的长.39.如图,A B是⊙C的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB· DA.延长AE至F,使AE=EF,设BF=10,cos∠BED=4 5 .(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.40.如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD AD,求CMMA的值.41.如图,AD是△ABC的外接圆⊙O的直径,点P在BC延长线上,且满足∠P AC=∠B.(1)求证:P A是⊙O的切线;(2)弦CE⊥AD交AB于点F,若AF•AB=12 ,求AC的长.42.如图,在OABC中,以O为圆心,OA为半径的圆与BC相切与点B,与OC相交于点D.(1)求BD 的度数.(2)如图,点E 在⊙O 上,连接CE 与⊙O 交于点F ,若EF AB =,求OCE ∠的度数.43.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CN 为⊙O 的切线,OM ⊥AB 于点O ,分别交AC 、CN 于D 、M 两点.(1)求证:MD=MC ;(2)若⊙O 的半径为5,MC 的长.44.如图,△ABC 内接于⊙O,2,BC AB AC ==,点D 为AC 上的动点,且cos B =. (1)求AB 的长度;(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD •AE 的值是否变化?若不变,请求出AD •AE 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH⊥BD,求证:BH CD DH =+.45.如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O ,B 重合),作EC ⊥OB ,交⊙O 于点C ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE•CP ;(3)当CF CP =34时,求劣弧BD 的长度.46.如图所示,AB 是⊙ 直径, 弦 于点 ,且交⊙ 于点 ,若 .(1)判断直线 和⊙ 的位置关系,并给出证明; (2)当 , 时,求 的长.47.如图,以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点恰好为BC 的中点D ,过点D 作⊙O 的切线交AC 于点E .(1)求证:DE ⊥AC ;(2)若AB=3DE ,求tan ∠ACB 的值.48.如图,ABC ∆为O 的内接三角形,AB 为O 的直径,过点A 作O 的切线交BC 的延长线于点D .(1)求证:DAC DBA ∆∆∽; (2)过点C 作O 的切线CE 交AD 于点E ,求证:12CE AD =; (3)若点F 为直径AB 下方半圆的中点,连接CF 交AB 于点G ,且6AD =,3AB =,求CG 的长.49.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠APB=60°,连接PO 并延长与⊙O 交于C 点,连接AC ,BC . (1)求证:四边形ACBP 是菱形;(2)若⊙O 半径为1,求菱形ACBP 的面积.50.如图,已知D ,E 分别为△ABC 的边AB ,BC 上两点,点A ,C ,E 在⊙D 上,点B ,D 在⊙E 上.F 为BD 上一点,连接FE 并延长交AC 的延长线于点N ,交AB 于点M . (1)若∠EBD 为α,请将∠CAD 用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若MNMF的值.51.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).52.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解:⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为“智慧三角形”,并说明理由;运用:⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.53.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O 的半径.54.如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.55.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.56.在△中,,点在以为直径的半圆内.请仅用无刻度的直尺......分别按下列要求画图(保留画图痕迹).(1)在图1中作弦,使;(2)在图2中以为边作一个45°的圆周角.57.图1.2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上;△,点B在小正方形顶点上;(2)在图2中画出以AC为腰的等(1)在图1中画出以AC为底边的等腰直角ABC腰ACD,点D在小正方形的顶点上,且ACD的面积为8.58.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.59.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.60.如图1,菱形ABCD 的顶点A ,D 在直线上,60BAD ∠=︒,以点A 为旋转中心将菱形ABCD 顺时针旋转()030αα︒<<︒,得到菱形'''AB C D ,''B C 交对角线AC 于点M ,''C D 交直线l 于点N ,连接MN .(1)当''MN B D 时,求α的大小.(2)如图2,对角线''B D 交AC 于点H ,交直线l 与点G ,延长''C B 交AB 于点E ,连接EH .当'HEB ∆的周长为2时,求菱形ABCD 的周长.61.如图, 是⊙ 的直径,点 是 延长线上的一点,点 在⊙ 上,且AC=CD, = . ( )求证: 是⊙ 的切线;( )若⊙ 的半径为 ,求图中阴影部分的面积.62.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线334y x =-+上的动点,过点P 作⊙A 的切线,切点为Q ,求切线长PQ 的最小值.63.如图,在Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ,点D 为O 上一点,且CD CB =,连接DO 并延长交CB 的延长线于点E .(1)判断直线CD 与O 的位置关系,并说明理由; (2)若2BE =,4DE =,求圆的半径及AC 的长.64.如图,等边三角形ABC 的边长为2,以A 为圆心,1为半径作圆分别交AB ,AC 边于D ,E ,再以点C 为圆心,CD 长为半径作圆交BC 边于F ,连接E ,F ,那么图中阴影部分的面积为________.65.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 与过点C 的切线互相垂直,垂足为点D ,AD 交⊙O 于点E ,连接CE ,CB .(1)求证:CE =CB ;(2)若AC =CE AE 的长.66.如图,AB 是O 的直径,点C 为BD 的中点,CF 为O 的弦,且CF AB ⊥,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:BFG CDG ∆≅∆; (2)若2AD BE ==,求BF 的长.67.如图,在以点O 为中心的正方形ABCD 中,4=AD ,连接AC ,动点E 从点O 出发沿O C →以每秒1个单位长度的速度匀速运动,到达点C 停止.在运动过程中,ADE ∆的外接圆交AB 于点F ,连接DF 交AC 于点G ,连接EF ,将EFG ∆沿EF 翻折,得到EFH ∆.(1)求证:DEF ∆是等腰直角三角形;(2)当点H 恰好落在线段BC 上时,求EH 的长;(3)设点E 运动的时间为t 秒,EFG ∆的面积为S ,求S 关于时间t 的关系式.68.如图1和2,ABCD 中,AB =3,BC =15,43tan DAB ∠=.点P 为AB 延长线上一点,过点A 作O 切CP 于点P ,设BP x =.(1)如图1,x 为何值时,圆心O 落在AP 上?若此时O 交AD 于点E ,直接指出PE 与BC 的位置关系;(2)当4x =时,如图2,O 与AC 交于点Q ,求C A P ∠的度数,并通过计算比较弦AP 与劣弧PQ 长度的大小; (3)当O 与线段AD 只有一个公共点时,直接写出x 的取值范围.69.如图,四边形ABCD 内接于O ,AC 为O 的直径,D 为AC 的中点,过点D 作DE AC ,交BC 的延长线于点E .(1)判断DE 与O 的位置关系,并说明理由; (2)若O 的半径为5,8AB =,求CE 的长. 70.如图,PA 是O 的切线,切点为A ,AC 是O 的直径,连接OP 交O 于E .过A 点作AB PO ⊥于点D ,交O 于B ,连接BC ,PB .(1)求证:PB 是O 的切线;(2)求证:E 为∆的内心; (3)若cos PAB ∠=1BC =,求PO 的长. 71.探究活动一:如图1,某数学兴趣小组在研究直线上点的坐标规律时,在直线AB 上的三点A (1,3)、B (2,5)、C (4,9),有k AB =5321--=2,k AC =9341--=2,发现k AB =k AC ,兴趣小组提出猜想:若直线y =kx+b (k≠0)上任意两点坐标P (x 1,y 1),Q (x 2,y 2)(x 1≠x 2),则k PQ =2121y y x x --是定值.通过多次验证和查阅资料得知,猜想成立,k PQ 是定值,并且是直线y =kx+b (k≠0)中的k ,叫做这条直线的斜率. 请你应用以上规律直接写出过S (﹣2,﹣2)、T (4,2)两点的直线ST 的斜率k ST = . 探究活动二数学兴趣小组继续深入研究直线的“斜率”问题,得到正确结论:任意两条不和坐标轴平行的直线互相要直时,这两条直线的斜率之积是定值.如图2,直线DE 与直线DF 垂直于点D ,D (2,2),E (1,4),F (4,3).请求出直线DE 与直线DF 的斜率之积. 综合应用如图3,⊙M 为以点M 为圆心,MN 的长为半径的圆,M (1,2),N (4,5),请结合探究活动二的结论,求出过点N 的⊙M 的切线的解析式.72.如图,在⊙O 中, ,AD ⊥OC 于D .求证:AB=2AD .73.如图,△ABC 在平面直角坐标系中,顶点的坐标分别为A(-4,4),B(-1,1),C(-1,4). (1)画出与△ABC 关于y 轴对称的△A 1B 1C 1. (2)将△ABC 绕点B 逆时针旋转90°,得到△A 2BC 2,画两出△A 2BC 2. (3)求线段AB 在旋转过程中扫过的图形面积.(结果保留π)74.如图,在O 中,点C D 、分别是半径OB 、弦AB 的中点,过点A 作AE CD ⊥于点E .(1)求证:AE 是O 的切线;(2)若2AE =,23sin ADE ∠=,求O 的半径.75.我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a b c ,,为三角形三边,S 为面积,则S =,这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设2a b cp ++=(周长的一半),则S(1)尝试验证.这两个公式在表面上形式很不一致,请你用以578,,为三边构成的三角形,分别验证它们的面积值; (2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从⇒①②或者⇒②①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,ABC △的内切圆半径为r ,三角形三边长为a b c ,,,仍记2a b cp ++=,S 为三角形面积,则S pr =. 76.如图,在ABC ∆中,AB AC =,以AB 为直径的O 与边BC ,AC 分别交于D ,E 两点,过点D 作DH AC⊥于点H .(1)判断DH 与O 的位置关系,并说明理由;(2)求证:H 为CE 的中点;(3)若10BC =,cos C =,求AE 的长. 77.如图,AB 、CD 是O 的两条直径,过点C 的O 的切线交AB 的延长线于点E ,连接AC 、BD .(1)求证:ABD CAB ∠=∠;(2)若B 是OE 的中点,12AC =,求O 的半径.78.如图,在ABC ∆中.ABC ACB ∠∠=,以AC 为直径的⊙O 分别交AB BC 、于点M N 、,点P 在AB 的延长线上,且12BCP BAC ∠∠=.(1)求证:CP 是⊙O 的切线;(2)若BC cos BCP ∠=B 到AC 的距离.79.如图,已知AB 是⊙O 的直径,过O 点作OP ⊥AB ,交弦AC 于点D ,交⊙O 于点E ,且使∠PCA=∠ABC . (1)求证:PC 是⊙O 的切线;(2)若∠P=60°,PC=2,求PE 的长.80.如图,在△ABC 中,BA =BC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,BC 的延长线与⊙O 的切线AF 交于点F .(1)求证:∠ABC =2∠CAF ;(2)若AC =CE :EB =1:4,求CE ,AF 的长.81.如图,ABC ∆是O 的内接三角形,AB 为O 直径,6AB =,AD 平分BAC ∠,交BC 于点E ,交O 于点D ,连接BD .(1)求证:BAD CBD ∠=∠;(2)若125AEB ∠=︒,求BD 的长(结果保留π).82.如图,四边形ABCD 为菱形,以AD 为直径作O e 交AB 于点F ,连接DB 交O e 于点H ,E 是BC 上的一点,且BE BF =,连接DE .(1)求证:DE 是O e 的切线.(2)若2BF =,DH =,求O e 的半径. 83.如图,在ABC ∆中,90ACB ∠=︒,CA CB =,点O 在ABC ∆的内部,O 经过B ,C 两点,交AB 于点D ,连接CO 并延长交AB 于点G ,以GD ,GC 为邻边作GDEC .(1)判断DE 与O 的位置关系,并说明理由.(2)若点B 是DBC 的中点,O 的半径为2,求BC 的长.84.如图,在平行四边形ABCD 中,AE BC ⊥,垂足为点E ,以AE 为直径的O 与边CD 相切于点F ,连接BF 交O 于点G ,连接EG .(1)求证:CD AD CE =+.(2)若4AD CE =,求tan EGF ∠的值.85.如图,AB 是⊙O 的直径,弧ED=弧BD ,连接ED 、BD ,延长AE 交BD 的延长线于点M ,过点D 作⊙O 的切线交AB 的延长线于点C .(1)若OA CD ,求阴影部分的面积; (2)求证:DE DM .86.如图,在ABCD 中,2=AD AB ,以点A 为圆心、AB 的长为半径的A 恰好经过BC 的中点E ,连接DE ,AE ,BD ,AE 与BD 交于点F .(1)求证:DE 与A 相切. (2)若6AB =,求BF 的长.87.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E . (1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.88.如图,在△ABC 中,∠C=90°,AE 平分∠BAC 交BC 于点E,O 是AB 上一点,经过A,E 两点的⊙O 交AB 于点D ,连接DE ,作∠DEA 的平分线EF 交⊙O 于点F ,连接AF. (1)求证:BC 是⊙O 的切线;(2)若sin ∠EFA=45,AF=求线段AC 的长.89.如图,O是ABC的外接圆,AB为直径,∠BAC的平分线交O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是O的切线;(2)若AC=4,CE=2,求BD的长度.(结果保留π)90.如图,在⊙O中,AB是直径,BC是弦,BC=BD,连接CD交⊙O于点E,∠BCD=∠DBE.(1)求证:BD是⊙O的切线.(2)过点E作EF⊥AB于F,交BC于G,已知DE=EG=3,求BG的长.91.如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O交矩形对角线AC于点F,在线段CD 上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;(2)若cos∠CAD=35,AF=6,MD=2,求FC的长.92.如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且AG=EG,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD =6,求图形中阴影部分的面积.93.如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC ∠的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE 与AC 的位置及数量关系,并证明你的结论.94.如图,△ABC 内接于⊙O ,AD 与BC 是⊙O 的直径,延长线段AC 至点G ,使AG =AD ,连接DG 交⊙O 于点E ,EF ∥AB 交AG 于点F .(1)求证:EF 与⊙O 相切.(2)若EF =AC =4,求扇形OAC 的面积.95.如图,△ABC 内接于⊙O ,BC 是⊙O 的直径,OD ⊥AC 于点D ,连接BD ,半径OE ⊥BC ,连接EA ,EA ⊥BD 于点F .若OD =2,则BC =_____.96.如图,在Rt △ABC 中,∠ACB =90°,D 是AC 上一点,过B ,C ,D 三点的⊙O 交AB 于点E ,连接ED ,EC ,点F 是线段AE 上的一点,连接FD ,其中∠FDE =∠DCE .(1)求证:DF 是⊙O 的切线.(2)若D 是AC 的中点,∠A =30°,BC =4,求DF 的长.97.如图,在ABC ∆中,BA BC =,90ABC ︒∠=,以AB 为直径的半圆O 交AC 于点D ,点E 是BD 上不与点B ,D 重合的任意一点,连接AE 交BD 于点F ,连接BE 并延长交AC 于点G .(1)求证:ADF BDG ∆≅∆;(2)填空:①若=4AB ,且点E 是BD 的中点,则DF 的长为 ;②取AE 的中点H ,当EAB ∠的度数为 时,四边形OBEH 为菱形.98.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.99.如图,⊙O 是△ABC 的外接圆,点O 在BC 边上,∠BAC 的平分线交⊙O 于点D ,连接BD 、CD ,过点D 作BC 的平行线与AC 的延长线相交于点P .(1)求证:PD 是⊙O 的切线;(2)求证:△ABD ∽△DCP ;(3)当AB=5cm ,AC=12cm 时,求线段PC 的长.100.如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,OF ⊥AB ,交AC 于点F ,点E 在AB 的延长线上,射线EM 经过点C ,且∠ACE+∠AFO=180°. (1)求证:EM 是⊙O 的切线;(2)若∠A=∠.(结果保留π和根号).。
中考压轴题专项训练1——抛物线专题考点分析:命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决复杂的图形综合问题。
二次函数常考点汇总:1. 两点间的距离公式:22)()(AB B A B A x x y y -+-=2. 中点坐标公式:已知A ),(A A y x ,B ),(B B y x ,则线段AB 的中点C 的坐标为⎪⎭⎫⎝⎛++2,2B A B A y y x x 。
3. 在平面直角坐标系中求面积的方法:公式法、割补法(做铅垂高或水平宽) 4. 几何分析法:特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。
例题精讲:1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.3.已知,在平面直角坐标系xoy 中,点A 的坐标为(0,2),点P (m ,n )是抛物线2114y x =+上的一个动点.(1)①如图1,过动点P 作PB ⊥x 轴,垂足为B ,连接PA ,求证:PA=PB ; ②如图2,设C 的坐标为(2,5),连接PC ,AP+PC 是否存在最小值?如果存在,求点P 的坐标;如果不存在,请说明理由;(2)如图3,过动点P 和原点O 作直线交抛物线于另一点D ,若AP=2AD ,求直线OP 的解析式.4.【变式】在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.(1)直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3) 已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.5.如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.6.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标; (3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.7.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.答案解析1.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.2.【解答】解:(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=﹣3,(a=4舍去)(2)设直线AC:y=kx+b,由A(﹣3,0),C(0,3),可得﹣3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(﹣,)∴线段AC的垂直平分线解析式为:y=﹣x,线段AB的垂直平分线为x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠P AQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(当m=﹣8时,∠P AQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1)3.【解答】解:(1)①设P(m,n)∴n=m2+1,∵PB⊥x 轴,∴PB=m2+1,∵A(0,2)∴AP==m2+1,∴PB=PA;②过点P作PB⊥x轴于B,由(1)得PA=PB,所以要使AP+CP最小,只需当BP+CP最小,因此当C,P,B共线时取得,此时点P的横坐标等于点C(2,5)的横坐标,所以点P的坐标为(2,2),(2)如图,作DE⊥x轴于E,作PF⊥x轴于F,由(1)得:DA=DE,PA=PF∵PA=2DA,∴PF=2DE,∵△ODE∽△OPF,∴==,设P(m,m2+1),则D(m,m2+)∵点D在抛物线y=x2+1上,∴m2+=(m)2+1,解得m=±2,∴P 1(,3),直线OP 的解析式为y=x , P 2(﹣,3)直线OP 的解析式为y=﹣x , 综上所求,所求直线OP 的解析式为y=x 或y=﹣x .4.【解答】解:(1)21(2)4A n n +,,()B n n ,. (2) d =AB=A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.∴ 当14n =时,d 取得最小值18. 当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB=PM. (如图)(3) ∵对一切实数x 恒有 x ≤y ≤2124x +, ∴对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.xy111APBMO∴整数c 的值为0.此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩ 对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1.此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a=2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴由④,⑥,⑦得 0 <a ≤1.∴整数a 的值为1.∴整数a ,b ,c 的值分别为1a =,1b =,0c =.5.【解答】解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =. ∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. ④⑤② ③ ⑥ ⑦图①图②(3)存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.6. 【解答】解:(1).3)(03,20.0,c -),,0(,.2,12.1x 2CD x //2-=∴=-=++=∴∴=-==-∴=∴=c c c c c c B c C OC OB b bl CD ,舍去或解得)点坐标为(:抛物线对称轴为直线,轴,(2)设点F 坐标为(0,m ).∵对称轴是直线,1:=x l ∴点F 关于直线l 的对称点’F 的坐标为(2,m ). ∵直线BE 经过点B (3,0),E (1,-4),∴利用待定系数法可得直线BE 的表达式为y=2x-6. ∵点’F 在BE 上,∴m=2⨯2-6=-2,即点F 的坐标为(0,-2). (3)存在点Q 满足题意。
因动点产生的相切问题例 1 如图1,已知⊙O 的半径长为3,点A 是⊙O 上一定点,点P 为⊙O 上不同于点A 的动点.(1)当1tan 2A =时,求AP 的长;(2)如果⊙Q 过点P 、O ,且点Q 在直线AP 上(如图2),设AP =x ,QP =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)在(2)的条件下,当4tan 3A =时(如图3),存在⊙M 与⊙O 相内切,同时与⊙Q 相外切,且OM ⊥OQ ,试求⊙M 的半径的长.图1 图2 图3思路点拨1.第(1)题的计算用到垂径定理和勾股定理.2.第(2)题中有一个典型的图,有公共底角的两个等腰三角形相似.3.第(3)题先把三个圆心距罗列出来,三个圆心距围成一个直角三角形,根据勾股定理列方程.满分解答(1)如图4,过点O 作OH ⊥AP ,那么AP =2AH .在Rt △OAH 中,OA =3,1tan 2A =,设OH =m ,AH =2m ,那么m 2+(2m )2=32.解得355m =.所以125245AP AH m ===. (2)如图5,联结OQ 、OP ,那么△QPO 、△OAP 是等腰三角形.又因为底角∠P 公用,所以△QPO ∽△OAP . 因此QP OP POPA=,即33y x=.由此得到9y x=.定义域是0<x ≤6.图4 图5(3)如图6,联结OP ,作OP 的垂直平分线交AP 于Q ,垂足为D ,那么QP 、QO 是⊙Q 的半径. 在Rt △QPD 中,1322PD PO ==,4tan tan 3P A ==,因此52QP =.如图7,设⊙M 的半径为r .由⊙M 与⊙O 内切,3O r =,可得圆心距OM =3-r . 由⊙M 与⊙Q 外切,52Q r QP ==,可得圆心距52QM r =+.在Rt △QOM 中,52QO =,OM =3-r ,52QM r =+,由勾股定理,得22255()(3)()22r r +=-+.解得911r =.图6 图7 图8考点伸展如图8,在第(3)题情景下,如果⊙M 与⊙O 、⊙Q 都内切,那么⊙M 的半径是多少?同样的,设⊙M 的半径为r .由⊙M 与⊙O 内切,3O r =,可得圆心距OM =r -3. 由⊙M 与⊙Q 内切,52Q r QP ==,可得圆心距52QM r =-.在Rt △QOM 中,由勾股定理,得22255()(3)()22r r -=-+.解得r =9.例2 如图1,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD//AB,∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.图1答案(1)点C的坐标为(0,3).(2)如图2,当P在B的右侧,∠BCP=15°时,∠PCO=30°,43t=+;如图3,当P在B的左侧,∠BCP=15°时,∠CPO=30°,433t=+.图2 图3(3)如图4,当⊙P与直线BC相切时,t=1;如图5,当⊙P与直线DC相切时,t=4;如图6,当⊙P与直线AD相切时,t=5.6.图4 图5 图6例3 如图1,菱形ABCD 的边长为2厘米,∠DAB =60°.点P 从A 出发,以每秒3厘米的速度沿AC 向C 作匀速运动;与此同时,点Q 也从点A 出发,以每秒1厘米的速度沿射线作匀速运动.当点P 到达点C 时,P 、Q 都停止运动.设点P 运动的时间为t 秒.(1)当P 异于A 、C 时,请说明PQ //BC ;(2)以P 为圆心、PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P 与边BC 分别有1个公共点和2个公共点? 图一答案 (1)因为2AQ tAB=,3223AP t t AC ==,所以AQ AP AB AC =.因此PQ //BC .(2)如图2,由PQ =PH =12PC ,得1(233)2t t =-.解得436t =-. 如图3,由PQ =PB ,得等边三角形PBQ .所以Q 是AB 的中点,t =1.如图4,由PQ =PC ,得233t t =-.解得33t =-. 如图5,当P 、C 重合时,t =2.因此,当436t =-或1<t ≤33-或t =2时,⊙P 与边BC 有1个公共点. 当436-<t ≤1时,⊙P 与边BC 有2个公共点.图2 图3 图4 图5因动点产生的线段和差问题例1 在平面直角坐标系中,已知点A(-2,0),B(0,4),点E在OB上,且∠OAE=∠OBA.(1)如图1,求点E的坐标;(2)如图2,将△AEO沿x轴向右平移得到△AE′O′,连结A′B、BE′.①设AA′=m,其中0<m<2,使用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).图1 图2思路点拨1.图形在平移的过程中,对应点的连线平行且相等,EE′=AA′=m.2.求A′B2+BE′2的最小值,第一感觉是用勾股定理列关于m的式子.3.求A′B+BE′的最小值,第一感觉是典型的“牛喝水”问题——轴对称,两点之间线段最短.满分解答(1)由∠OAE=∠OBA,∠AOE=∠BOA,得△AOE∽△BOA.所以AO BOOE OA=.因此242OE=.解得OE=1.所以E(0,1).(2)①如图3,在Rt△A′OB中,OB=4,OA′=2-m,所以A′B2=16+(2-m)2.在Rt△BEE′中,BE=3,EE′=m,所以BE′2=9+m2.所以A′B2+BE′2=16+(2-m)2+9+m2=2(m-1)2+27.所以当m=1时,A′B2+BE′2取得最小值,最小值为27.此时点A′是AO的中点,点E′向右平移了1个单位,所以E′(1,1).②如图4,当A′B+BE′取得最小值时,求点E′的坐标为8(,1)7.图3 图4考点伸展第(2)②题这样解:如图4,过点B作y轴的垂线l,作点E′关于直线l的对称点E′′,所以A′B+BE′=A′B+BE′′.当A′、B、E′′三点共线时,A′B+BE′′取得最小值,最小值为线段A′E′′.在Rt△A′O′E′′中,A′O′=2,O′E′′=7,所以A′E′′=53.当A′、B、E′′三点共线时,''''''A O A OBO E O=.所以247m=.解得87m=.此时8'(,1)7E.例2 如图1,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (-2, -4 )、O (0, 0)、B (2, 0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.图1答案 (1)212y x x =-+。
1.如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x 轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G,.若FG=DQ,求点F的坐标.2.如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(-1,0),对称轴为直线x=-2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E 向上运动.设点P运动的时间为t秒.①当t为__________秒时,△PAD的周长最小?当t为__________秒时,△PAD是以AD 为腰的等腰三角形?(结果保留根号)2②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,已知抛物线2y ax bx c =++的顶点坐标为Q (2,-1),且与轴交于点C (0,3),与轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥轴, 交AC 于点D .(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,-n ),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程x 2-2x-3=0的两根. (1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点(点D 在y 轴右侧),连接OD 、BD . ①当△OPC 为等腰三角形时,求点P 的坐标;②求△BOD 面积的最大值,并写出此时点D 的坐标.y x y x 图165.如图,抛物线y=a(x-h)2+k经过点A(0,1),且顶点坐标为B(1,2),它的对称轴与x轴交于点C.(1)求此抛物线的解析式.(2)在第一象限内的抛物线上求点P,使得△ACP是以AC为底的等腰三角形,请求出此时点P的坐标.(3)上述点是否是第一象限内此抛物线上与AC距离最远的点?若是,请说明理由;若不是,请求出第一象限内此抛物线上与AC距离最远的点的坐标.6.如图,已知抛物线y=14x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(-2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.7.已知抛物线y=ax 2-2ax+c 与y 轴交于C 点,与x 轴交于A 、B 两点,点A 的坐标是(-1,0),O 是坐标原点,且.(1 )求抛物线的函数表达式;(2 )直接写出直线BC 的函数表达式;(3 )如图1 ,D 为y 轴的负半轴上的一点,且OD=2,以OD 为边作正方形ODEF.将正方形ODEF 以每秒1个单位的速度沿x 轴的正方向移动,在运动过程中,设正方形ODEF与△OBC 重叠部分的面积为s ,运动的时间为t 秒(0<t ≤2).求: ①s 与t 之间的函数关系式;②在运动过程中,s 是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(4 )如图2 ,点P (1,k )在直线BC 上,点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的平行四边形?若存在,请直接写出M 点坐标;若不存在,请说明理由。
第03讲中考压轴题-圆的综合考点梳理一.近5年中考双压轴之圆的综合考点归纳二.题型概述几何综合题是中考必考固定题型,考察知识点多,条件隐秘,要求学生有较强的理解能力,分析问题和解决问题的能力,对数学知识,数学方法有较强的驾驭能力,并有较强的创新意识与创新能力。
它常用相似图形与圆的知识为考察重点,并贯彻其他几何,代数,三角函数等知识,多以证明,计算等题型出现。
三.解题策略1.要点:解几何综合题应注意观察,分析图形,把复杂的图形分解为几个基本图形,通过添加辅助线补全或构造基本图形,掌握常规的证题方法和思路,运用转化的思想解决几何证明问题,运用方程思想解决几何计算问题(还要灵活运用数学思想方法,数行结合,分类讨论)2.一般策略:①认真分析题意,从已知条件出发逐步推理分析到结论的演绎推理法;②也可由结论逆向分析获得问题突破的逆向分析法;③还可以是双向的综合分析策略。
年份知识点2015考察圆切线的性质求边长,相似三角形的判定与性质、等腰直角三角形的性质等知识2016考察圆的切线证明,翻折变换的性质,垂径定理,勾股定理及逆定理,,相似三角形的判定与性质.2017考察圆垂径定理求半径、勾股定理、相似三角形的判定和性质、相交弦定理、锐角三角函数等知识2018考察圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质2019考察圆的切线证明,三角函数,相似三角形,二次函数最值问题3.中考试题中与圆有关的证明及计算,都与圆的切线有关,属于中档题,只要熟悉切线的性质与判定,特别是掌握如何判定切线很重要,需要指出的是,与圆有关的证明题,往往是以圆为载体,考查时往往还涉及特殊三角形的识别或构造,这些识别策略,构造策略靠的是对圆中常用的辅助线的熟悉,比如连半径,作垂直于弦的垂线段等,根据具体情况来决定。
感悟实践1、(2015年深圳中考第22题)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.2、(2016年深圳中考第22题)如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.3、(2017年深圳中考第22题)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.上的动点,且cos∠4、(2018年深圳中考第22题)如图,△ABC内接于⊙O,BC=2,AB=AC,点D为 晦ABC(1)求AB的长度;(2)在点D的运动过程中,弦AD的延长线交BC延长线于点E,问AD•AE的值是否变化?若不变,请求出AD•AE的值;若变化,请说明理由;(3)在点D的运动过程中,过A点作AH⊥BD,求证:BH=CD+DH.5、(2019年深圳中考第22题)闯关练习1.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.2.如图,A(﹣5,0),B(﹣3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P 从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.3.如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.4.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.5.己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)若⊙O的半径为5,AF=,求tan∠ABF的值.考场直播1.如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.2.如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若=4,求△ABC的周长.能力平台1.如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.2.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;(3)若tan∠CED=,⊙O的半径为3,求OA的长.3.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?4.如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D 两点,且C为的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8.(1)求点C的坐标;(2)连接MG、BC,求证:MG∥BC;(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.5.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直径BD=6,连接CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.6.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.7.如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线y=x2+bx+c经过C、B两点,与x轴的另一交点为D.(1)点B的坐标为(,),抛物线的表达式为;(2)如图2,求证:BD∥AC;(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长.8.如图,在平面直角坐标系中,直线l:y=﹣2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b=时,直线l:y=﹣2x+b(b≥0)经过圆心M;当b=时,直线l:y=﹣2x+b(b≥0)与⊙M相切;(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.21。
押浙江卷第24题(圆的综合问题)押题方向:圆的综合问题2023年浙江真题考点命题趋势2023年绍兴卷、湖州卷、、衢州卷第21题台州卷、杭州卷、金华卷第23题宁波卷、舟山、嘉兴卷、丽水卷第24题圆的综合题从近几年浙江各地中考来看,圆的综合问题经常出现在压轴题;预计2024年浙江卷还将重视圆综合问题(圆的相关概念与定理、相似、勾股、三角函数、三角形、四边形等)的考查。
1.(2023•杭州)如图,在⊙O 中,直径AB 垂直弦CD 于点E ,连接AC ,AD ,BC ,作CF ⊥AD 于点F ,交线段OB 于点G (不与点O ,B重合),连接OF .(1)若BE =1,求GE 的长.(2)求证:BC 2=BG •BO .(3)若FO =FG ,猜想∠CAD 的度数,并证明你的结论.2.(2023•湖州)如图,在Rt △ABC 中,∠ACB =90°,点O 在边AC 上,以点O 为圆心,OC 为半径的半圆与斜边AB 相切于点D ,交OA 于点E ,连结OB .(1)求证:BD =BC .(2)已知OC =1,∠A =30°,求AB 的长.3.(2023•金华)如图,点A在第一象限内,⊙A与x轴相切于点B,与y轴相交于点C,D,连结AB,过点A作AH⊥CD于点H.(1)求证:四边形ABOH为矩形.(2)已知⊙A的半径为4,OB=,求弦CD的长.4.(2023•绍兴)如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线CD,交AB的延长线于点D,过点A作AE⊥CD于点E.(1)若∠EAC=25°,求∠ACD的度数;(2)若OB=2,BD=1,求CE的长.5.(2023•台州)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置.如图,AB是⊙O的直径,直线l是⊙O的切线,B为切点.P,Q是圆上两点(不与点A重合,且在直径AB的同侧),分别作射线AP,AQ交直线l于点C,点D.(1)如图1,当AB=6,弧BP长为π时,求BC的长;(2)如图2,当,时,求的值;(3)如图3,当,BC=CD时,连接BP,PQ,直接写出的值.6.(2023•衢州)如图,在Rt△ABC中,∠ACB=90°,O为AC边上一点,连结OB.以OC为半径的半圆与AB边相切于点D,交AC边于点E.(1)求证:BC=BD.(2)若OB=OA,AE=2.①求半圆O的半径.②求图中阴影部分的面积.7.(2023•宁波)如图1,锐角△ABC内接于⊙O,D为BC的中点,连结AD并延长交⊙O于点E,连结BE,CE,过C作AC的垂线交AE于点F,点G在AD上,连结BG,CG,若BC平分∠EBG且∠BCG =∠AFC.(1)求∠BGC的度数.(2)①求证:AF=BC.②若AG=DF,求tan∠GBC的值.(3)如图2,当点O恰好在BG上且OG=1时,求AC的长.8.(2023•浙江)已知,AB是半径为1的⊙O的弦,⊙O的另一条弦CD满足CD=AB,且CD⊥AB于点H(其中点H在圆内,且AH>BH,CH>DH).(1)在图1中用尺规作出弦CD与点H(不写作法,保留作图痕迹);(2)连结AD,猜想:当弦AB的长度发生变化时,线段AD的长度是否变化?若发生变化,说明理由;若不变,求出AD的长度;(3)如图2,延长AH至点F,使得HF=AH,连结CF,∠HCF的平分线CP交AD的延长线于点P,点M为AP的中点,连结HM.若PD=AD,求证:MH⊥CP.9.(2023•丽水)如图,在⊙O中,AB是一条不过圆心O的弦,点C,D是的三等分点,直径CE交AB于点F,连结AD交CF于点G,连结AC,过点C的切线交BA的延长线于点H.(1)求证:AD∥HC;(2)若=2,求tan∠FAG的值;(3)连结BC交AD于点N,若⊙O的半径为5.下面三个问题,依次按照易、中、难排列.请根据自己的认知水平,选择其中一道问题进行解答.①若OF=,求BC的长;②若AH=,求△ANB的周长;③若HF•AB=88,求△BHC的面积.1)在证明圆周角相等或弧相等时,通常“由等角找等弧”或“由等弧找等角”;2)当已知圆的直径时,常构造直径所对的圆周角;3)在圆中求角度时,通常需要通过一些圆的性质进行转化。
1.(08福建莆田)如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。
(注:抛物线2y ax bx c =++的对称轴为2b x a=-)4.(08广东深圳)如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan∠ACO=31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.y x O E D CB A GA BCD O xy7.(08湖北荆门)已知抛物线y =ax 2+bx +c 的顶点A 在x 轴上,与y 轴的交点为B (0,1),且b =-4ac . (1) 求抛物线的解析式;(2) 在抛物线上是否存在一点C ,使以BC 为直径的圆经过抛物线的顶点A ?若不存在说明理由;若存在,求出点C 的坐标,并求出此时圆的圆心点P 的坐标;(3) 根据(2)小题的结论,你发现B 、P 、C 三点的横坐标之间、纵坐标之间分别有何关系?10.(08湖北武汉)如图 1,抛物线y=ax2-3ax+b 经过A (-1,0),C (3,2)两点,与y 轴交于点D ,与x 轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将 四 边 形ABCD 面积二等分,求k 的值;(3)如图2,过点 E (1,-1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转 180°后得△MNQ (点M ,N ,Q 分别与 点 A ,E ,F 对应),使点M ,N 在抛物线上,求点M ,N 的坐标.3(08湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;O x y ABO x y A C B P P 1 D P 2 PAOBMDCyx(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.14.(08江苏常州)如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点.(1) 求点A 的坐标;(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,当462682S +≤≤+,求x 的取值范围.15、(08江苏淮安)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标; (3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.27、(08江西南昌)如图,抛物211y ax ax =--+经过点19(,)28P -,且与抛物线221y ax ax =--相交于A 、B 两点(1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?33、(08山东临沂)如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
2023年春九年级数学中考复习《圆综合压轴解答题》专题提升训练(附答案)1.如图,已知四边形ACBD内接于⊙O,AB是⊙O的直径,AB=10,点D是半圆的中点,连接CD,点I是CD上一点,且DI=DB.(1)求证:点I是△ABC的内心;(2)若BC=6,求△BIC的面积;(3)随着点C的变化,点I的位置也发生改变,请探求CI长度的取值范围.2.如图,在△ABC中,AB=4,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作⊙O的切线DH交AC于点H,且DH⊥AC,连接DE与AB交于点G.(1)求证:AB=AC;(2)填空:①当BD=时,四边形EODA为菱形;②若∠EGA=∠EAG,则GO 的长为.3.如图,AB是⊙O的直径,点D在⊙O上,连接AD并延长至点C,连接BC交⊙O于点E,AB=BC=10,AC=12,过点D作DF⊥BC于点F.(1)求证:直线DF是⊙O的切线;(2)连接DE,设△CDE的面积为S1,四边形ADEB的面积为S2,求的值;(3)点P在上,且的长为,点Q为线段BD上一动点,连接PQ,求的最小值.4.(1)如图①,在△ABC中,∠BAC=90°,AB=4,AC=3,若AD平分∠BAC交CB于点D,那么点D到AC的距离为;(2)如图②,四边形ABCD内接于⊙O,AC为直径,点B是半圆AC的三等分点(弧AB<弧BC),连接BD,若BD平分∠ABC,且BD=8,求四边形ABCD的面积.(3)如图③,有一块半径为1的⊙O,若⊙O的内接四边形ABCD满足∠ABC=60°,AB=AD,且AD+DC=2,求AB的长.5.如图1,△ABC内接于⊙O,弦AE交BC于点D,连接BO,且∠ABO=∠DAC.(1)求证:AE⊥BC;(2)如图2,点F在弧AC上,连接CF、BF,BF交AE于点M,若∠ACF=∠OBC,求证:MD=ED;(3)如图3,在(2)的条件下,∠BFC=3∠EAC,若BM=,AM=3时,求弦CF 的长.6.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连接BO并延长交边AC于点D.(1)如图1,求证:∠BAC=2∠ABD;(2)如图2,过点B作BH⊥AC于点H,延长BH交⊙O于点G,连接OC,CG,OC 交BG于点F,求证:BF=2HG;(3)如图3,在(2)的条件下,若AD=2,CD=3,求线段BF的长.7.如图,等边△ABC内接于⊙O,点D是弧AC上一点,连接BD交AC于E.(1)如图1,求证∠ADB=∠CDB;(2)如图2,点F为线段BD上一点,连接CF,若∠BCF=2∠ABD时,求证:BF=DE+AD;(3)在(2)的条件下,作∠BCF的平分线交⊙O于M,在CM上取点R,连接AR交CF于点T,若TR=1,MR=5,∠CAT=3∠ACD,求AT的长.8.如图,在△ABC中,∠C=90°,AC=BC=2.(1)若点D、E、F分别在AB,AC,BC边上(如图1),连接DE,DF,EF,且∠EDF =90°,DE=DF.①四边形DECF的四个顶点是否在同一个圆上,并说明你的理由;②EF最小值为;四边形CEDF的面积是;(请直接写出答案)③点C到线段EF的最大距离为;(请直接写出答案)(2)若点D、E、F分别在AC,BC,AB边上(如图2),连接DE,DF,EF,且∠EDF =90°,DE=DF,求EF的最小值.9.已知,△ABC内接于⊙O,AD⊥BC于点G,连接AO.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,过点O作ON⊥BC于N,过点B作BH⊥AC于H,交AD于点E,交⊙O 于点F,求证:AE=2ON;(3)如图3,在(2)的条件下,直线OE交AB于点P,交AC于点Q,若HC:EF=:2,BP=11,CQ=2,求线段AD的长.10.(1)如图1,P是半径为5的⊙O上一点,直线l与⊙O交于A、B两点,AB=8,则点P到直线l的距离的最大值为.问题探究:(2)如图2,在等腰△ABC中,BA=BC,∠ABC=45°,F是高AD和高BE的交点,求S△ABF:S△BFD的值.问题解决:(3)如图3,四边形ABCD是某区的一处景观示意图,AD∥BC,∠ABC=60°,∠BCD =90°,AB=60m,BC=80m,M是AB上一点,且AM=20m.按设计师要求,需在四边形区域内确定一个点N,修建花坛△AMN和草坪△BCN,且需DN=25m.已知花坛的造价是每平米400元,草坪的造价是每平米200元,请帮设计师算算修好花坛和草坪预算最少需要多少元?11.如图,AB是⊙O的直径,P为AB上一点,弦CD与弦EF交于点P,PB平分∠DPF,连DF交AB于点G.(1)求证:CD=EF;(2)若∠DPF=60°,PE:PF=1:3,AB=2,求OG的长.12.已知⊙O是△ABC的外接圆,BC为⊙O的直径,弧AB上一点D满足DB=DA,连结CD交AB于点E.(1)求∠AED+∠ABC的值.(2)求证:AC•BC=CE•CD;(3)连接OE,若∠BOE=∠BEO,求△BEO与△BED的面积比.13.【基础巩固】(1)如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∼△BCF;【尝试应用】(2)如图2,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,∠CFE=45°,若设AE=y,BF=x,求出y与x的函数关系及y的最大值.【拓展提高】(3)已知D是等边△ABC边AB上的一点,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上.如图3,如果AD:BD=1:2,求CE:CF的值.14.如图1,▱ABCD为⊙O的内接四边形,已知,以A为顶点作∠P AZ=45°,交BC于P,交CD于Z.(1)求证:四边形ABCD为正方形;(2)若BC=4BP,求DZ:CZ的值;(3)如图2,过P作PQ⊥AD于Q,过Z作ZX⊥AB于X,交PQ于Y.若,求四边形ZYPC的面积.15.如图1,在Rt△ABC中,∠C=90°,AC=16cm,AB=20cm,动点D由点C向点A 以每秒1cm速度在边AC上运动,动点E由点C向点B以每秒cm速度在边BC上运动,若点D、点E从点C同时出发,运动t秒(t>0),联结DE.(1)求证:△DCE∽△BCA;(2)如图2,设经过点D、C、E三点的圆为⊙P;①当⊙P与边AB相切时,求t的值;②在点D、点E运动过程中,若⊙P与边AB交于点F、G(点F在点G左侧,如图3),联结CP并延长交边AB于点M,连接PF,当△PFM与△CDE相似时,求CE的长.16.问题解决:(1)如图①,半圆O的直径AB=6,点P是半圆O上的一个动点,则△P AB的面积最大值是.(2)如图②,在扇形OAB中,∠AOB=90°,OA=6,点C、D分别在OA和OB上,且AC=2,D是OB的中点,点E在弧AB上.连接CE、DE,四边形CODE的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.17.给出定义:有两个内角分别是它们对角的两倍的四边形叫做倍对角四边形.(1)如图1,在倍对角四边形ABCD中,∠D=2∠B,∠A=2∠C,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA 的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是倍对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当4DH=3BG时,求△BGH与△ABC的面积之比.18.【概念提出】圆心到弦的距离叫作该弦的弦心距.【数学理解】如图①,在⊙O中,AB是弦,OP⊥AB,垂足为P,则OP的长是弦AB的弦心距.(1)若⊙O的半径为5,OP的长为3,则AB的长为.(2)若⊙O的半径确定,下列关于AB的长随着OP的长的变化而变化的结论:①AB的长随着OP的长的增大而增大;②AB的长随着OP的长的增大而减小;③AB的长随着OP的长的确定而确定;④AB的长与OP的长无关.其中所有正确结论的序号是.【问题解决】如图②,已知线段EF,MN,点Q是⊙O内一定点.(3)用直尺和圆规过点Q作弦AB,满足AB=EF;(保留作图痕迹,不写作法)(4)若弦AB,CD都过点Q,AB+CD=MN,且AB⊥CD.设⊙O的半径为r,OQ的长为d,MN的长为l.①求AB,CD的长(用含r,d,l的代数式表示);②写出作AB,CD的思路.19.阅读,然后解答问题:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据“奇异三角形”的定义,请你证明:“三边分别为3,,5的三角形是奇异三角形;(2)在Rt△ABC中,AB=c,AC=b,BC=1,且c>b>1,若Rt△ABC是奇异三角形,求b和c;(3)如图,AB是⊙的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.20.问题情境:如图1,P是⊙O外的一点,直线PO分别交⊙O于点A,B,则P A是点P 到⊙O上的点的最短距离.(1)探究证明:如图2,在⊙O上任取一点C(不与点A,B重合),连接PC,OC.求证:P A<PC.(2)直接应用:如图3,在Rt△ABC中,∠ACB=90°,AC=BC=3,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(3)构造运用:如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A1MN,连接A1B,则A1B 长度的最小值为.(4)综合应用:如图5,平面直角坐标系中,分别以点A(﹣2,3),B(4,5)为圆心,以1,2为半径作⊙A,⊙B,M,N分别是⊙A,⊙B上的动点,P为x轴上的动点,直接写出PM+PN的最小值为.参考答案1.(1)如图1,证明:∵点D是半圆的中点,∴∠ACD=∠ABD=∠BCD=∠DAB,∵DI=DB.∴∠DIB=∠DBI,∴∠DCB+∠CBI=∠ABD+∠ABI,∴∠CBI=∠ABI,∴点I是△ABC的内心;(2)如图2,作AE⊥CD于E,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∴∠ACD=∠ABD=∠BCD=∠DAB=45°,在Rt△ABC中,BC=6,AB=10,∴AC=8,在Rt△ACE中,AE=CE=AC=4,在Rt△ADE中,AE=4,BD=AD==5,∴DE=3,∴CD=CE+DE=7,∵DI=BI=5,∴CI=2,作IJ⊥BC于J,∴IJ=CI=2,∴S△BIC===6;(3)如图3,∵DI=BD=5,∴I在以D为圆心,5为半径的圆上一段弧上运动,作⊙O的直径DC′与⊙D交于点I′,当C与C′重合,I与I′重合时,IC最大,C′I′=10﹣5,∴0<CI≤10﹣52.(1)证明:连接OD,∵DH为⊙O的切线,D为切点,∴OD⊥DH,∵DH⊥AC,∴∠ODH=∠DHC=90°,∴OD∥AC,∴∠ODB=∠C,∵OB=OD,∴∠OBD=∠ODB,∴∠OBD=∠C,∴AB=AC;(2)解:①如图,连接AD、OD、EO,∵四边形EODA为菱形,∴AD=OD=AB=2,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,故答案为:2;②∵∠EGA=∠EAG,∴∠EAG=∠OGD,∵AE∥OD,∴∠CED=∠ODE,∠EAG=∠AOD,∴∠OGD=∠GOD,∴OD=DG,∵∠B=∠AED,∴∠ODE=∠B,又∵∠OGD=∠DGB,∴△OGD∽△DGB,设OG=x,∴,∴,∵x>0,∴x=﹣1,∴OG=﹣1,故答案为:﹣1.3.(1)证明:连接OD,∵AO=OD,∴∠OAD=∠ODA,∵AB=BC,∴∠OAD=∠C.∴OD∥BC,∵DF⊥BC,∴DF⊥OD,∵OD是⊙O的半径,∴直线DF是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴AD=DC=6,∵四边形ADEB是⊙O的内接四边形,∴∠ADE+∠ABE=180°,∵∠ADE+∠CDE=180°,∴∠CDE=∠ABC,∵∠C=∠C,∴△CDE∽△CBA,∴=,∴;(3)如图,过点Q作QG⊥AB于点G,∵sin∠ABD=,∴QG=BQ,∴PQ+BQ=PQ+QG,∴当P,Q,G三点共线时,PQ+BQ有最小值为PG,∵的弧长为π,∴,∴∠POB=60°,∴PG=OP•sin60°=,∴PQ+BQ的最小值为.4.解:(1)如图1,作DE⊥AC于E,作DF⊥AB于F,∵AD平分∠BAC,∴DE=DF,由S△ABC=S△ABD+S△ACD得,AB•AC=,∴4×3=4•DE+3DE,∴DE=,故答案是;(2)如图2,作CE⊥BD于E,作AF⊥BD于F,∵AC是直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠DBC=∠ABD=,∴=,∠ECB=90°﹣∠DBC=45°=∠DBC,∴AD=CD,BE=CE,∵点B是半圆AC的三等分点(弧AB<弧BC),∴的度数是60°,的度数是120°,∴∠ADB=30°,∠BDC=60°,∴∠ADB=∠DCE=30°,∴△ADF≌△DCE(AAS),∴AF=DE,∴AF+CE=DE+BE=8,∴S四边形ABCD=S△ABD=====32;(3)如图3连接AC,延长CD至E,使DE=AD,连接AE,∵AB=AD,∴=,∴∠ACB=∠ACE,∵四边形ABCD内接于⊙O,∴∠ADE=∠ABC=60°,∴△ADE是等边三角形,∴∠E=60°,∴∠B=∠E,又∵AC=AC,∴△ABC≌△AEC(AAS),∴BC=CE,∵CE=DE+CD=AD+CD=2,∴BC=2.∵⊙O的半径是1,∴BC是⊙O的直径,∴∠BAC=90°,∴AB=BC•cos60°=1.5.(1)证明:延长BO交⊙O于G,连接AG,如图:∵=,∴∠G=∠C,∵∠ABO=∠DAC,∴∠G+∠ABO=∠C+∠DAC,∵BG为⊙O直径,∴∠BAG=90°,∴∠G+∠ABO=∠C+∠DAC=90°,∴∠ADC=90°,∴AE⊥BC;(2)证明:设BF交AC于N,延长BO交⊙O于G,连接CG,BE,如图:∵BG为⊙O直径,∴∠BCG=90°,∴∠G+∠OBC=90°,∵∠G=∠BFC,∠OBC=∠ACF,∴∠BFC+∠ACF=90°,∴∠CNF=90°,∴∠NBC+∠NCB=90°,由(1)知:AE⊥BC有∠DAC+∠NCB=90°,∴∠NBC=∠DAC,∵=,∴∠DAC=∠DBE,∴∠NBC=∠DBE,又∠BDM=∠BDE=90°,BD=BD,∴△BDM≌△BDE(ASA),∴MD=ED;(3)解:连接AF、BE,如图:∵=,∴∠BFC=∠BAC,∵∠BFC=3∠EAC,∴∠BAC=3∠EAC,∴∠BAE=2∠EAC,由(2)知∠EAC=∠DBE=∠DBM,BE=BM=,∴∠EBM=2∠EAC,∴∠EBM=∠BAE,又∠BEM=∠AEB,∴△BEM∽△AEB,∴==,∵AM=3,∴==,解得:EM=2,AB=5,在Rt△AMN中,MN2+AN2=AM2=9(Ⅰ),在Rt△ABN中,(+MN)2+AN2=AB2=25(Ⅱ),由(Ⅰ)、(Ⅱ)可得:MN=,AN=,∵∠AMF=∠BME,∠AFM=∠BEM,∴△BEM∽△AFM,∴=,即=,∴MF=,∴NF=MF﹣MN=,∵cos∠BAC=cos∠BFC,∴=,即=,∴CF=.6.(1)如图1,证明:连接OA,OC,∴OB=OC,又AB=AC,OA=OA,∴△AOB≌△AOC(SSS),∴∠OAC=∠OAB,∴∠BAC=2∠OAB,∵OA=OB,∴∠ABD=∠OAB,∴∠BAC=2∠ABD;(2)如图2,证明:连接AG,OG,延长AO交BG于M,交BC于P,交⊙O于N,由(1)知,∠BAO=∠CAO,∴=,∵AB=AC,∴AP⊥BC,∵BH⊥AC,∠AMH=∠BMP,∴∠CBG=∠CAO,∵=,∴∠CAG=∠CBG,∴∠CAG=∠CAO,∴AM=AG,=,∴GM=2GH,∠BON=∠COG,∵OB=OG,∴∠OBG=∠OGB,∴△BOM≌△GOF(ASA),∴BM=GF,∴BM+MF=GF+MF,即BF=MG=2GH;(3)如图3,解:设∠ABD=α,由(1)(2)知,∠BAC=2∠ABD=2α,∠CAG=,连接AG,作DT⊥AB于T,截取TK=AT,∴AD=DK=2,∴∠DKA=∠DAK=2α,∵∠BDK=∠AKD﹣∠ABD=2α﹣α=α,∴BK=DK=2,∴AK=AB﹣BK=3,∴AT=KT==,∴DT===,∴cos2α===,tanα==,在Rt△ABH中,AH=AB•cos2α=5×=,在Rt△AHG中,GH=AH•tanα==,∴BF=2GH=.7.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴=,∴∠ADB=∠CDB;(2)证明:如图,作∠BCF的角平分线,交BD于点G,设∠ACD=α,∵=,∴∠ABD=∠ACD=α,∵∠BCF=2∠ABD,∴∠FCG=∠BCG=∠ACD=α,∵△ABC是等边三角形,∴BC=AC,∵=,∴∠DAC=∠DBC,在△ADC与△BGC中,,∴△ADC≌△BGC(SAS),∴BG=AD,DC=GC,∵=,∴∠BDC=∠BAC=60°,∴△DGC是等边三角形,∴∠FGC=∠EDC=60°,在△CED与△CFG中,,∴△CED≌△CFG(ASA),∴ED=FG,∴BF=BG+GF=AD+DE,即BF=DE+AD;(3)解:设∠ACD=α,则∠CAT=3∠ACD=3α,如图,延长CF交⊙O点P,交AM于N点,连接P A,过M点作MQ∥AP,交AR于Q 点,连接PM,∵CM是∠BCF的平分线,由(2)得∠FCG=∠BCG=∠ACD=α,∴∠ACP=∠ACB﹣∠BCF=60°﹣2α,∠BAT=∠BAC﹣∠CAT=60°﹣3α,∵=,=,∴∠MAB=∠BCG=α,∠MAP=∠FCG=α,∴∠MAC=∠BAC+∠BAM=60°+α,∴∠MAT=∠MAC﹣∠CAT=60°+α﹣3α=60°﹣2α,∠P AT=∠MAT+∠MAP=60°﹣2α+α=60°﹣α,∵=,∴∠AMP=∠ACP=60°﹣2α,∴∠AMP=∠MAT=60°﹣2α,∴MP∥AR,∴∠AMQ=∠MAP=α,∠MQT=∠P AR=60°﹣α,∵=,∴∠AMC=∠ABC=60°,∴∠QMR=∠AMC﹣∠AMQ=60°﹣α,∴∠QMR=∠MQR=60°﹣α,∴QR=MR=5,∵设MP=AQ=m,则QT=QR﹣TR=5﹣1=4,∴AT=QT+AQ=4+m,∵=,∴∠MPC=∠MAC=60°+α,又∵∠MNP=∠ANT=∠APC+∠P AM=60°+α,∠ATN=∠ACP+∠CAT=60°﹣2α+3α=60°+α,∴∠MNP=∠MPC=∠ANT=∠ATN=60°+α,∴MP=MN,AN=AT,∴AM=MN+AN=MP+AT=m+4+m=4+2m,在△AMR中,∠AMR=60°,AM=4+2m,MR=5,AR=5+m,如图,过R点作AM边的高HR,∴∠MRH=30°,∴MH=MR=,HR==MR=,∴AH=AM﹣MH=+2m,在Rt△AHR中,HR2+AH2=AR2,∴()2+(+2m)2=(5+m)2,解得:m=2或﹣(舍去),∴AT=4+m=6.8.解:(1)①取EF中点P,连接CP,DP,∵点P为EF中点,∴PE=PF=EF.∵∠ACB=∠EDF=90°,∴CP=DP=AC,∴PE=PF=PC=PD,∴点E、D、F、C在以P为圆心,EF为半径的同一个圆上;②当DE⊥AC时,DE的长度最小,此时EF最短,∵∠A=45°,AD=,∴DE=1,∵DE=DF,∴EF==;∵D是AB的中点,∴AD=BD=CD=,CD⊥AB,∠BCD=45°,∵DE⊥DF,∴∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴S△ADE=S△CDF,∴S四边形DECF=S△DEC+S△DCF=S△DEC+S△ADE=S△ADC=××=1;故答案为;1.③由②可知当EF取最小值时,点C到线段EF的最大距离为EF=.故答案为.(2)过点F分别作FG⊥CA于点G,设DC=a,CE=b,∵∠CDE+∠GDF=∠GDF+∠DFG=90°,∴∠CDE=∠DFG,∵∠C=∠DGF,DE=DF,∴△DCE≌△FGD(AAS),∴FG=DC=a,GD=CE=b,则2a+b=2,a2+b2=DF2,∴DF2=a2+(2﹣2a)2,=5a2_8a+4=5,当a=时,DF2最小,此时EF2最小,∴EF的最小值为.9.(1)证:如图1,作直径AE,连接BE,∴∠ABE=90°,∴∠BAO=90°﹣∠E,∵=,∴∠E=∠C,∴∠BAO=90°﹣∠C,∵AD⊥BC,∴∠AGC=90°,∴∠CAD=90°﹣∠C,∴∠BAO=∠CAD;(2)证:如图2,∵ON⊥BC,∴BC=2CN,作直径CM,连接BM,AM,∴MB⊥BC,∵ON⊥BC,∴ON∥BM,∴△CON∽△CMB,∴==2,∴BM=2ON,∵=,∴∠BAM=∠BCM,∴∠BAM=∠BCM=90°﹣∠BMC,∵=,∴∠BMC=∠BAC,∴∠BAM=90°﹣∠BAC,∵∠AHB=90°,∴∠ABH=90°﹣∠BAC,∴∠BAM=∠ABH,∴BE∥AM,∴四边形AMBE是平行四边形,∴AE=BM,∴AE=2ON;(3)解:如图3,连接AF,CF,连接CE并延长交AB于I,连接OB、OC和BD,作OJ⊥AB于J,∵AG⊥BC,BH⊥AC,∴CI⊥AB,又∵∠AEH=∠BEG,∴∠GBE=∠EAH,∵=,∴∠F AC=∠GBE,∴∠F AC=∠EAH,∵∠AHF=∠AHE=90°,AH=AH,∴△AHE≌△AHF(ASA),∴EH=FH,∴FH=,同理可得:EG=DG=,∴tan∠BFC===,∴∠BFC=60°,∵=,∴∠BAC=∠BFC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,ON⊥BC,∴∠BON==60°,∴OA=OB=2ON,∵AE=2ON,∴AO=AE,∴∠AOE=∠AEO,∴∠AOP=∠AEQ,∵∠BAO=∠CAD,∵△AOP≌△AEQ(ASA),∴AP=AQ,∴△APQ是等边三角形,∴∠APQ=60°,∵∠AEH=90°﹣∠BAC=30°,∴∠AEH=∠ABH=30°,∴PE=PB=11,设AP=AQ=PQ=x∴OP=EQ=PQ﹣PE=x﹣11,AC=AQ+CQ=x+2,在Rt△AIC中,∠BAC=60°,AC=x+2,∴AI=AC=(x+2),CI=(x+2),∴BI=AB﹣AI=(x+11)﹣(x+2)=+10,在Rt△BIC中,BC2=BI2+CI2,=()2+[(x+2)]2,在Rt△POJ中,∠APH=60°,OP=x﹣11,∴PJ=(x﹣11),OJ=(x﹣11),∴AJ=AP﹣PJ=x﹣(x﹣11)=,在Rt△AOJ中,OA2=OJ2+AJ2=[(x﹣11)]2+()2,∴OB2=[(x﹣11)]2+()2,∵BN=OB,∴BC=2BN=OB,∴BC2=3OB2=3•[(x﹣11)]2+()2,∴3•[(x﹣11)]2+()2=()2+[(x+2)]2,化简,得,x2﹣23x+130=0,∴x1=13,x2=10(舍去),∴AB=x+11=24,AC=x+2=15,∴BH=AB=12,AH=12,∴CH=AC﹣AH=3,∴BC==21,∵∠CAD=∠CBH,∠AGC=∠BHC=90°,∴△ACG∽△BCH,△BGE∽△AGC,∴==,=∴===,∴AG=,CG=,∴BG=BC﹣CG,=21﹣=,∴=,∴DG=EG=,∴AD=AG+DG=+=.10.解:(1)点P到直线l距离的最大值,即过圆心O向直线l作垂线交圆O于点P,连接OA,∵AB=8,OC⊥AB,∴AC=4,由勾股定理得:OC=3,∴PC=8,故答案为:8;(2)过点F作FG⊥AB,∵∠ABC=45°,AD⊥BC,∴△ABD为等腰直角三角形,∴AB=BD,又∵△ABC为等腰三角形,且AB=BC,BE⊥AC,∴BE平分∠ABC,又∵FD⊥BC,FG⊥AB,∴FG=FD,∴S△ABF=×AB×FG,S△BDF=×BD×DF,∴;(3)连接MC,过点A作AP⊥BC于点P,∵∠ABC=60°,AB=60,∴BP=30,AP=30,∴CD=30,设总费用为W元,∴W=400S△AMN+200S△BNC,∴W=200(2S△AMN+S△BNC),∴当2S△AMN+S△BNC最小时,总费用最小,又∵AM=20米,BM=40米,∴2S△AMN=S△BMN,∴当S△BMN+S△BNC最小时,费用最小,即S四边形BMNC最小时,费用最小,又∵S四边形BMNC=S△BMC+S△CMN,过点M作MH⊥BC,垂足为H,∵∠ABC=60°,BM=40米,∴BH=20米,MH=20米,MC=40米,∴∠BCM=30°,∴∠DCM=60°,∴S△BMC==800(平方米),∴当S△CMN最小时,费用最小,∴S△CMN=×NQ=20NQ,∴当NQ最小时,费用最小,∵ND=25米,∴N点在以D为圆心,25为半径的圆上运动,过圆心D向MC作垂线交⊙D于N点,交MC于Q,即此时NQ最小,∵CQ=15米,DQ=45米,∴NQ=45﹣25=20(米),∴S△MNC最小值=×20=400(平方米),∴S四边形BMNC最小值=1200(平方米)∴W最小值=200×1200=240000(元),11.(1)证明:如图,过点O作OM⊥EF于点M,ON⊥CD于点N,连接OF、OD,则∠OMF=∠OND=90°,∵PB平分∠DPF,OM⊥EF,ON⊥CD,∴OM=ON,在Rt△OFM和Rt△ODN中,,∴Rt△OFM≌Rt△ODN(HL),∴FM=DN,∵OM⊥EF,ON⊥CD,∴EF=2FM,CD=2DN,∴CD=EF;(2)∵PE:PF=1:3,∴设PE=x,PF=3x,则EF=PE+PF=4x,∵OM⊥EF,∴EM=FM=EF=2x,∴PM=EM﹣PE=2x﹣x=x,∵PB平分∠DPF,∠DPF=60°,∴∠FPB=DPB=DPF=30°,∴OM=x,OP=x,在Rt△OPM和Rt△OPN中,,∴Rt△OPM≌Rt△OPN(HL),∴PM=PN,由(1)知:FM=DN,∴PM+FM=PN+DN,∴PF=PD,∵∠DPF=60°,∴△PDF是等边三角形,∵PB平分∠DPF,∴PB⊥DF,垂足为G,∴DF=PF=3x,FG=DF=,∴PG===,∴OG=PG﹣OP=﹣x=,∵AB=2,∴OF=AB=,在Rt△OFG中,根据勾股定理,得OG2+FG2=OF2,∴()2+()2=()2,整理,得x2=3,解得x=±(负值舍去),∴x=,∴OG===.12.(1)解:∵BC是直径,∴∠CAB=90°,∴∠ACB+∠ABC=90°,∴∠ACB+∠ABC=45°,∵BD=AD,∴=,∴∠ACD=∠BCD,∵∠AED=∠ACD+∠CAE,∴∠AED+∠ABC=90°+∠ACB+∠ABC=135°;(2)证明:∵=,∴∠ACD=∠BCE,∵∠CBE=∠ADC,∴△CBE∽△CDA,∴=,∴AC•BC=CE•CD;(3)解:如图,过点B作BT⊥OE交CD于点T,连接OT.∵BO=BE,∴BO垂直平分线段OE,TB平分∠ABC,∴TO=TE,∴TB平分∠OTE,∵CE平分∠ACB,∴∠BTD=∠TCB+∠TBC=(∠ACB+∠ABC)=45°,∴∠OTE=90°,∴OT⊥CD,∴CT=TD,∵BC是直径,∴∠BDT=90°,∴∠BTD=∠DBT=45°,∴BD=DT=CT,∵CO=OB,CT=TD,∴BD=2OT,∴DT=CT=2ET,∴CE=3DE,∴S△BEC=3S△ADE,∵BO=OC,∴S△BEC=2S△BEO,∴2S△BEO=3S△DEB,∴=.13.(1)证明:∵∠A=∠EFC,∴∠E+∠EF A=∠EF A+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB==8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴,即,∴y=﹣x2+x(0≤x≤8),∴当x=4时,y最大=2;(3)解:连接DE,DF,∵△EFC与△EFD关于EF对称,∴∠EDF=∠ECF=60°,EC=ED,FC=FD,∵∠BDF+∠EDF=∠BDE=∠A+∠DEA,∵∠EDF=∠A=60°,∴∠BDF=∠DEA,∴△ADE∽△BFD,设AD=x,CE=DE=a,CF=DF=b,∵AD:BD=1:2,∴DB=2x,∴AB=3x=AC=BC,∴AE=3x﹣a,BF=3x﹣b,∵△ADE∽△BFD,∴,∴,由前两项得,2ax=b(3x﹣a),由后两项得,(3x﹣a)(3x﹣b)=2x2,即:3x(3x﹣a)﹣b(3x﹣a)=2x2,∴3x(3x﹣a)﹣2ax=2x2,∴a=x,∴,∴CE:CF=4:5.14.(1)∵四边形ABCD为平行四边形,∴∠B=∠D.又∵∠B+∠D=180°,∴∠B=∠D=90°.∴四边形ABCD为矩形,∵,∴AB=AD.∴四边形ABCD为正方形.(2)延长CD至点Q,使得DQ=BP,连接AQ,如图,∵四边形ABCD为正方形,∴∠ABP=∠ADQ=90°.在△ABP和△ADQ中,,∴△ABP≌△ADQ(SAS),∴AP=AQ,∠BAP=∠DAQ.∵∠BAD=90°,∴∠DAP+∠BAD=90°.∴∠DAP+∠QAD=90°.∴∠QAP=90°.∵∠P AZ=45°,∴∠P AZ=∠QAZ=45°.在△APZ和△AQZ中,,∴△APZ≌△AQZ(SAS).∴PZ=QZ.设AB=4a,DZ=t,则BP=a,ZC=4a﹣t,ZP=t+a,在Rt△CPZ中,∵ZC2+CP2=ZP2,∴(4a﹣t)2+(3a)2=(t+a)2.解得:t=.∴DZ=a,CZ=a,∴DZ:CZ=3:2.(3)∵四边形ABCD为正方形,PQ⊥AD,ZX⊥AB,∴四边形AXYQ,AXZD,XBPY,XBCZ均为矩形.设AB=a,AX=m,AQ=n,则mn=.由(2)可知,PZ=DZ+BP=m+n,CZ=XB=a﹣m,CP=DQ=a﹣n.在Rt△CPZ中,∵ZC2+PC2=PZ2,∴(a﹣m)2+(a﹣n)2=(m+n)2.化简得:a2﹣(m+n)a=mn.∴S四边形ZYPC=(a﹣m)(a﹣n)=a2﹣(m+n)a+mn=2mn=2×=5.15.(1)证明:∵∠C=90°,AC=16,AB=20,∴BC==12,∴=,∵==,∴=,∵∠C=∠C,∴△DCE∽△BCA;(2)解:①如图1,作PG⊥AC于G,PF⊥BC于F,作PH⊥AB于H,设CD=3a,CE=4a,DE=5a,由题意得,PH=PC=DE=,PF=CG=CD=a,FG=2a,∵S△ABC=S△APB+S△PBC+S△P AC,∴BC•AC=AB•PH++,∴12×16=20×a+12×a+16×2a,∴a=,∴t=3a=;②如图2,设CD=3a,CE=4a,DE=5a,∴PF=DE=a,由(1)知,△DCE∽△BCA,当△PMF∽△DCE时,∴△PMF∽△BCA,==,∴PM=a,FM=2a,由S△ABC=得20•CM=12×16,∴CM=,∵CP+PM=CM,∴a+a=,∴4a=,即CE=,当△PMF∽△ECD时,类比上可得,a+2a=,∴4a=,∴CE=,综上所述:CE=或.16.解:(1)点P运动至半圆O的中点时,如图1:此时底边AB上的高最大,即P'O=r=3,△P AB的面积最大值,∴S△P'AB=×3×6=9,故答案为:9;(2)四边形CODE的面积存在最大值,作OG⊥CD,垂足为G,延长OG交弧AB于点E′,则此时△CDE'的面积最大,如图2:∵OA=OB=6,AC=2,点D为OB的中点,∴OC=4,OD=3,在Rt△COD中,CD=5,OG=2.4,∴GE′=6﹣2.4=3.6,∴四边形CODE'面积为S△CDO+S△CDE′=×3×4+×5×3.6=15,∴四边形CODE的面积的最大值为15;(3)四边形ABCD的面积存在最大值,连接BD,作△ABD的外接圆O,过A作AE⊥BD于E,如图3:∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,即C在⊙O上,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,有BD=AB=AD=6,在Rt△ABE中,BE=AB=3,AE=BE=3,∴S△ABD=BD•AE=×6×3=9,当C为中点,即A、E、C共线时,△BDC的面积最大,此时∠ACB=∠ADB=60°,AC为⊙O直径,∴∠CAB=30°,∴AC==4,∴CE=AC﹣AE=,∴S△BDC=BD•CE=×6×=3,∴S四边形ABCD=S△ABD+S△BDC=12,即四边形ABCD的面积的最大值是12.17.(1)解:在倍对角四边形ABCD中,∠D=2∠B,∠A=2∠C,∵∠A+∠B+∠C+∠D=360°,∴3∠B+∠3∠C=360°,∴∠B+∠C=120°,∴∠B与∠C的度数之和为120°;(2)证明:在△BED与△BEO中,,∴△BED≌△BEO(SAS),∴∠BDE=∠BEO,∵∠BOE=2∠BCF,∴∠BDE=2∠BCF连接OC,设∠EAF=α,则∠AFE=2α,∴∠EFC=180°﹣∠AFE=180°﹣2α,∵OA=OC,∴∠OAC=∠OCA=α,∴∠AOC=180°﹣∠OAC﹣∠OCA=180°﹣2α,∴∠EFC=∠AOC=2∠ABC,∴四边形DBCF是倍对角四边形;(3)解:过点O作OM⊥BC于M,∵四边形DBCF是倍对角四边形,∴∠ABC+∠ACB=120°,∴∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=30°,∴BC=2BM=BO=BD,∵DG⊥OB,∴∠HGB=∠BAC=60°,∵∠DBG=∠CBA,∴△DBG∽△CBA,∴==,∵4DH=3BG,BG=2HG,∴DG=,∴==,∴=.18.解:(1)连接OA,∵OP⊥AB,∴AP=,∵OA=5,OP=3,∴AP==4,∴AB=2AP=8,故答案为:8;(2)设半径为r不变,∴AB=2AP=2,当r不变,OP的长增大时,AB减小;OP长确定时,AB也确定,故选:②③;(3)如图,利用△MPF和△OP'B全等,首先作EF的垂直平分线,再取FM=r,然后以点O为圆心,MP为半径画圆,再以OQ为直径画圆,两圆交点为P',从而画出线段AB,如图,线段AB即为所求;(4)①解:设AB=2m,CD=2n,如图,可得:,解得:,∴AB=,CD=,②作图思路:先作斜边为4r,一条直角边为2,另一条直角边为的直角三角形;再作斜边为,一条直角边为l,另一条直角边为的直角三角形;再在⊙O中作出长为的弦,再如(3)中作法,过点Q作弦AB;最后过点Q作AB的垂直弦CD.19.(1)证明:在△ABC中,三边长分别是3,和5,∵32+52=2()2,。
中考数学抛物线压轴题之取值范围(1)当k=3时,求抛物线与x轴的两个交点坐标;(2)无论k取任何实数,抛物线过x轴上一定点,求定点坐标;(3)当k=5时,设抛物线与y轴交于C点,与x轴交于A,B(点A在点B的左边)两点,连接AC,在线段AC上是否存在点D,使△ABD是直角三角形,若存在,求出点D的坐标,若不存在,请说明理由.(4)点E(﹣1,1),点F(﹣2,2),抛物线与线段EF只有一个交点,求k的取值范围2.定义:若函数y=x2+bx+c(c≠0)与x轴的交点A,B的横坐标为x A,x B,与y轴交点的纵坐标为y C,若x A,x B中至少存在一个值,满足x A=y C(或x B=y C),则称该函数为友好函数.如图,函数y=x2+2x﹣3与x 轴的一个交点A的横坐标为3,与y轴交点C的纵坐标为﹣3,满足x A=y C,称y=x2+2x﹣3为友好函数.(1)判断y=x2﹣4x+3是否为友好函数,并说明理由;(2)请探究友好函数y=x2+bx+c表达式中的b与c之间的关系;(3)若y=x2+bx+c是友好函数,且∠ACB为锐角,求c的取值范围.3.已知抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点(如图1),顶点为M.(1)a、b的值;(2)设抛物线与y轴的交点为Q(如图1),直线y=﹣2x+9与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线扫过的区域的面积;(3)设直线y=﹣2x+9与y轴交于点C,与直线OM交于点D(如图2).现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标的取值范围.4.已知抛物线y=x2﹣2mx+m2﹣2与y轴交于点C.(1)抛物线的顶点坐标为,点C坐标为;(用含m的代数式表示)(2)当m=1时,抛物线上有一动点P,设P点横坐标为n,且n>0.①若点P到x轴的距离为2时,求点P的坐标;②设抛物线在点C与点P之间部分(含点C和点P)最高点与最低点纵坐标之差为h,求h与n之间的函数关系式,并写出自变量n的取值范围;(3)若点A(﹣3,2)、B(2,2),连结AB,当抛物线y=x2﹣2mx+m2﹣2与线段AB只有一个交点时,直接写出m的取值范围.5.如图1,二次函数y=ax2﹣3ax+c的图象与x轴交于点A、B,与y轴交于点c直线y=﹣x+4经过点B、C.(1)求抛物线的表达式;(2)过点A的直线y=kx+k交抛物线于点M,交直线BC于点N,连接AC,当直线y=kx+k平分△ABC的面积,求点M的坐标;(3)如图2,把抛物线位于x轴上方的图象沿x轴翻折,当直线y=kx+k与翻折后的整个图象只有三个交点时,求k的取值范围.6.如图所示,抛物线y=ax2+bx+c与x轴交于A、B两点,A(﹣5,0),与y轴交于C(0,﹣5),并且对称轴x=﹣3.(1)求抛物线的解析式;(2)P在x轴上方的抛物线上,过P的直线y=x+m与直线AC交于点M,与y轴交于点N,求PM+MN的最大值;(3)点D为抛物线对称轴上一点,①当△ACD是以AC为直角边的直角三角形时,求D点坐标;②若△ACD是锐角三角形,求点D的纵坐标的取值范围.7.在平面直角坐标系中,给出如下定义:已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1、y2,恒有点(x,y1)和点(x,y2)关于点(x,x)成中心对称(此三个点可以重合),由于对称中心(x,x)都在直线y=x上,所以称这两个函数为关于直线y=x的“相依函数”.例如:y=x和y=x为关于直线y=x的“相依函数”(1)已知点M(1,m)是直线y=2x+4上一点,请求出点M(1,m)关于点(1,1)成中心对称的点N的坐标;(2)若直线y=3x+n和它关于直线y=x的“相依函数”的图象与y轴围成的三角形的面积为8,求n的值;(3)若二次函数y=ax2+bx+c和y=x2+d为关于直线y=x的“相依函数”.①请求出a、b的值;②已知点P(﹣3,2)、点Q(2,2),连接PQ,直接写出y=ax2+bx+c和y=x2+d两条抛物线与线段PQ有且只有两个交点时对应的d的取值范围.1.【解答】(1)解:∵y=x2+kx+k﹣1,∴当k=3时,y=x2+3x+3,令y=0,得x2+5x+2=0,解得x3=﹣1,x2=﹣5,∴抛物线与x轴的交点坐标是(﹣1,0),5).(2)证明:∵y=x2+kx+k﹣1,∴当y=2时,x2+kx+k﹣1=8,解得x1=﹣1,x8=1﹣k,∴无论k取任何实数,抛物线过x轴上一定点(﹣1.(3)解:k=5时,抛物线的解析式为y=x2+5x+5,令y=0,可得x2+5x+4=0,解得x=﹣2或﹣4,∴A(﹣4,5),﹣1),令x=0,得到y=3,4),如图1中,∵OA=OC=6,∠AOC=90°,∴∠CAO=45°,当∠ABD′=90°时,AB=BD′=3,∴D′(﹣1,3),当∠ADB=90°时,AD=BD,1.5).综上所述,满足条件的点D的坐标为(﹣7,1.5).(4)如图8中,观察图象可知,当x=﹣2时,∴4﹣6k+k﹣1≥2,∴k≤2,∴k≤1时,抛物线与线段EF只有一个交点.2.【解答】解:(1)y=x2﹣4x+6是友好函数,理由如下:当x=0时,y=3,x=4或3,∴y=x2﹣5x+3与x轴一个交点的横坐标和与y轴交点的纵坐标都是3,∴y=x6﹣4x+3是友好函数;(2)当x=2时,y=c,∵y=x2+bx+c是友好函数,∴x=c时,y=0,2)在y=x2+bx+c上,代入得:0=c6+bc+c,∴0=c(c+b+1),而c≠4,∴b+c=﹣1;(3)①如图1,当C在y轴负半轴上时,由(2)可得:c=﹣b﹣6,即y=x2+bx﹣b﹣1,显然当x=8时,y=0,即与x轴的一个交点为(1,2),则∠ACO=45°,∴只需满足∠BCO<45°,即BO<CO∴c<﹣1;②如图2,当C在y轴正半轴上,∴显然都满足∠ACB为锐角,∴c>8,且c≠1;③当C与原点重合时,不符合题意,综上所述,c<﹣1或c>2.3.【解答】解:(1)将A(﹣3,0),3)代入抛物线y=ax2+bx+3中,得:,解得:a=7、b=4.(2)连接MQ、QD,由图形平移的性质知:QN,即四边形MQND是平行四边形;由(1)知,抛物线的解析式:y=x2+4x+3=(x+2)4﹣1,则点M(﹣2、Q(2;则,直线OM:y=x,得:,解得.则D(,);曲线扫过的区域的面积:S=S▱MQND=2S△MQD=2××OQ×|x M﹣x D|=3×|﹣5﹣|=.(3)由于抛物线的顶点始终在y=x上,h)2+h;①当平移后抛物线对称轴右侧部分经过点C(0,9)时h3+h=4(依题意②当平移后的抛物线与直线y=﹣2x+9只有一个交点时,依题意:,消去y,得:x2﹣(2h﹣7)x+h2+h﹣9=0,则:△=(6h﹣2)2﹣2(h2+h﹣9)=﹣10h+40=0结合图形,当平移的抛物线与射线CD(含端点C)没有公共点时或h>4.4.【解答】解:(1)y=x2﹣2mx+m5﹣2=(x﹣m)2﹣3,∴顶点坐标为(m,﹣2),在y=x2﹣5mx+m2﹣2中,当x=5时,y=m2﹣2,∴点C坐标为(6,m2﹣2),。
【压轴必刷】中考数学压轴大题之经典模型培优案专题17函数与圆综合问题【例1】如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(4,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)在y轴上是否存在点P使得∠OBP+∠OBC=45°,若存在,求出点P的坐标,若不存在,请说明理由;(3)点M是BC为直径的圆上的动点,将点M绕原点O顺时针旋转90°得点N,连接NA,求NA的取值范围.【例2】如图1:抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C.动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)连接BM并延长交y轴于点N,连接AN,OM,若AN∥OM,求m的值.(3)如图2.当m=1时,P是直线l上的点,以P为圆心,PE为半径的圆交直线l于另一点F(点F 在x轴上方),若线段AC上最多存在一个点Q使得∠FQE=90°,求点P纵坐标的取值范围.【例3】如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+DB的最小值【例4】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+3的对称轴是直线x=2,与x轴相交于A,B 两点(点A在点B的左侧),与y轴交于点C.(Ⅰ)求抛物线的解析式及顶点坐标;(Ⅱ)M为第一象限内抛物线上的一个点,过点M作MN⊥x轴于点N,交BC于点D,连接CM,当线段CM=CD时,求点M的坐标;(Ⅲ)以原点O为圆心,AO长为半径作⊙O,点P为⊙O上的一点,连接BP,CP,求2PC+3PB的最小值.1.如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B(3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.2.如图1,已知抛物线y=ax2﹣12ax+32a(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)连接BC,若∠ABC=30°,求a的值.(2)如图2,已知M为△ABC的外心,试判断弦AB的弦心距d是否有最小值,若有,求出此时a的值,若没有,请说明理由;(3)如图3,已知动点P(t,t)在第一象限,t为常数.问:是否存在一点P,使得∠APB达到最大,若存在,求出此时∠APB的正弦值,若不存在,也请说明理由.3.如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.4.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0).(1)求二次函数的表达式;(2)求顶点A的坐标及直线AB的表达式;(3)判断△ABO的形状,试说明理由;(4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.5.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.6.如图,抛物线的顶点为A(0,2),且经过点B(2,0).以坐标原点O为圆心的圆的半径r=,OC ⊥AB于点C.(1)求抛物线的函数解析式.(2)求证:直线AB与⊙O相切.。
2022-2023学年人教版中考数学复习《圆综合压轴题》解答题专题突破训练(附答案)1.如图,AB是⊙O的直径,且AB=10,弦CD⊥AB于点E,G是弧AC上一点,连接AD,AG,GD,BC.(1)若G是弧AC上任意一动点,请找出图中和∠G相等的角(不在原图中添加线段或字母),并说明理由.(2)当点C是弧BG的中点时,①若∠G=60°,求弦DG的长,②连接BG,交CD于点F,若BE=2,求线段CF的长.2.如图,等腰△ABC内接于⊙O,AB=AC,连结OC,过点B作AC的垂线,交⊙O于点D,交OC于点M,交AC于点E,连结AD.(1)若∠D=α,请用含α的代数式表示∠OCA;(2)求证:CE2=EM•EB;(3)连接CD,若BM=4,DM=3,求tan∠BAC的值及四边形ABCD的面积与△BMC 面积的比值.3.已知:AB为⊙O的直径,=,D为弦AC上一动点(不与A、C重合).(1)如图1,若BD平分∠CBA,连接OC交BD于点E.①求证:CE=CD;②若OE=2,求AD的长.(2)如图2,若BD绕点D顺时针旋转90°得DF,连接AF.求证:AF为⊙O的切线.4.如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4.求⊙O的半径;(3)在(2)条件下,求BE、DE、弧围成的阴影部分的面积.5.如图1,⊙O的弦BC=6,A为BC所对优弧上一动点且sin∠BAC=,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)求证:点P为的中点;(2)如图2,求⊙O的半径和PC的长;(3)若△ABC不是锐角三角形,求P A•AE的最大值.6.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,连接AC、FC,AC与BD相交于点G.(1)求证:∠ACF=∠ADB;(2)求证:CF=DF;(3)∠DBC=°;(4)若OB=3,OA=6,则△GDC的面积为.7.如图,⊙O是直角三角形ABC的外接圆,直径AC=4,过C点作⊙O的切线,与AB延长线交于点D,M为CD的中点,连接BM,OM,且BC与OM相交于点N.(1)求证:BM与⊙O相切;(2)当∠BAC=60°时,求弦AB和弧AB所夹图形的面积;(3)在(2)的条件下,在弧AB上取一点F,使∠ABF=15°,连接OF交弦AB于点H,求FH的长度是多少?8.如图,AB是⊙O的直径,AC是弦,P为AB延长线上一点,∠BCP=∠BAC.∠ACB的平分线交⊙O于点D,交AB于点E,(1)求证:PC是⊙O的切线;(2)求证:△PEC是等腰三角形;(3)若AC+BC=2时,求CD的长.9.圆内接四边形ABCD,AB为⊙O的直径.(1)如图1,若D为弧AB中点,AB=4.①求∠DCB的度数;②求四边形ABCD面积的最大值.(2)如图2,对角线AC,BD交于点E,连结OE并延长交CD于点F,若OE=3EF=3,求AB的长.10.已知:∠MBN=90°,点A在射线BM上,点C在射线BN上,D在线段BA上,⊙O 是△ACD的外接圆;(1)若⊙O与BN的另一个交点为E,如图1,当,BD=1,AD=2时,求CE的长;(2)如图2,当∠BCA=∠BDC时,判断BN与⊙O的位置关系,并说明理由;(3)如图3,在BN上作出C点,使得∠ACD最大,并求当AD=2,时,⊙O 的半径.11.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD 的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.12.如图,线段AB=6,以AB为直径作⊙O,C为⊙O上一点,过点B作⊙O的切线交AC 的延长线于点D,连接BC.(1)求证:△BCD∽△ABD;(2)若∠D=50°,求的长.(3)点P在线段AC上运动,直接写出△PBD的外心运动的路径长.13.如图,在平面直角坐标系中,已知A(0,3),点B在x轴正半轴上,且∠ABO=30°,C为线段OB上一点,作射线AC交△AOB的外接圆于点D,连接OD,∠COD=∠OAD.(1)求∠BAD的度数;(2)在射线AD上是否存在点P,使得直线BP与△AOB的外接圆相切?若存在,请求出点P的坐标;若不存在,请说明理由.14.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,直径AE交BC于点H,点D 在弧AC上,过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.(1)求证:EF是⊙O的切线;(2)若BC=2,AH=CG=3,求EF的长;(3)在(2)的条件下,直接写出CD的长.15.如图,AB是⊙O的直径,P A是⊙O的切线,连接OP交⊙O于点E,点C在⊙O上,四边形OBCE为菱形,连接PC.(1)求证:PC是⊙O的切线;(2)连接BP交⊙O于点F,交CE于点G.①连接OG,求证:OG⊥CG;②若OB=3,求BF的长.16.如图,在平面直角坐标系xOy中,直线m:y=x+与x轴交于点A,与y轴交于点B,点P在直线m上,以点O为圆心,OP为半径的⊙O交x轴于点C、D(点C 在点D的左侧),与y轴负半轴交于点E,连接PE,交x轴于点F,且AF=AP.(1)判断直线m与⊙O的位置关系,并说明理由;(2)求∠PEB的度数;(3)若点Q是直线m上位于第一象限内的一个动点,连接EQ交x轴于点G,交⊙O于点H,判断EG•EH是否为定值,若是,求出该定值;若不是,请说明理由.17.如图,线段AB是⊙O的直径,过点B作一条射线BC与AB垂直,点P是射线BC上的一个动点,连接PO交⊙O于点F,连接AF并延长交线段BP于点E,设⊙O的半径为r,PB的长为t(t>0).(1)当r=3时,①若∠F AO=∠EPF,求的长,②若t=4,求PE的长;(2)设PE=n2t,其中n为常数,且0<n<1,若t﹣r为定值,求n的值及∠EAB的度数.18.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径作⊙O,⊙O 与BC相切于点E,连结AE,过点C作CG⊥AB于点G,交AE于点F,过点E作EP⊥AB于点P.(1)求证:∠BED=∠EAD;(2)求证:CE=EP;(3)连接PF,若CG=8,PG=6,求四边形CFPE的面积.19.如图,以△ABC的边AB为直径作⊙O交BC于点D,过点D作⊙O的切线交AC于点E,AB=AC.(1)求证:DE⊥AC;(2)延长CA交⊙O于点F,点G在上,.①连接BG,求证:AF=BG;②经过BG的中点M和点D的直线交CF于点N,连接DF交AB于点H,若AH:BH=3:8,AN=7,试求出DE的长.20.如图,△ABC为⊙O的内接三角形,AD⊥BC,垂足为D,直径AE平分∠BAD,交BC 于点F,连结BE.(1)求证:∠AEB=∠AFD.(2)若AB=10,BF=5,求AD的长.(3)若点G为AB中点,连结DG,若点O在DG上,求BF:FC的值.参考答案1.解:(1)∠AGD=∠B,理由如下:连接AC,∵AB是直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠CEB=90°,∴∠BCD+∠B=90°,∴∠ACD=∠B,∵∠AGD=∠ACD,∴∠AGD=∠B;(2)连接OC,OG,OD,OC交CD于M,∵∠AGD=∠B=60°,OB=OC,∴△BOC是等边三角形,∴∠BOC=60°,∵点C是的中点,∴∠COG=∠COB=∠BOD=60°,∴CD是⊙O的直径,∴CD=AB=10;(3)连接BG,交CD于F,连接AC,∵==,∴∠BCD=∠GBC,∴CF=BF,∵∠ACD=∠ABC,∠AEC=∠BEC,∴△ACE∽△CBE,∴CE2=AE×BE=8×2=16,∵CE>0,∴CE=4,设BF=CF=x,则EF=4﹣x,∴(4﹣x)2+22=x2,解得x=,∴CF=.2.(1)解:如图,连接OA,OB,在△AOB与△AOC中,,∴△AOB≌△AOC(SSS),∴∠OAB=∠OAC=,∵,∴∠ACB=∠D=α,∵AB=AC,∴∠ABC=∠ACB=α,∴∠BAC=180°﹣2α,∴∠OAC=90°﹣α,∵OA=OC,∴∠OCA=∠OAC=90°﹣α;(2)证明:∵BD⊥AC,∴∠BEC=90°,∴∠CBE=90°﹣∠ACB=90°﹣α,∴∠OCA=∠CBE,∵∠CEM=∠CEB,∴△CEM∽△BEC,∴,∴CE2=EM•EB;(3)解:如图,连接AO并延长交BD于点N,连接CN,CD,∵AB=AC,∠OAB=∠OAC,∴AO垂直平分BC,∴BN=CN,∵∠OCA=∠DAC,∴OC∥AD,∴∠DMC=∠ABD=∠ACB,∵,∴∠BAC=∠CDM,∴∠DCM=∠ABC,∴∠DCM=∠DMC,∴CD=DM=3,∵AC⊥BD,∴∠AED=∠AEN,∵∠OAC=∠DAC,AE=AE,∴△AEN≌△AED(ASA),∴EN=ED,∴AC垂直平分DN,∴CN=CD=3,∴BN=CN=3,∴MN=BM﹣BN=4﹣3=1,由EN=DE得:MN+EM=DM﹣EM,∴1+EM=3﹣EM,∴EM=1,∴EB=BM+EM=4+1=5,DE=DM﹣EM=3﹣1=2,由(2)知,CE2=EM•EB=1×5=5,∴CE=(负值已舍),∵∠BAC=∠BDC,∠DEC=∠AEB,∴△DEC∽△AEB,∴,∴AE=,在Rt△ABE中,tan∠BAC=,由(2)知,∠OCA=∠CBE=∠CAD,∴AD∥OC,∴=,∴CE=,∴S四边形ABCD=AC×BD==,S△BMC===2,∴四边形ABCD的面积与△BMC面积的比值为.3.(1)①证明:∵AB为⊙O的直径,∴∠BCA=90°,∵=,∴∠CBA=∠BAC=45°,∠BOC=90°,∴∠BCO=45°,∵BD平分∠CBA,∴∠CBD=∠DBA=22.5°,∵∠CED=∠CBD+∠BCE=67.5°,∠CDE=∠ABD+∠BAC=67.5°,∴∠CED=∠CDE,∴CE=CD;②解:如图1,取BD中点G,连接OG,∵O为AB的中点,∴OG∥AD,AD=2OG,∴∠OGE=∠CDE,∵∠OEG=∠CED,∠CED=∠CDE,∴∠OGE=∠OEG,∴OG=OE=2,∴AD=2OG=4;(2)证明:如图2,在BC上截取BP=AD,连接DP,∵=,∴BC=AC,∴CP=CD,∵∠ACB=90°∴∠CPD=45°,∴∠BPD=135°,由旋转性质得,∠BDF=90°,BD=FD,∴∠BDC+∠FDA=90°,∵∠BDC+∠CBD=90°,∴∠CBD=∠ADF,∴△DF A≌△BDP(SAS),∴∠F AD=∠BPD=135°,∴∠F AB=∠F AD﹣∠BAC=135°﹣45°=90°,∴OA⊥AF,又∵OA为半径,∴AF为⊙O的切线.4.解:(1)连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BCD中,BE=EC,∴DE=EC=BE,∴∠EBD=∠EDB,∵BC是⊙O的切线,∴AB⊥BC,∴∠EBD+∠DBO=90°,∴∠EDB+∠DBO=90°,∵OD=OB,∴∠DBO=∠BDO,∴∠EDB+∠BDO=90°,即∠ODF=90°,∴DF⊥OD,∵OD为⊙O的半径,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OB=2OD,∴sin F==,∴∠F=30°,∴OB=BF=EF•cos F=4×cos30°=2,即⊙O的半径为2;(3)由(2)知,OD=2,∠BOD=90°﹣∠F=60°,∴DF=OD•tan∠BOD=2×=6,∵EF=4,∠F=30°,∴BE=EF•sin30°=2,∵阴影部分的面积=三角形ODF的面积﹣三角形FEB的面积﹣扇形BOD的面积,∴S阴=S△ODF﹣S△FEB﹣S扇形BOD=OD•DF﹣BF•BE﹣π•OD2==4﹣2π,∴阴影部分的面积为4﹣2π.5.(1)证明:①如图1,连接OC,AB,∵AP平分∠BAF,∴∠BAP=∠P AF,∵∠P AF+∠P AC=180°,∠P AC+∠PBC=180°,∴∠P AF=∠PBC,又∠BAP=∠PCB,∴∠PBC=∠PCB,∴PB=PC,∴=,∴点P为的中点;(2)解:连接OB,OC,过O作OM⊥BC于M,∴OM垂直平分BC,∴BM=CM=BC=3,∠BOM=∠BOC=∠BAC,∵sin∠BAC=,∴sin∠BOM==,∴OB=5,∴⊙O的半径是5,在Rt△OMC中,OM==4,在Rt△PMC中,PM=OM+OP=9,∴PC==3;(3)∵∠ACE+∠BCA=∠BPE+∠BCA=180°,∴∠ACE=∠BPE,同理,∠CAE=∠PBC=∠P AB,∴△ACE∽△APB,∴=,∴P A•AE=AC•AB,如图4,过C作CQ⊥AB于Q,∵sin∠BAC=,∴CQ=AC•sin∠BAC,∴S△ABC=AB•CQ=AB•AC,∴P A•AE=S△ABC,∵△ABC非锐角三角形,且BC=6,∴当A运动到使∠ACB=90°时,△ABC面积最大,在Rt△ABC中,BC=6,AB=10,∴AC==8,∴S△ABC=BC•AC=24,∴此时,P A•AE=80,即P A•AE的最大值为80.6.(1)证明:连接AB,∵OP⊥BC,∴BO=CO,∴AB=AC,又∵AC=AD,∴AB=AD,∴∠ABD=∠ADB,又∵∠ABD=∠ACF,∴∠ACF=∠ADB;(2)证明:∵AC=AD,∴∠ACD=∠ADC,∵∠ACF=∠ADF,∵∠ACD﹣∠ACF=∠ADC﹣∠ADF,即∠FCD=∠FDC,∴CF=DF;(3)解:连接AF,由(2)知CF=DF,则点F在CD的垂直平分线上,∵AC=AD,∴点A在CD的垂直平分线上,∴AF是CD的垂直平分线,∴AF平分∠CAD,∴∠CAF=45°,∴∠CBD=45°,故答案为:45;(4)解:作CH⊥BD于H,∵OB=OC=3,∠DBC=45°,∴CH=BH=3,∵OA=6,OC=3,∴AC=3,∴CD=AC=3,∴DH=,∴DB=BH+DH=9,∵∠ACD=∠DBC,∠CDG=∠BDC,∴△DCG∽△DBC,∴DC2=DG•DB,∴(3)2=DG•9,∴DG=5,∴△GDC的面积为=15,故答案为:15.7.(1)证明:如图,连接OB,∵⊙O是直角三角形ABC的外接圆,∴∠ABC=∠DBC=90°.在Rt△DBC中,M为CD的中点,∴BM=MC,∴∠MBC=∠MCB.又∵OB=OC,∴∠OCB=∠OBC.∵CD为⊙O的切线,∴∠ACD=90°.∴∠MCB+∠OCB=∠MBC+∠OBC=90°,即OB⊥BM.又∵OB为⊙O的半径,∴BM与⊙O相切;(2)解:∵∠BAC=60°,OA=OB,∴△ABO为等边三角形,∴∠AOB=60°.∵AC=4,∴OA=2,∴弦AB和弧AB所夹图形的面积=S扇形AOB﹣S△AOB=.(3)解:连接OB,∠ABF=15°时,∠AOF=30°,∴等边△ABO中,OF平分∠AOB,∴OF⊥AB.在Rt△AOH中,AO=2,∠AOH=30°,∴AH=1,∴OH=,∴FH=.8.(1)证明:连接OC,∵AB为直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∵OA=OC,∴∠BAC=∠ACO,∠BCP=∠BAC,∴∠BCP=∠ACO,∴∠BCP+∠OCB=90°,∴OC⊥PC,∵OC为半径,∴PC是⊙O的切线;(2)证明:∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∵∠PCE=∠PCB+∠BCD,∠PEC=∠BAC+∠ACD,∴∠PEC=∠PCE,∴△PEC是等腰三角形;(3)解:作DM⊥AC于M,DN⊥CB交CB的延长线于N,∵CD平分∠ACB,DM⊥∠AC,DN⊥CB,∴DM=DN,,∵∠AMD=∠BND=90°,∴Rt△AMD≌Rt△BND(HL),∴AM=BN,∵∠DMC=∠MCN=∠CND=90°,∴四边形CMDN为矩形,∵DM=DN,∴矩形CMDN为正方形,∴CN=,∵AC+BC=CM+AB+CB=2CN,∴AC+BC=CD,∵AC+BC=2,∴CD=.9.解:(1)①∵AB为直径,D为的中点,∴∠DCB=180°﹣∠A=180°﹣45°=135°,②连接BD,AC交于点E,当四边形ABCD面积最大时,即△BCD面积最大,当OC⊥BD时,CE最大,∵AB=4,∴BD=AD=2,∴OE=,∴S,∴S四边形ABCD的最大值为:S;(2)直线OF交⊙O于点M,N,过F作PQ∥AB交直线BD,AC于点P,Q,∵∠Q=∠A=∠CDE,∴△PFD∽△CFQ,∴PF•FQ=FD•FC,∵∠N=∠MDF,∠MFD=∠CFN,∴△MFD∽△CFN,∴MF•FN=FD•FC,∴PF•FQ=MF•FN,∴,∴FP=FQ=,设半径为r,∴(r﹣4)(r+4)=,∵r>0,∴r=3,∴AB=6.10.解:(1)连接AE,∵∠AEC+∠ADC=180°,∠BDC+∠ADC=180°,∴∠BDC=∠AEC,∵∠CBD=∠ABE,∴△ABE∽△CBD,∴,∵BC=,AD=2,BD=1,∴AB=AD+BD=2+1=3,∴,∴BE=2,∴CE=BE﹣BC=;(2)BN是⊙O的切线,理由如下:连接CO并延长交⊙O于点F,连接DF,则∠CDF=90°,∴∠CFD+∠FCD=90°,∵∠BCA=∠BDC,∠B=∠B,∴∠BAC=∠BCD,∵∠CAD=∠CFD,∴∠CFD=∠BCD,∴∠FCB=∠FCD+∠BCD=∠FCD+∠CFD=90°,∴BC⊥OC,∵OC是半径,∴BC是⊙O的切线,即BN是⊙O的切线;(3)过点A,C,D三点作⊙O,当BC是⊙O的切线时,∠ACD最大,连接CO并延长交⊙O于点G,连接AG,DG,则∠CDG=90°,∠CAG=90°,∴∠CGD+∠DCG=90°,∵BC是⊙O的切线,∴BC⊥OC,∴∠BCO=90°,∴∠BCD+∠DCG=90°,∴∠BCD=∠CGD,∵∠CGD=∠CAD,∴∠BCD=∠BAC,∵∠B=∠B,∴△BCD∽△BAC,∴,∴BC2=BD•BA,∵AD=2,∴BA=BD+AD=BD+2,∴BC2=BD(BD+2)=BD2+2BD,∵BC2+BA2=AC2,AC=2BD,∴BC2=AC2﹣BA2=(2BD)2﹣(BD+2)2=11BD2﹣4BD﹣4,∴11BD2﹣4BD﹣4=BD2+2BD,∴5BD2﹣3BD﹣2=0,∴BD=﹣(舍去)或BD=1,∴BD=1,∴BA=BD+AD=1+2=3,AC=2BD=2,∵∠B=90°,∴AB⊥BC,∵CG⊥BC,∴CG∥AB,∴∠BAC=∠ACG,∵∠B=∠CAG=90°,∴△BAC∽△ACG,∴,∴,∴CG=4,∴OC=2,即⊙O的半径为2.11.(1)证明:如图1中,连接BC.∵点D是弧BC的中点.∴=,∴∠DCB=∠DBC,∵AB是直径,∴∠ACB=∠BCE=90°,∴∠E+∠DBC=90°,∠ECD+∠DCB=90°,∴∠E=∠DCE,∴CD=ED;(2)①证明:如图2中,∵CF=CH,∴∠CFH=∠CHF,∵∠CFH=∠CAF+∠ACF,∠CHA=∠BAH+∠ABH,∵∠CAD=∠BAH,∴∠ACO=∠OBC,∵OC=OB,∴∠OCB=∠OBC,∴∠ACO=∠BCO=∠ACB=45°,∴∠CAB=∠ABC=45°,∴AC=BC,∵∠ACH=∠BCE=90°,∠CAH=∠CBE,∴△ACH≌△BCE(ASA),∴CH=CE;②解:如图3中,连接OD交BC于G.设OG=x,则DG=2﹣x.∵=,∴∠COD=∠BOD,∵OC=OB,∴OD⊥BC,CG=BG,在Rt△OCG和Rt△BGD中,则有22﹣x2=12﹣(2﹣x)2,∴x=,即OG=,∵OA=OB,∴OG是△ABC的中位线,∴OG=AC,∴AC=.12.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴∠DCB=90°,∵BD切⊙O于点B,∴∠ABD=90°,∴∠DCB=∠ABD,∵∠D=∠D,∴△BCD∽△ABD;(2)解:连接OC,∵∠D=50°,∠ABD=90°,∴∠A=40°,∴∠COB=2∠A=80°,∵直径AB=6,∴半径r=3,∴的长为=;(3)解:取BD的中点E,AD的中点F,连接EF,当点P在点C处时,△PBD为直角三角形,E为△PBD的外心,当点P在点A处时,△ABD为直角三角形,F为△PBD的外心,∵AB=6,EF为△ABD的中位线,∴EF=AB=3,∴△PBD的外心运动的路径长为3.13.解:(1)∵∠AOB=90°,∠ABO=30°,∴∠OAB=90°﹣∠ABO=60°,∵=,∴∠COD=∠BAD,∵∠COD=∠OAD,∴∠BAD=∠OAD=,即∠BAD的度数为30°;(2)如图,存在点P,使得直线BP与△AOB的外接圆相切,∵∠AOB=90°,∴AB是△AOB外接圆的直径,∴AB⊥PB,∴∠ABP=90°,∴∠PBC=90°﹣∠ABO=90°﹣30°=60°,由(1)得,∠OAC=30°,∴∠ACO=90°﹣∠OAC=60°,∴∠PCB=∠ACO=60°,∴△PBC是等边三角形,∵A(0,3),∴OA=3,∴OC=OA•tan∠OAC=3×=,在Rt△AOB中,OA=3,∠OAB=60°,∴OB=OA•tan60°=3,∴BC=OB﹣OC=3﹣=2,作PQ⊥BC于Q,∴PQ=CQ•tan∠PCB=×=3,∴OQ=OC+CQ=2,∴P(3,﹣2).即:存在点P,使得直线BP与△AOB的外接圆相切,此时点P(3,﹣2).14.(1)证明:∵AB=AC,∴,∵AE是直径,∴,∴∠BAE=∠CAE,又∵AB=AC,∴AE⊥BC,又∵EF∥BC,∴EF⊥AE,∵OE是半径,∴EF是⊙O的切线;(2)解:连接OC,设⊙O的半径为r,∵AE⊥BC,∴HG=HC+CG=4,∴AG===5,在Rt△OHC中,OH2+CH2=OC2,∴(3﹣r)2+1=r2,解得:r=,∴AE=,∵EF∥BC,∴△AEF∽△AHG,∴,∴,∴EF=;(3)解:∵AH=3,BH=1,∴AB===,∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC+∠CDG=180°,∴∠B=∠CDG,又∵∠DGC=∠AGB,∴△DCG∽△BAG,∴,∴,∴CD=.15.(1)证明:连接OC,∵四边形OBCE为菱形,∴OB=BC,OB∥CE,∴OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=∠COE=60°,∴∠AOP=∠COP=60°,∵OA=OC,OP=OP,∴△APO≌△CPO(SAS),∴∠PCO=∠BAP,∵AB是⊙O的直径,P A是⊙O的切线,∴∠P AO=90°,∴∠PCO=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)①证明:由(1)知,∠AOP=60°,∠P AO=90°,∴∠APO=30°,∵OA=OP,∴OE=PE,∴PE=BC,∵PO∥BC,∴∠PEG=∠BCG,∠EPG=∠CBG,∴△PEG≌△BCG(ASA),∴EG=CG,∴OG⊥CG;②解:∵OB=3,∴OA=OB=3,∴OP=2OA=6,∴AP==3,∴PB===3,连接AF,∵AB是⊙O的直径,∴AF⊥PB,∵S△APB=AP•AB=PB•AF,∴AF===,∴BF===.16.解:(1)直线m与⊙O相切,理由:连接PO,∵AP=AF,∴∠APF=∠AFP,∵∠AFP=∠EFO,∴∠APF=∠EFO,∵OP=OE,∴∠OPF=∠OEF,∵∠FOE=90°,∴∠OFE+∠OEF=∠OPF+∠APF=90°,∴∠APO=90°,∴PO⊥直线AB,∵OP是⊙O的半径,∴直线m与⊙O相切;(2)∵y=x+与x轴交于点A,与y轴交于点B,∴令y=0,得x=﹣2,令x=0,得y=,∴A(﹣2,0),B(0,),∴OA=2,OB=,∴tan∠BAO==,∴∠BAO=30°,∴∠AOP=60°,∵∠AOB=90°,∴∠BOP=30°,∵OP=OE,∴∠OPE=∠EOP,∵∠BOP=∠OPE+∠OEP=2∠PEB=30°,∴;(3)连接CE、CH,∵CD⊥BE,∴∠COE=∠DOE=90°,∴∠CHE=∠ECG=90°=45°,∵∠CEG=∠HEC,∴△CEG∽△HEC,∴.∴EG•EG=CE•EC=2.17.解:(1)①∵OA=OF,∴∠OAF=∠OF A,∴∠POB=∠OAF+∠OF A=2∠OAF,∴∠POB=2∠EPF,∵BC⊥AB,∴∠OBP=90°,∴∠POB+∠EPF=90°,∴2∠EPF+∠EPF=90°,∴∠EPF=30°,∴∠POB=60°,∴n=60,∵r=OB=3,∴的长为;②延长FO交⊙O于点G,连接BF,BG,∵FG是⊙O的直径,∴∠FBG=90°,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFB+∠GBF=180°,∴AF∥BG,∴,∵OP==5,∴PF=OP﹣OF=2,∵PB=4,∴,∴PE=1;(2)∵t﹣r的值为定值,∴t﹣r=0,∴t=r,∴OB=BP,∴∠POB==45°,∵OA=OF,∴∠OAF=∠OF A,∴∠POB=∠OAF+∠OF A=2∠OAF,∴∠EAB=∠OAF==22.5°,由②同理得AF∥BG,∴,∵OP===r,∴PF=OP﹣OF=(﹣1)r,PG=OP+OG=(+1)r,∴,∴n,∵0<n<1,∴n=﹣1,∴∠EAB=22.5°.18.(1)证明:连结OE,∵BC与⊙O相切于点E,∴OE⊥BC,∴∠BED+∠OED=90°,∵AD是直径,∴∠AED=90°,∴∠EAD+∠ADE=90°,∵OE=OD,∴∠OED=∠ADE,∴∠BED=∠EAD;(2)证明:∵AC⊥BC,OE⊥BC,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,又∵EP⊥AB,EC⊥AC,∴CE=EP;(3)解:连结PF,∵∠ACB=90°,CG⊥AB,∴∠CAE+∠AEC=∠AFG+∠EAP=90°,∵∠CAE=∠EAP,∴∠AEC=∠AFG=∠CFE,∴CF=CE,∵CE=EP,∴CF=PE,∵CG⊥AB,EP⊥AB,∴CF∥EP,∴四边形CFPE是平行四边形,又∵CE=EP,∴平行四边形CFPE是菱形,∴CF=PF,设CF=x,则PF=x,FG=8﹣x,在Rt△PFG中,由勾股定理可得:x2=(8﹣x)2+62,解得:x=,∴四边形CFPE的面积=CF•PG=.19.(1)证明:如图1,连接OD,∵DE为⊙O的切线,∴∠ODE=90°,∵AB=AC,∴∠B=∠C,又∵OB=OD,∴∠B=∠ODB,∴∠C=∠ODB,∴OD∥AC,∴∠DEC=∠ODE=90°,∴DE⊥AC;(2)①证明:如图2,连接BF,AG,∵AB为⊙O的直径,∴∠AFB=∠BGA=90°,∵.∴∠ABD=∠DBG,∵∠ABC=∠C,∴∠C=∠DBG,∴CF∥BG,∴∠FNG+∠BF A=180°,∴∠FBG=90°,∵∠FBG=∠AFB=∠BGA=90°,∴四边形AFBG为矩形,∴AF=BG;②解:如图3,连接AD,∵AB为⊙O的直径,∴∠BDA=90°,∵AB=AC,∴BD=DC,∵CF∥BG,∴∠NCD=∠MBD,在△BDM和△CDN中,,∴△BDM≌△CDN(ASA),∴BM=CN,过点C作CP∥DH交BA的延长线于点P,∴=,∴BH=HP,∵AH:BH=3:8,∴AH:AP=3:5,∵FH∥CP,∴==,∵AB=AC,∴=,设AB=5k,则AC=5k,F A=BG=3k,连接FB,∵∠BF A=90°,∴BF==4k,∵M为BG中点,∴BM=BG=k,∴CN=k,∴AN=AC﹣CN=5k﹣k=k=7,则k=2,∵∠DEC=∠BFC=90°,∴DE∥BF,∴=,∴EF=EC,∴DE=BF=2k,∴DE=4.20.(1)证明:∵AE为⊙O的直径,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∵AD⊥BC,∴∠ADF=90°,∴∠AFD+∠F AD=90°,∵AE平分∠BAD,∴∠BAE=∠AFD,∴∠AEB=∠AFD;(2)解:如图1,过点B作BM⊥AE于点M.∵∠AFD=∠BFE,∠AFD=∠AEB,∴∠BFE=∠AEB,∴BF=BE=5,∵AB=10,∠ABE=90°,∴AE===5,∵,∴BM==2,∴EM=FM===,∴AF=AE﹣EF=5﹣2=3,∵∠BMF=∠ADF=90°,∠AFD=∠BFM,∴△BFM∽△AFD,∴,∴,∴AD=6;(3)解:∵∠ADB=90°,G为AB的中点,∴AG=DG=BG,∵O为AE的中点,G为AB的中点,∴OG∥BE,∵∠ABE=90°,∴∠AGD=90°,∴△ADG为等腰直角三角形,∴∠GAD=45°,∴∠ABD=45°,过点F作FH⊥AB于点H,如图2,∵AF平分∠BAD,∴FD=FH,∵∠ABD=45°,∴BF=FH=FD,∵∠AFD=∠AEB,∠AEB=∠C,∴∠AFD=∠C,∴AF=AC,又∵AD⊥BC,∴FD=DC,设FD=DC=x,则BF=x,∴.。
2022-2023学年九年级数学中考复习《圆综合压轴解答题》专题提升训练(附答案)1.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若,求的值.2.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=6,射线CM⊥BC,点D是边BC 上一动点,连接AD,过点A作AE⊥AD交射线CM于点E,连接DE.(1)求证:点A、E、C、D在同一圆上;(2)若BD=1,则AE=.(3)①当△CDE面积的最大时,求BD的长;②当点D从点B运动到点C时,直接写出△ACE的外接圆圆心经过的路径长.3.如图①,A是⊙O外一点,AB与⊙O相切于点B,AO的延长线交⊙O于点C,过点B 作BD∥AC,交⊙O于点D,连接DO,并延长DO交⊙O于点E,连接AE.已知BD=2,⊙O的半径为3.(1)求证:AE是⊙O的切线;(2)求AE的长;(3)如图②,若点M是⊙O上一点,且BM=3,过A作AN∥BM,交弧ME于点N,连接ME,交AN于点G,连接OG,则OG的长度是.4.定义:两个角对应互余,且这两个角的夹边对应相等的两个三角形叫做余等三角形.如图1,在△ABC和△DEF中,若∠A+∠E=∠B+∠D=90°,且AB=DE,则△ABC和△DEF是余等三角形.(1)图2,等腰直角△ABC,其中∠ACB=90°,AC=BC,点D是AB上任意一点(不与点A、B重合),则图中△和△是余等三角形,并求证:AD2+BD2=2CD2.(2)图3,四边形ABCD是⊙O的内接四边形,⊙O的半径为5,且AD2+BC2=100,①求证:△ABC和△ADC是余等三角形.②图4,连接BD交AC于点I,连接OI,E为AI上一点,连接EO并延长交BI于点F,若∠ADB=67.5°,IE=IF,设OI=x,S△EIF=y,求y关于x的函数关系式.5.如图,△ABC内接于⊙O,弦AD平分∠BAC,AD交BC于点E,且BE=CE.(1)如图1,求证:AD为⊙O的直径;(2)如图2,点P为弧CD上一点,连接AP交BC于点F,过点P作⊙O的切线,交BC的延长线于点G,GH⊥PF于点H,求证:PH=FH;(3)如图3,在(2)的条件下,连接DF,且∠DFB=3∠P AD,点R在CG上,连接DR,DR交CH于点N,RN=RG,HN=1,DF=5,求DE的长.6.已知△ABC中,AB=5,AC=4,BC=3,点D是线段AB上一个动点,以BD为直径的⊙O与边BC交于点F,连接DF.(1)如图1,证明:DF∥AC;(2)如图2,当AD=时,判断直线AC与⊙O的位置关系,并说明理由;(3)如图3,若E是边AC上任意一点,连接DE,EF,求△DEF面积的最大值.7.如图,在Rt△ABC中,∠C=90°,O为AB上一点,以点O为圆心,OA为半径作⊙O,分别交AB、AC于点E、F,且与BC相切于点D,连接OF.解答下列问题:(1)∠BAC与∠OF A之间的关系是;(2)求证:∠AFO=2∠BAD;(3)若=,求tan的值.8.如图,已知△ABC中,∠ACB=90°,以BC为直径作⊙O,与边AC相切于点C,交AB边于点D,E为AC中点,连接DE.(1)求证:DE是⊙O的切线;(2)点P是线段BC上一动点,当DP+EP最小时,请在图中画出点P的位置;(要求:尺规作图,不写作法,保留作图痕迹,并用2B铅笔或黑色水笔加黑加粗)(3)在(2)的条件下,若CD=5,tan B=,求出CP的长度.9.定义:如果三角形三边的长a、b、c满足,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)已知“匀称三角形”的两边长分别为4和6,则第三边长为.(2)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DF⊥AC,垂足为F,交AB的延长线于E,求证:EF是⊙O的切线;(3)在(2)的条件下,若,判断△AEF是否为“匀称三角形”?请说明理由.10.在△ABC中,∠B=90°,D是△ABC外接圆上的一点,且点D是∠B所对的弧的中点.(1)尺规作图:在图1中作出点D;(要求:不写作法,保留作图痕迹)(2)如图2,连接BD,CD,过点B的直线交边AC于点M,交该外接圆于点E,交CD 的延长线于点P,BA,DE的延长线交于点Q.①若=,AB=4,BC=3,求BE的长;②若DP=(AB+BC),DP=DQ,求∠PDQ的度数.11.如图,在Rt△ABC中,∠B=90°,=,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.12.如图,四边形ABEC是平行四边形,过A、B、C三点的⊙O与CE相交于点D.连接AD、OD,DB是∠ADE的角平分线.(1)判断△BDE的形状,并说明理由;(2)求证:BE是⊙O的切线;(3)如果AB=,BE=8,求⊙O的半径.13.已知:AB是⊙O直径,AC=AD.(1)求证:AB平分∠CAD;(2)E是弧AD上一点,连接CE、DE,作BK∥DE交CE于K,求证:BK=EK;(3)在(2)的条件下,连接AE,若∠DAE+4∠DAB=90°,AD=,KE=1,求⊙O的半径.14.如图1,E点为x轴正半轴上一点,⊙E交x轴于A、B两点,交y轴于C、D两点,P 点为劣弧上一个动点,且A(﹣2,0),E(2,0).(1)的度数为°;(2)如图2,连结PC,取PC中点G,连结OG,则OG的最大值为;(3)如图3,连接P A,PC.若CQ平分∠PCD交P A于Q点,求线段AQ的长;(4)如图4,连接P A、PD,当P点运动时(不与B、C两点重合),求证:为定值,并求出这个定值.15.如图,在Rt△ABC中,∠BAC=90,过点A作AH⊥BC于点H,以AH为直径作⊙O,分别交AB,AC于点E,F.过点F作⊙O的切线交BC于点G.(1)求证:△FGC为等腰三角形.(2)填空:①当H为的中点时,∠FGC=°;②若AB的长为4,当H为的三等分点时,FC的长为.16.已知⊙O是△ABC的外接圆,AB为⊙O的直径,点N为AC的中点,连接ON并延长交⊙O于点E,连接BE,BE交AC于点D.(1)如图1,求证:∠CDE+∠BAC=135°;(2)如图2,过点D作DG⊥BE,DG交AB于点F,交⊙O于点G,连接OG,OD,若DG=BD,求证:OG∥AC;(3)如图3,在(2)的条件下,连接AG,若DN=,求AG的长.17.问题提出:(1)如图1,P是半径为5的⊙O上一点,直线l与⊙O交于A、B两点,AB=8,则点P到直线l的距离的最大值为.问题探究:(2)如图2,在等腰△ABC中,BA=BC,∠ABC=45°,F是高AD和高BE的交点,求S△ABF:S△BFD的值.问题解决:(3)如图3,四边形ABCD是某区的一处景观示意图,AD∥BC,∠ABC=60°,∠BCD =90°,AB=60m,BC=80m,M是AB上一点,且AM=20m.按设计师要求,需在四边形区域内确定一个点N,修建花坛△AMN和草坪△BCN,且需DN=25m.已知花坛的造价是每平米200元,草坪的造价是每平米100元,请帮设计师算算修好花坛和草坪预算最少需要多少元?18.如图,在等腰锐角三角形ABC中,AB=AC,过点B作BD⊥AC于D,延长BD交△ABC 的外接圆于点E,过点A作AF⊥CE于F,AE,BC的延长线交于点G.(1)判断EA是否平分∠DEF,并说明理由;(2)求证:①BD=CF;②BD2=DE2+AE•EG.19.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P、Q重合),连接AP、BP.若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=2时,求⊙O的半径;(2)在(1)的条件下,求四边形APBQ的面积;(3)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并说明理由.20.△ABC内接于圆O,直径CO交劣弧AB于点G,G为劣弧AB中点.(1)如图1,求证:CB=CA;(2)如图2,点D为劣弧BC上一点,连接DC并延长至点E,连接BE交圆O于点F,连接CF,若CF平分∠ACE,求证:∠BAD=2∠DEB;(3)如图3,在(2)的条件下,当AD经过圆心O,AB:CD=8:5,CF=,连接OE,求线段OE的长.参考答案1.(1)证明:∵D是弧BC的中点,∴∠CAD=∠DAB=∠CAB,∵∠DAB=∠DOB(圆心角定理),∴∠CAB=∠DOB,∴DO∥AC.(2)证明:∵D是弧BC的中点,∴∠DCB=∠DAC,在△DCE和△DAC中,,∴△DCE∽△DAC,∴,即DE•DA=DC2.(3)解:∵AB是直径,∴∠ACB=90°,∴tan∠CAD==,由(2)可知△DCE∽△DAC,∴==,设CD=2m,则AD=4m,DE=m,AE=AD﹣DE=3m,∵DO∥AC,∴∠CAD=∠FDE,在△ACE和△DFE中,,∴△ACE∽△DFE,∴===3.2.(1)证明:根据题意可知∠DCE=90°,∠DAE=90°,∵∠DCE+∠DAE=180°,∴点A、E、C、D在以DE为直径的同一圆上.(2)如图1,过点A作AF⊥CM,垂足为点F,∵BC⊥CM,BC⊥AB,∴AF∥BC,AF⊥AB,∵∠EAF+∠DAF=90°,∠BAD+∠DAF=90°,∴∠EAF=∠DAB,∴Rt△AEF∽Rt△ADB,∴,∵BD=1,AB=3,AF=BC=6,AD==,∴,解得AE=2,故答案为:2.(3)①由(2)可知Rt△AEF∽Rt△ADB,∴,设DB=x,则EF=2x,EC=2x+3,DC=BC﹣BD=6﹣x,∴S△CDE=(6﹣x)(2x+3)=﹣(x﹣)2+,∴当△CDE面积最大时,x=,即BD=.②如图2所示,由(1)可知△ACE外接圆的圆心O是DE的中点,OA=OC,∴点O在AC的垂直平分线上运动,∴点O的运动路径为O1O2,根据题意BC=6,AB=3,∴AC==3,∵∠CO2O1,+∠O2CO1=90°,∠O2CO1+∠ACB=90°,∴∠CO2O1=∠ACB,又∠CO1O2=∠ABC=90°,∴△CO1O2∽△ABC,∴,即,解得O1O2=3,故答案为:3.3.(1)证明:如图1,连接OB,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠OBA=90°,∵BD∥AC,∴∠AOE=∠ODB,∠AOB=∠OBD,∵OB=OD,∴∠OBD=∠ODB,∴∠AOE=∠AOB,在△AOB与△AOE中,,∴△AOB≌△AOE(SAS),∴∠AEO=∠ABO=90°,∴OE⊥AE,∵E在⊙O上,∴AE是⊙O的切线;解:(2)如图2,过O作OH⊥BD于H,则BH=DH=,∠BHO=90°,在Rt△OBH中,OH=,∵∠OHB=∠ABO=90°,∠OBD=∠AOB,∴△OBH∽△AOB,∴,即,∴AB=,∵AB,AE是⊙O的切线,∴AE=AB=;(3)取AO的中点P,如图3,连接BP,EP,OB,OE,在Rt△AOB中,∵P是斜边AO的中点,∴AP=OP=BP,同理,EP=AP=OP,∴AP=OP=BP=EP,∴A,B,O,E四点共圆,∵∠ABO=90°,∴AO为圆的直径,连接OB,OM,BE,∵OB=OM=BM=3,∴∠OBM=60°,∴∠ABM=∠ABO+∠OBM=150°,∵AN∥BM,∴∠BAN=180°﹣∠ABM=30°,连接BE,设BE与AN交于Q点,如图4,又∠BEM=,∴∠BAN=∠BEM,∵∠AQB=∠EQG,∴△AQB∽△EQG,∴,又∠BQG=∠AQE,∴△BQG∽△AQE,∴∠AEB=∠AGB,∵AB=AE,∴∠ABE=∠AEB=∠AGB,∵A,B,O,E四点共圆,如图5,连接AO,设BG与AO交于H点,∴∠AOB=∠AEB,又∠BHO=∠AHG,∴△BHO∽△AHG,∴∠OBH=∠OAG,,∵∠AHB=∠GHO,∴△AHB∽△GHO,∴∠ABG=∠AOG,∵∠ABG+∠OBH=90°,∠OBH=∠∠OAG,∴∠AOG+∠OAG=90°,∴∠AGO=90°,如图6,延长GO交BM于F,∵BM∥AN,∴∠BFO=180°﹣∠AGO=90°,∴OF⊥BM,∴BF=,又BO=3,∴,过B作BD⊥AN于D,则在Rt△ABD中,∠BAD=30°,∴BD=,∵∠OFB=∠AGO=∠BDG=90°,∴四边形BDGF为矩形,∴FG=BD=,∴OG=FG﹣OF=.4.解:(1)∵△ABC是等腰直角三角形,∴∠A+∠B=90°,∠ACD+∠BCD=90°,AC=BC,∴△ACD和△BCD是余等三角形,过D作DE⊥AC于E,过D作DF⊥BC于F,如图:∵△ABC是等腰直角三角形,∴∠A=∠B=45°,∴△ADE和△BDF是等腰直角三角形,∴DE=,DF=,∵DE⊥AC,DF⊥BC,∠ACB=90°,∴四边形CEDF是矩形,∴CE=DF=,Rt△DCE中,DE2+CE2=CD2,∴()2+()2=CD2,∴AD2+BD2=2CD2;故答案为:ACD,BCD;(2)①连接DO并延长交⊙O于E,连接AE、CE,如图:∵DE是⊙O直径,∴∠EAD=90°,在Rt△EAD中,AD2+AE2=DE2=100,∵AD2+BC2=100,∴AE=BC,∴∠ACE=∠BAC,∵∠AEC=∠CBA,AC=AC,∴△AEC≌△CBA(AAS),∴∠EAC=∠BCA,∵∠EAC+∠CAD=90°,∴∠BCA+∠CAD=90°,同理可得:∠BAC+∠ACD=90°,而AC=AC,∴△ABC和△ADC是余等三角形;②连接OA、OB,过O作OM⊥BD于M,过O作ON⊥AC于N,如图:由①知:∠BAC+∠ACD=90°,又∠ACD=∠ABD,∴∠BAC+∠ABD=90°,∴AC⊥BD,∵IE=IF,∴△EFI是等腰直角三角形,∵OM⊥BD,∴△MOF是等腰直角三角形,∴OM=FM,∵△EFI是等腰直角三角形,∴∠AEO=∠BFO=135°,∵∠ADB=67.5°,∴∠AOB=2∠ADB=135°,∴∠AOE=45°﹣∠BOF=∠OBF,且OA=OB,∴△AOE≌△OBF(AAS),∴OE=BF,设OE=BF=a,OM=FM=b,则ON=MI=a,OF=AE=b,在Rt△OIM中,(a)2+b2=x2,化简得a2+2b2=2x2,在Rt△OBM中,(a+b)2+b2=52,化简得a2+2b2+2ab=25,∴2ab=25﹣2x2,∴y=EI•FI=(a+b)2=(a2+2b2)+ab=x2+=.5.解:(1)如图连接BD,CD,∵OD平分∠BAC,∴∠BAD=∠CAD,∵∠CAD=∠CBD,∠BAD=∠BCD,∴BD=CD,∵BE=CE,∴DE⊥BC即∠ADB+∠EBD=90°,∵∠ABC=∠ADC∠ECD+∠EDC=90°,∴∠ABC+∠CBD=90°∴∠ABD=90°,∴AD是圆O的直径;(2)连接OP,∵PG是圆O的切线,∴GH⊥PF,∴∠HCP+∠CPH=90°,∴∠GPH+∠OPH=90°,∴∠HGP=∠OPH,∵OP=OA,∴∠HGP=∠OPH,∴∠HGD=∠OPH=∠OAD,∵∠FGH+∠GFH=∠EAF+∠EF A=90°,∵∠EF A=∠GFH,∴∠FGH=∠EAF,∴∠HGP=∠FGH,∴∠HGP+∠HPG=∠FGH+∠GFH=90°,∴∠HPG=∠HFG,∴PG=FG,即PH=FH;(3)连接PD,延长GH与PF交于M点,DR与AP交于T点,∵GH⊥PF,∠APD=90°,∴∠APD=∠MHF=90°,∴MH∥DP,∵H是PF的中点,∴M是DF的中点,∴DM=FM=DF=,∴PD=2MH,∵RN=RG,∴∠NGR=∠RNG,∴∠DRE=∠NGE+∠RNG=2∠RGN,∵∠AEF=∠GHF=90°,∠HFG=∠AFE,∴∠DAP=∠FGH,∴∠DRE=2∠DAP,∵∠DFB=∠DRE+∠RDF=3∠DAP,∴∠RDF=∠DAP,∵∠DNM=∠RNG,∴∠DNM=∠NDM=∠DAP,∴MN=DM=,∵NH=1,∴MH=,∴PD=2MH=3,∴PH=HF==2,∵DP∥MN,∴∠PDT=∠HNT=∠DAP,△HNT∽△PDT,∴====,∴PT=,∴tan∠DAP=tan∠PDT====,∴AP=6,AF=2EF,∴AF=AP﹣PH﹣HF=2,∵AE2+EF2=AF2,∴5EF2=4,∴EF2=,∵DE2+EF2=DF2,∴DE2+=25,∴DE=.6.(1)证明:∵AB=5,AC=4,BC=3,∴AC2+BC2=AB2,∴∠ACB=90°,∵BD是⊙O直径,∴∠DFB=90°,∴∠ACB=∠DFB,∴DF∥AC;解:(2)AC与⊙O相切,理由如下:如图1,∵,∴BD=AB﹣AD=,∴BO=DO=,∵DF∥AC,∴,即,∴BF=,过O作OM⊥AC于M,ON⊥BC于N,则BN=FN=,∴,∵OM⊥AC,ON⊥BC,∴∠OMC=∠ACB=∠ONC=90°,∴四边形OMCN为矩形,∴OM=CN=,∴OM=BO,又OM⊥AC,∴AC是⊙O的切线;(3)如图2,∵DF∥AC,∴△BDF∽△BAC,∴,设BF=x,∴,∴DF=,∵DF∥AC,CF=BC﹣BF=3﹣x,∴=,∴当x=时,S△DEF最大值为,即△DEF的面积最大值为.7.解:(1)∵OA=OF,∴∠OAF=∠OF A,即∠BAC=∠OF A,故答案为:相等;(2)证明:连接OD,如图,∵BC为切线,∴OD⊥BC,∵∠C=90°,∴OD∥AC,∴∠ODA=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠CAD,∴∠OAC=2∠OAD,∵OA=OF,∴∠OAC=∠AFO,∴∠AFO=2∠BAD;(3)作OH⊥AF于H,如图,则AH=HF,∵=,∴设AH=HF=2x,则CF=3x,∵∠ODC=∠C=∠OHC=90°,∴四边形ODCH为矩形,∴OH=CD,OD=CH=2x+3x=5x,在Rt△AOH中,OH==x,∴CD=x,在Rt△ACD中,tan∠CAD===.∴tan的值为.8.解:(1)证明:连接OD,∵BC是⊙O的直径,∴∠CDB=90°,∴∠ADC=90°,∵E是AC的中点,∴AE=EC=ED,∴∠ECD=∠EDC,∵OD=OC,∴∠OCD=∠ODC,∴∠ECD+∠OCD=∠EDC+∠ODC,即∠ECB=∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)①过D作CB的垂线,交⊙O于F,交BC于M;②连接EF,EF与BC交于点P;此时的P即为使DP+EP最小的点;作图如右图;(3)∵CD=5,tan B=,∴BD=CD÷tan B=,∴BC===,∴CE==BC•tan B==,设DM=3a,则BM=4a,∵DB==5a=,∴a=,∴DM=4,BM=,∴CM=BC﹣BM=﹣=3,∵DF⊥BC,∴MF=DM=4,∵∠ACB=∠FMC=90°,∠EPC=∠MPF,∴△ECP∽△FMP,∴=,即=,解得CP=,故CP的长度为.9.(1)解:设第三边长为x,①当时,解得x=8,②当是,解得x=5,③当时,解得x=2,∵2+4=6,∴当三边长为2,4,6时,不能构成三角形,所以③舍去,故答案为:5或8;(2)证明:如图1,连接OD,AD,∵AB是⊙O直径,∴AD⊥BC,∵AB=AC,∴D为BC的中点,即BD=CD,∵O为AB中点,∴OD∥AC,OD=,∵DF⊥AC,∴∠AFD=90°,∵OD∥AC,∴∠ODE=∠AFD=90°,∴OD⊥EF,∵OD是⊙O半径,∴EF是⊙O的切线;(3)解:△AEF是“匀称三角形”,理由如下:如图2,过B作BM⊥EF于M,∴∠BMD=∠CFD=90°,在△BMD和△CFD中,,∴△BMD≌△CFD(AAS),∴BM=CF,∵,∴,∵∠BMD=∠CFD=90°,∴△EBM∽△EAF,∴,设AE=5x,则AF=3x,∴,∵,∴,∴△AEF是“匀称三角形”.10.解:(1)如图1,作∠ABC的角平分线,交圆于点D,则点D为∠B所对的弧的中点,(2)①连结AE,∵=,∴∠ABE=∠BAC,∵=,∴∠AEB=∠ACB,又∵AB为公共边,∴△ABE≌△BAC(AAS),∴∠EAB=∠ABC=90°,又∵=,BC=3,∴AE=BC=3,在Rt△ABE中,AB=4,AE=3,∴BE===5,∴BE=5;②方法一:连结AD,过点D作DG⊥AB于点G,DH⊥BC于点H,∵点D是∠B所对的弧的中点,∴BD平分∠ABC,∴∠ABD=∠CBD,∵∠DGB=∠DHC=90°,BD=BD,∴△BDG≌△BDH(AAS),∴BG=BH,DG=DH,∵∠DGB=∠DHB=∠GBH=90°,∴四边形DGBH是正方形,∴BG=DG=BH=DH=BD,∵A、B、C、D四点共圆,∴∠DAB+DCB=180°,∵∠DCH+∠DCB=180°,∴∠DAB=∠DCH,∵∠DGA=∠DHC=90°,DG=DH,∴△AGD≌△CHD(AAS),∴AG=CH,∴AB+BC=AG+BG+BH﹣HC=2BG=BD,∵DP=(AB+BC),∴DP=DQ=BD,∴∠DBQ=∠DQB=45°,∴∠EDB=90°,∴BE为圆的直径,∵又∵AC为直径,∴点M为圆心,∴MA=MB,∴∠MAB=∠ABM,∵=,∴∠MAB=∠BDC,设∠P=α,则∠ABM=2α,∵∠ABM+∠PBD=∠ABD=45°,∴2α+α=45°,∴α=15°,∴∠BDC=30°,∵BE为直径,∴∠EDB=90°,∴∠PDQ=180°﹣∠EDB﹣∠BDC=180°﹣90°﹣30°=60°.方法二:∵点D是∠B所对的弧的中点,∴BD平分∠ABC,∴∠ABD=∠CBD,∵∠DGB=∠DHC=90°,BD=BD,∴△BDG≌△BDH(AAS),∴BG=BH,DG=DH,∵∠DGB=∠DHB=∠GBH=90°,∴四边形DGBH是正方形,∴BG=DG=BH=DH=BD,∵A、B、C、D四点共圆,∴∠DAB+DCB=180°,∵∠DCH+∠DCB=180°,∴∠DAB=∠DCH,∵∠DGA=∠DHC=90°,DG=DH,∴△AGD≌△CHD(AAS),∴AG=CH,∴AB+BC=AG+BG+BH﹣HC=2BG=BD,∵DP=(AB+BC),∴DP=DQ=BD,∴P、Q、B三点在以点D为圆心,DP为半径的圆上,∴∠PDQ=2∠PBQ=2∠ADE,又∵∠PDQ+∠ADE=90°,∴∠PDQ=60°.11.(1)①证明:如图1,连接DO,∵=,∴∠F AD=∠DAE=∠F AE,∵∠DAE=∠DOE(圆周角定理),∴∠F AE=∠DOE,∴DO∥AB,根据题意可知AB⊥BC,∴DO⊥BC,∴BC是⊙O的切线.②如图2,连接DE,OD,∵AB为直径,OA=OD,∴∠ADO+∠EDO=∠ADE=90°,∠ADO=∠DAO,由(1)可知∠CDE+∠EDO=90°,∴∠DAO=∠CDE,在△CDE和△CAD中,,∴△CDE∽△CAD,∴,故CD2=CE•CA.(2)如图3,连接DO、FO、DE,AD和OF交于点G,则DO=EO=AO,根据题意点F是劣弧AD的中点,且=,∴∠AOF=∠DOF=∠EOD=×180°=60°,∴△OAF和△ODE是等边三角形,∴∠C=90°﹣∠COD=30°,∴OD=OE=CE=CO=3,由(1)可知DO∥AB,∴∠ODA=∠DAF,在△ODG和△F AG中,,∴△ODG≌△F AG(AAS),∴S△ODG=S△F AG,∴S阴影部分=S扇形DOF==.12.解:(1)∵四边形ABEC是平行四边形,∴AB∥CE,AC=BE,∴∠ADC=∠DAB,∴AC=BD(圆周角定理),∴BE=BD,故△BDE是等腰三角形.(2)如图1,连接OB,则2∠DAB=∠DOB,由(1)可知BE=BD,∴∠BDE=∠E,∵AB∥CE,DB是∠ADE的平分线,∴∠EDB=∠ABD,∠EDB=∠ADB,∴∠ABD=∠ADB=∠BDE=∠E,∴△ABD∽△BED,∴∠DAB=∠DBE,∵OD=OB,∴∠OBD===90°﹣∠DAB=90°﹣∠DBE,即∠OBD+∠DBE=90°,∴OB⊥BE,故BE是⊙O的切线.(3)如图2,过点O作OF⊥DB,过点D、E分别作DM⊥AB,EN⊥AB交AB的延长线于点N,则有∠BOF=∠DOF=∠BOD,BF=DF=DB,DM=EN,DE=DM,又∠DAM=∠BOD,∴∠BOF=∠DAM,根据题意有AB=CE=4,BE=BD=8,∴BF=4,由(2)可知△ABD∽△BED,∴=,即,解得DE=,在Rt△DMB和Rt△ENB中,,∴Rt△DMB≌Rt△ENB(HL),∴BM=BN=MN=DE=,∴AM=AB﹣BM=﹣=,在RtDMB中,DM==,在Rt△ADM和Rt△OBF中,,∴Rt△ADM∽Rt△OBF,∴=,即=,解得OF=3,在Rt△OBF中,OB==5,故⊙O的半径为5.13.(1)证明:如图(1),连接BC,BD,∵AB是⊙O的直径,∴∠C=∠D=90°,∵AC=AD,∴∠ABC=∠ABD,∴∠CAB=∠DAB,∴AB平分∠CAD;(2)证明:如图(2)连接EB,由(1)得:∠CAB=∠DAB,∴,∴∠CEB=∠DEB,∵BK∥ED,∴∠KBE=∠DEB,∴∠KBE=∠CEB,∴BK=EK;(3)解:连接OC,OK,CB,作OF⊥CK于F,作CT⊥OB于T,设∠CAB=α,∠EAD=β,则4α+β=90°,又∵α+β+∠ACE=90°,∴∠ACE=3α,∵∠ACO=α,∴∠OCK=2α,又∵∠COB=2α,∴∠COT=∠OCF,∴△COT≌△OCF,∴OC=CK,∴OB=CK=r,CE=r+1,∴CF==OT,∴AT=r+,∵△BCT∽△ABC,∴AC2=AT•AB,∴10=,解得r=或r=﹣2(舍),∴r=.14.解:(1)如图1,连接CE,AC,∵A(﹣2,0),E(2,0),∴OA=OE=2,∵AB⊥CD,∴CD垂直平分AE,∴CA=CE,∵CE=AE,∴CA=CE=AE,∴∠CEA=60°,∴∠CEB=180°﹣∠CEA=120°,故答案为120;(2)由题可得,AB为⊙E直径,且AB⊥CD,由垂径定理可得,CO=OD,连接PD,如图2,又∵G为PC的中点,∴OG∥PD,且OG=,当D,E,P三点共线时,此时DP取得最大值,且DP=AB=2AE=8,∴OG的最大值为4,故答案为4;(3)如图3,连接AC,BC,∵直径AB⊥CD,∴,∴∠ACD=∠CP A,∵CQ平分∠DCP,∴∠DCQ=∠PCQ,∴∠ACD+∠DCQ=∠CP A+∠PCQ,∴∠ACQ=∠AQC,∴AQ=AC由(1)可得,AC=AE=4,∴AQ=4;证明:(4)由题可得,直径AB⊥CD,∴AB垂直平分CD,如图4,连接AC,AD,则AC=AD,由(1)可得,△ACE为等边三角形,∴∠CAE=60°,∴∠DAC=2∠CAE=120°,将△ACP绕A点顺时针旋转120°至△ADM,∴△ACP≌△ADM,∴∠ACP=∠ADM,PC=DM,∵四边形ACPD为圆内接四边形,∴∠ACP+∠ADP=180°,∴∠ADM+∠ADP=180°,∴M,D,P三点共线,∴PD+PC=PD+DM=PM,过A作AG⊥PM于G,则PM=2PG,∵∠APM=∠ACD=30°,在Rt△APG中,∠APM=30°,设AG=x,则AP=2x,∴,∴PM=2PG=,∴,∴,∴为定值.15.(1)证明:如图,连接OF,∵FG与⊙O相切,∴∠OFG=90°,∴∠AFO+∠GFC=90°,∵AO=OF,∴∠OAF=∠OF A,∵∠AHC=90°,∴∠OAF+∠C=90°,∴∠C=∠GFC,∴GF=GC,∴△FGC为等腰三角形;(2)解:①∵H为的中点,∴=,∴∠EAH=∠F AH=∠BAC=45°,∵AH⊥BC,∴∠C=45°.又由(1)知∠C=∠GFC,∴∠FGC=180°﹣2×45°=90°,故答案为:90;②连接OF,OG.∵AH⊥BC,FG与⊙O相切,∴∠OHG=∠OFG=90°∴△HOG和△FOG是直角三角形,在Rt△HOG和Rt△FOG中,,∴Rt△HOG≌Rt△FOG(HL),∴HG=FG=CG.当H为EF的三等分点时,分以下两种情况讨论.a.如图,当H为靠近点E的三等分点时,∠EAH=30°,∠F AH=60°,又∵∠AHB=90°,AB=4,BH=2,AH=2,∴HC=AH•tan60°=2×=6,GC=3,∴∠C=90°﹣∠F AH=30°.过点G作FC的垂线,垂足为点K,则点K为FC的中点,∴KC=GC•cos30°=3×=,∴FC=2KC=3;b.如图,当H为靠近点F的三等分点时,∠EAH=60°,∠F AH=30°,又∵∠AHB=90°,AB=4,∴AH=2,∴HC=AH•tan30°=2×=,∴GC=,∴∠C=60°,又△FGC是等腰三角形,∴△FGC是等边三角形,∴FC=GC=.16.(1)证明:如图1,过点O作OP⊥BC,交⊙O于点P,连接AP交BE于Q,∴=,∴∠BAP=∠CAP,∵点N为AC的中点,∴=,∴∠ABE=∠CBE,∵AB是⊙O的直径,∴∠C=90°,∴∠BAC+∠ABC=90°,∴∠QAB+∠QBA=×90°=45°,∴∠AQB=∠EQP=135°,△AQD中,∠EQP=∠CAP+∠ADQ=135°,∴∠CDE+∠BAC=135°;(2)证明:在△DGO和△DBO中,,∴△DGO≌△DBO(SSS),∴∠ABD=∠DGO,∵DG⊥BE,∴∠GDB=90°,∴∠ADG+∠BDC=90°,∵∠BDC+∠CBE=90°,∴∠ADG=∠CBE=∠ABD=∠DGO,∴OG∥AD;(3)解:如图3,过点G作GK⊥AC于K,延长GO交BC于点H,由(2)知:OG∥AC,∴GH∥AC,∴∠OHB=∠C=90°,∴OH⊥BC,∴BH=CH,∵∠K=∠C=∠OHC=90°,∴四边形GHCK是矩形,∴CH=GK,设GK=y,则BC=2y,ON=GK=y,由(2)知:∠ADG=∠DBC,在△GKD和△DCB中,,∴△GKD≌△DCB(AAS),∴GK=DC=y,∵OE∥BC,∴∠E=∠DBC,∴tan∠DBC=tan E,∴,即=,∴EN=,∴AN=CN=y+,ON=y,由勾股定理得:AO2=ON2+AN2,∴(y+)2=y2+(y+)2,解得:y1=﹣(舍),y2=,∴AG===2.17.解:(1)点P到直线l距离的最大值,即过圆心O向直线l作垂交圆O于点P,连接OA,∵AB=8,OC⊥AB,∴AC=4,由勾股定理得:OC=3,∴PC=8,故答案为:8;(2)过点F作FG⊥AB,∵∠ABC=45°,AD⊥BC,∴△ABD为等腰直角三角形,∴,又∵△ABC为等腰三角形,且AB=BC,BE⊥AC,∴BE平分∠ABC,又∵FD⊥BC,FG⊥AB,∴FG=FD,∴,∴;(3)连接MC,过点A作AP⊥BC,∵∠ABC=60°,AB=60,∴,∴,设总费用为W,∴,∴W=100(2S△AMN+S△BNC),∴当最小时,总费用最小,又∵AM=20米,BM=40米,∴2S△AMN=S△BMN,∴当最小时,费用最小,即S四边形BMNC最小时,费用最小,又∵S四边形BMNC=S△BMC+S△CMN,过点M作MH⊥BC,垂足为H,∵∠ABC=60°,BM=40米,∴BH=20米,MH=20米,MC=40米,∴∠BCM=30°,∴∠DCM=60°,∴,(平方米)∴当S△CMN最小时,费用最小,∴,∴当NQ最小时,费用最小,∵ND=25米,∴N点在以D为圆心,25为半径的圆上运动,过圆心D向MC作垂线交⊙D于N点,交MC于Q,即此时NQ最小,∵CQ=15米,DQ=45米,∴NQ=45﹣25=20(米),∴S△MNC最小值=(平方米),∴S四边形BMNC最小值=(平方米)∴W最小值=100×=120000(元),18.解:(1)EA平分∠DEF,理由如下:∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠AEB,∴∠ABC=∠AEB∵∠ABC+∠AEC=180°,∠AEF+∠AEC=180°,∴∠ABC=∠AEF,∴∠AEB=∠AEF,∴EA平分∠DEF,(2)①由(1)知:EA平分∠DEF,∵BD⊥AC,AF⊥CE,∴AD=AF,在Rt△ABD和Rt△ACF中,,∴Rt△ABD≌Rt△ACF(HL),∴BD=CF,②由(1)知,∠AEB=∠AEF,∵∠AEF=∠CEG,∴∠AEB=∠CEG,∵∠BAE+∠BCE=180°,∠BCE+∠ECG=180°,∴∠BAE=∠ECG,∴△AEB∽△CEG,∴,∴BE•CE=AE•EG,∴BD2﹣DE2=(BD+DE)(BD﹣DE)=BE(CF﹣EF)=BE•CE,∴BD2﹣DE2=AE•EG,即BD2=DE2+AE•EG.19.解:(1)连接AB,∵∠APQ=∠BPQ=45°,∴∠APB=∠APQ+BPQ=90°,∴AB是⊙O的直径,∴AB===3,∴⊙O的半径为;(2)连结AB,AQ,OQ,BQ,∵AB是⊙O的直径,∴∠APB=90°,∵∠APQ=45°,∴∠AOQ=90°,∴S四APBQ=S△APB+S△AQB=•PB•AP+•AB•OQ=×2×1+×3×=+;(3)AB∥ON,证明:连接OA、OB、OQ,∵∠APQ=∠BPQ,∴=,∴∠AOQ=∠BOQ,∵OA=OB,∴OQ⊥AB,∵OP=OQ,∴∠OPN=∠OQP,∵∠OPN+∠OQP+∠NOP+∠NOQ=180°,∴2∠OPN+∠NOP+∠NOQ=180°,∵∠NOP+2∠OPN=90°,∴∠NOQ=90°,∴NO⊥OQ,∴AB∥ON.20.证明:(1)如图1,∵CG是圆O直径,∴,∵G是劣弧AB的中点,∴,∴,∴,∴CB=CA;(2)如图2,延长BD至N,连接FD,∴四边形ABDC为圆内接四边形,∴∠CAB+∠BDC=180°,又∠BDC+∠NDE=180°,∴∠CAB=∠NDE,同理,∠ECF=∠EBD,∵CA=CB,∴∠CAB=∠CBA,又∠CBA=∠ADC,∴∠NDE=∠ADC,∵CF平分∠ACE,∴∠ECF=∠ACF,∵∠EBD=∠ACF,∠ACF=∠ADF,∴∠EBD=∠ADF,∵∠NDE=∠ADC,∴∠EBD+∠CEB=∠ADF+∠FDC,∵∠CEB=∠FDC,又∠FDC=∠CBE,∴∠CBE=∠CEB,∵∠BAD=∠BCD,∠BCD=∠CBE+∠CEB,∴∠BAD=2∠DEB;(3)如图3,由(2)可得,∠CBE=∠CEB,∴CB=CE,∵CB=CA,∴CA=CE,∵AD是⊙O直径,∴∠ACD=∠ACE=90°,∴△ACE是等腰直角三角形,∵AB:CD=8:5,∴设AB=8a,则CD=5a,过A作AP⊥BE于P,连接AE,∵∠ABP=∠ACF=45°,∴∠ABP=∠BAP=45°,∴AP=BP,∴,∴,∵∠BAP=∠CAE=45°,∴∠BAP+∠P AC=∠CAE+∠P AC,∴∠CAB=∠P AE,∵∠CAB=∠CBA=∠ADC,∴∠ADC=∠P AE,∵∠ACD=∠APE=90°,∴△ADC∽△EAP,∴,∵AE=,∴,∴,∵AD2﹣AC2=CD2=25a2,∴,连接DF,过F作FM⊥DE于M,如图4,∵∠CBE=∠CEB,∠CBE=∠CDF,∴∠CDF=∠CEB,∴FD=FE,∴DM=EM=,∵DE=DC+CE=DC+AC=,∴,∴CM=DM﹣DC=,∵∠FCE=45°,FM⊥DE,∴△FCM为等腰直角三角形,∴,∴,又CF=,∴,∴a=,∴DE=14,AD=10,CD=6,AC=8,过O作OG⊥DE于G,∴DG=CG=∵AO=DO=5,∴OG=,又EG=DE﹣DG=14﹣3=11,∴OE==.。
抛物线与圆综合题训练
1..如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
2.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.
(1)∠OBA=°.
(2)求抛物线的函数表达式.
(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?
3.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.
(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);
①求此抛物线的表达式与点D的坐标;
②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;
(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.
4..如图,在平面直角坐标系中,以点M(0,3)为圆心、5为半径的圆与x轴交于点A、B(点A在点B 的左侧),与y轴交于点C、D(点C在点D的上方),经过B、C两点的抛物线的顶点E在第二象限.(1)求点A、B两点的坐标.
(2)当抛物线的对称轴与⊙M相切时,求此时抛物线的解析式.
5.如图,在平面直角坐标系中,正方形ABCD和正方形DEFG的边长分别为2a,2b,点A,D,G在y轴上,坐标原点O为AD的中点,抛物线y=mx2过C,F两点,连接FD并延长交抛物线于点M.
(1)若a=1,求m和b的值;
(2)求的值;
(3)判断以FM为直径的圆与AB所在直线的位置关系,并说明理由.
6.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M 和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点P作PE⊥PF交y 轴于点E,设点F运动的时间是t秒(t>0).
(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;
(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;
7.如图,已知抛物线y=﹣(x2﹣7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),
与y轴相交于点C.
(1)用配方法将抛物线的解析式化为顶点式:y=a(x﹣h)2+k(a≠0),并指出顶点M的坐标;
(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;
(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.
9.如图,二次函数y=ax2+bx+c(a<0)图象的顶点为D,与x轴的两个交点分别为A、B(A在B左侧),与y轴交于点C(0,3),且OA=3OB,∠ACD=90°
(1)求该二次函数的关系式;
(2)若⊙M经过A、C、D三点,试求点B到⊙M的切线长.
8.如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P 从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路运动,运动速度为每秒1个单位,当点P到达A点时,点Q也随之停止,设点P、Q运动的时间为t(秒).
(1)经过A、B、C三点的抛物线的解析式的对称轴为.
(2)设经过A、B、C三点的抛物线的对称轴与直线OB的交点为M,线段PQ是否能经过点M?若能请求出t的值(或t的取值范围),若不能,请说明理由.
(3)当Q在BC上运动时,以线段PQ为直径的圆能否与直线AB相切?若能请求出t的值,若不能,请说明理由.。