6事件树与事故树汇总
- 格式:ppt
- 大小:1.72 MB
- 文档页数:58
事故树分析案例起重作业事故树分析一、概述在工矿企业发生的各种类型的工伤事故中,起重伤害所占的比例是比较高的,所以,起重设备被列为特种设备,每二年需强制检测一次。
本工程在施工安装、生产检修中使用起重设备。
伤害事故的因素很多,在众多的因素中,找出问题的关键,采取最有效的安全技术措施来防止此类事故的发生,最好的方法是对起重机事故采取事故树分析方法,现对“起吊物坠落伤人”进行事故树分析。
二、起重作业事故树分析1、事故树图图6-2 起吊物坠落伤人事故树T——起重物坠落伤人;A1——人与起吊物位置不当;A2——起吊物坠落;B1——人在起吊物下方;B2——人距离起吊物太近;B3——吊索物的挂吊部位缺陷;B4——吊索、吊具断裂;B5——起吊物的挂吊部位缺陷;B6——司机、挂吊工配合缺陷;B7——起升机构失效;B8——起升绳断裂;B9——吊钩断裂;C1——吊索有滑出吊钩的趋势;C2——吊索、吊具损坏;C3——司机误解挂吊工手势;D1——挂吊不符合要求;D2——起吊中起吊物受严重碰撞;X1——起吊物从人头经过;X2——人从起吊下方经过;X3——挂吊工未离开就起吊;X4——起吊物靠近人经过;X5——吊钩无防吊索脱出装置;X6——捆绑缺陷;X7——挂吊不对称;X8——挂吊物不对;X9——运行位置太低;X10——没有走规定的通道;X11——斜吊;X12——运行时没有鸣铃;X13——司机操作技能缺陷;X14——制动器间隙调整不当;X15——吊索吊具超载;X16——起吊物的尖锐处无衬垫;X17——吊索没有夹紧;X18——起吊物的挂吊部位脱落;X19——挂吊部位结构缺陷;X20——挂吊工看错指挥手势;X21——司机操作错误;X22——行车工看错指挥手势;X23——现场环境照明不良;X24——制动器失效;X25——卷筒机构故障;X26——钢丝磨损;X27——超载;X28——吊钩有裂纹;X29——超载2、计算事故树的最小割集、最小径集,该事故树的结构函数为:T=A1A2式(1)=( B1+B2)·(B3+B4+B5+B6+B7+B8=B9)=[(X1+X2)+(X3+X4)]·[(X5·C1)+(X15+C2)+(X18+X19)+(X20+X21+C3)+( X24·X25)+(X26+X27)+(X28+X29)] =(X1+X2+X3+X4)·[X5·(D1+aD2+D3)+X15+(X16+X17)+(X18+X19)+X20+X21+(X22+X23)+X24·X25+X26+X27+X28+X29]=(X1+X2+X3+X4)·[X3·(X6+X7+X8+aX9+aX10+aX11+aX12+X13·X14+ X15+X16+X17+X18+X19+X20+X21+X22+X23+X24+X25+X26+X27+X28)]=X1X5X6+X1X5X7+X1X5X8+aX1X5X9+aX1X5X10+aX1X5X11+aX1X5X12+X1X5X13X14+X1X15+X1X16+X1X17+X1X18+X1X19+X1X20+X1X21+X1X22+X1X23+X1X24+X1X25+X1X26+X1X27+X1X28+X2X5X6+X2X5X7+X2X5X8+aX2X5X9+aX2X5X10+aX2X5X11+aX2X5X12+X2X5X13X14+X2X15+X2X16+X2X17+X2X18+X2X19+X2X20+X2X21+X2X22+X2X23+X2X24X25+X2X26+X2X27+X2X28+X3X5X6+X3X5X7+X3X5X8+aX3X5X9+aX3X5X10+aX3X5X11+aX3X5X12+X3X5X13X14+X3X15+X3X16+X3X17+X3X18+X3X19+X3X20+X3X21+X3X22+X3X23+X3X24+X3X25+X3X26+X3X27+X3X28+X4X5X6+X4X5X7+X4X5X8+aX4X5X9+aX4X5X10+aX4X5X11+aX4X5X12+X4X5X13X14+X4X15+X4X16+X4X17+X4X18+X4X19+X4X20+X4X21+X4X22+X4X23+X4X24X25+X4X27+X4X28在事故树中,如果所有的基本事件都发生,则顶上事件必然发生。
事故的统计方法
事故的统计方法是通过对事故数据的收集、整理和分析,以揭示事故发生的规律、趋势和特点,从而为事故预防和安全管理提供科学依据。
以下是一些常见的事故统计方法:
1. 事件树分析:通过绘制事件树,详细分析事故的发生过程,将可能发生的各个阶段和事件都列举出来,以便对事故发展路径进行系统的分析。
2. 事故树分析:与事件树相反,事故树是通过对事故结果的分析,逐步追溯到导致事故的根本原因,以便识别事故的主要风险因素。
3. 频率-严重度分析:将事故按照其频率和严重度分为不同的类别,帮助确定事故防范的重点方向。
这种方法常用于风险评估和优先级制定。
4. 失效模式与效应分析(FMEA):通过对系统组件的失效模式及其对整个系统的影响进行分析,识别潜在的事故风险,进而采取相应的预防措施。
5. 趋势分析:通过对一段时间内的事故数据进行统计,分析事故发生的趋势,找出规律,以便预测未来可能发生的事故类型和频率。
6. 故障树分析(FTA):类似于事故树,故障树主要用于分析系统中各种故障事件的概率和影响,以便评估系统的可靠性。
7. 统计学方法:使用统计学方法,如均值、方差、概率分布等,对事故数据进行数学分析,得出事故发生的概率分布和统计特征。
8. 关联规则挖掘:利用关联规则挖掘技术,从大量的事故数据中发现不同因素之间的关系和规律,有助于深入理解事故的发生机制。
这些方法可以单独或组合使用,具体选择取决于事故的性质、领域和研究目的。
综合应用这些方法有助于全面了解事故的本质,从而更好地采取预防和应对措施。
事件树与事故树什么是事件树事件树(Event Tree)是一种风险分析工具,它用于评估一个系统或过程中可能发生的事件,例如故障、事故、事故后果等。
事件树将一个事件通过一系列的条件和概率关系,逐步分解成更小的事件,最终得出该事件的可能发生性和后果。
事件树可以帮助风险分析师更好地了解事件链的结构和信息体系,进而确定最终的事件发生概率,以使组织降低风险。
事件树由多个节点构成,每个节点表示一个具体的事件或条件。
具体的节点类型包括:顺利运行的情况、故障模式、人为失误和环境因素等。
这些节点都可以通过概率和条件之间的关系引起其他节点的变化,从而组成一个完整的事件树。
事件树的主要优点在于,可以更好地了解组织系统或过程中可能存在的潜在事件,从而对潜在的问题进行细致的分析和预测。
它也被广泛用于高风险应用领域,如核电站,化工等。
什么是事故树事故树(Fault Tree)是一种逆向分析工具,它用于评估系统或过程中可能导致事故的概率,以及事故发生时导致的后果。
事故树通过逆向展开的方式,通过一些基础事件,逐步推导出一个完整的事故事件树,从而分析系统可能存在的漏洞和问题。
事故树和事件树类似,但是两者的形成方式不同。
事故树先明确了可能导致事故的条件,然后逆向追溯事故树的发生过程。
事故树节点由多个事件节点构成,每个事件节点代表一个故障、错误或其他关键条件,通过概率与逻辑的关系分解出具体的事故发生信息。
事故树的优点在于它明确的给出了出现事故的所有条件,便于风险分析师更好地了解事故发生的可能性和后果。
此外,事故树经常用于对安全系统进行评估和升级,以确保系统在可能发生事故的情况下能够安全运行。
事件树和事故树之间的差异两者最显著的不同点在于形成方式的不同。
事件树是明确给出事件可能的条件和概率,并描述可能发生的结果。
它可以帮助风险分析师更好地了解系统中的所有潜在问题。
然而,事故树则是逆向分析的,明确定义了可能导致事故的条件和故障。
它更加关注已知的问题,并试图找出问题背后的根本原因。
事故树知识点总结一、什么是事故树事故树是一种系统化的安全分析方法,用于确定事故发生的原因、特征和结果。
它提供了一个结构化的方法,以便能够对潜在的事故原因进行深入的分析。
事故树通常用于工程、航空和化工等领域,以识别和预防事故发生。
二、事故树的基本元素1. 顶事件:即要分析的事故或失效事件,通常是一个无法接受的运行条件或结果。
2. 中间事件:导致顶事件发生的可能性。
3. 基本事件:导致中间事件发生的具体原因或条件。
基本事件通常是可以直接观察到或量化的。
三、事故树的建立1. 确定顶事件:在分析之前,要明确要分析的事故或失效事件,以及其对应的系统或设备。
2. 确定中间事件和基本事件:通过专家讨论、文献回顾和数据分析等方法,确定导致顶事件发生的中间事件和基本事件。
3. 组织事故树结构:将中间事件和基本事件按照逻辑关系组织在事故树中,形成从根节点到叶节点的结构。
四、事故树的分析1. 通过逻辑门分析:在事故树中,使用逻辑门(如“与”门、“或”门、“非”门)来表示事件之间的逻辑关系,并进行故障树分析。
2. 评估事件频率:通过使用概率模型和历史数据,对事件的发生频率进行评估,并确定事故树的概率。
3. 评估事件影响:对导致事故发生的事件影响进行评估,包括其可能的损失和后果。
五、事故树的应用1. 风险评估:事故树可以用于对系统存在的风险进行评估,包括对新设计系统、现有系统和工作过程的风险评估。
2. 决策支持:事故树可以用于帮助决策者理解不同决策选项的风险情况,并为他们提供有力的决策支持。
3. 事故预防:通过识别可能导致事故发生的原因和条件,事故树可以帮助组织制定有效的预防措施,并改善系统的安全性。
六、事故树的挑战1. 数据不确定性:事故树的分析需要大量的数据支持,但往往很难获得准确的数据和信息。
2. 系统复杂性:对于复杂的系统或设备,事故树的建立和分析可能会受到挑战,需要能够处理多个交叉影响和复杂互动的方法。
3. 专业需要:事故树的建立和分析需要应用系统工程、风险分析等领域的专业知识和技能。
作业人员触电事故的事故树该事故树的结构函数式为:T = A1A2T = (X4 + B1 + B2)(X5 + X6 + X7)= [X4 +X19(X1+X2+X3)+C1+C2 +C3+C4](X5+X6+X7)= [X4+X19(X1+X2+X3)+X8(X9+X10)X20 + X21(X11+X12+X13)+ X19X14(X15+X16)+(X17+X18)](X5+X6+X7)=(X4+X1X19+X2X19+X3X19+X8X9X20+X8X10X20+X21X11+X21X12+X21X13+X19X14X15+X19X14X16+X17+X18)(X5+X6+X7)= X4X5+X1X19X5+X2X19X5+X3X19X5+X8X9X20X5+X8X10X20X5+X21X11X5+X21X12X5+X21X13X5+X19X14X15X5+X19X14X16X5+X17X5 +X18X5+X4X6+X1X19X6+X2X19X6+X3X19X6+X8X9X20X6+X8X10X20X6+X21X11X6+X21X12X6+X21X13X6+X19X14X15X6+X19X14X16X6+X17X6+X18X6+X4X7+X1X19X7+X2X19X7+X3X19X7+X8X9X20X7+X8X10X20X7+X21X11X7+X21X12X7+X21X13X7+X19X14X15X7+X19X14X16X7+X17X7+X18X7该事故树共有39个最小割集,分别为:K1 = {X4,X5} K2 = {X1,X5,X19} K3 = {X2,X5,X19} K4 ={X3,X5,X19} K5={X5,X8,X9,X20} K6 ={X5,X8,X10,X20} K7 = {X21,X11,X5} K8 = {X21,X12,X5} K9 = {X21,X13,X5} K10={X19,X14,X15,X5} K11={X19,X14,X16,X5} K12={X17,X18} K13 = {X18,X5} X14 = {X4,X6} K15 = {X1,X19,X6} K16 ={X2,X19,X6} X17 ={X3,X19,X6} K18 ={X8,X9,X20,X6} K19 ={X8,X10,X20,X6} K20 ={X21,X11,X6} K21 ={X21,X12,X6}K22={X21,X13,X6} K23={X19,X14,X15,X6} K24={X19,X14,X16,X6} K25 = {X17,X6} K26 = {X18,X6} K27 = {X4,X7}K28 = {X1,X19,X7} K29 = {X2,X19,X7} K30 = {X3,X19,X7} K31 = {X8,X9,X20,X7} K32 = {X8,X10,X20,X7} K33 = {X21,X11,X7} K34 = {X21,X12,X7} K35 = {X21,X13,X7} K36 = {X19,X14,X15,X7} K37 = {X19,X14,X16,X7} K38 = {X17,X7} K39 = {X18,X7}结构重要度分析按下面公式计算结构重要度系数:I(i)= Σk i(1/2)n-1 X∈K式中:I(i)—基本事件X1的重要度系数近似判别值K i—包含X I的(所有)割集n —基本事件X1所在割集中基本事件个数I(5)= 3×(1/2)2-1 + 6×(1/2)3-1 + 4×(1/2)4-1 = 3.5 同理:I(6)=I(7)= 3.5I(21)=2.25I(4)=I(17)=I(18)=1.5I(1)= I(2)= I(3)= I(8) = I(11) = I(12) = I(13) = I(14) = I(19) = I(20) = 0.75I(9) = I(10) = I(15) = I(16) = 0.375结构重要度顺序为:IΦ(5)= IΦ(6)= IΦ(7)> IΦ(21)> IΦ(4) = IΦ(17)= IΦ(18)> IΦ(1)= IΦ(2)= IΦ(3)= IΦ(8)=IΦ(11)= IΦ(12)= IΦ(13)= IΦ(14)= IΦ(19)=IΦ(20)> IΦ(9)= IΦ(10)= IΦ(15)= IΦ(16)通过分析可知该事故树有39个最小割集。
事故树分析法与事件树分析法事故树分析法和事件树分析法都是用于系统安全分析和风险评估的常用方法。
事故树分析法(Fault Tree Analysis,FTA)是一种从事故结果反向推导出事故原因的定性和半定量分析方法。
事件树分析法(Event Tree Analysis,ETA)是一种从事故原因推导出事故结果的分析方法。
下面将分别对这两种方法进行详细介绍。
一、事故树分析法事故树分析法是由美国诺斯洛普·格鲁曼公司在20世纪50年代开发的。
事故树的构建过程基于布尔代数理论,并通过逐层分解将事故的根因分析为一系列子事件,最终导致事故的顶层事件称为基本事件。
事故树的构建流程如下:1.确定事故的顶层事件:根据分析目的,选择一个最致命的事故事件作为事故树的终结点,这个事件往往是整个系统的重大事故或重要功能失效。
2.选择故障或失效基本事件:根据事故原因和分析目的,选择导致顶层事件发生的基本事件,这些基本事件往往是故障或失效事件。
3.构建事故树的逻辑关系:使用与门、或门、非门等布尔代数操作符构建事件之间的逻辑关系。
4.进行概率和综合分析:为每个基本事件分配相应的概率,并使用概率传递法或事件树法计算顶层事件的概率。
事故树分析法的优点是可以通过图形化的方式表达事件之间的逻辑关系,使人们更直观地理解系统的安全问题,而且可以计算出顶层事件的概率,对风险进行定量评估。
缺点是需要根据系统的具体情况选择适当的基本事件,因此分析结果的准确性高度依赖于分析人员的经验和专业知识。
事件树分析法是由美国思科纳特国际公司在20世纪60年代开发的。
事件树的构建过程可以看作是事故树的正向过程,从给定的初始事件出发,逐步推导出可能的结果事件。
事件树的构建流程如下:1.确定初始事件:选择一个系统中的失效事件作为初始事件。
2.确定结果事件:根据初始事件的特性和分析目的,选择可能的结果事件。
3.构建事件之间的分支关系:使用与门、或门、序列门等逻辑操作符表示事件之间的逻辑关系。