数轴教案10 人教版(优秀教案)
- 格式:doc
- 大小:142.50 KB
- 文档页数:3
人教版七年级上册数学数轴教案七年级上册数学数轴教学设计(四篇)人教版七年级上册数学数轴教案七年级上册数学数轴教学设计篇一【学习目标】1.通过与温度计的类比,认识数轴,会用数轴上的点表示有理数.2.借助数轴了解相反数的概念,认识互为相反数的一对数在数轴上的位置关系,能用数轴比较有理数的大小.【基础知识精讲】1.数轴三要素及数轴画法(1)数轴三要素:原点、单位长度、正方向.其中可以选取某一长度作为单位长度,规定直线上向右的方向为正方向.(2)取一直线,直线上具备了数轴的三要素,那么它就可以称为数轴了. 2.数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示.(反之则不成立.因为数轴上的点不仅可以表示有理数,还有一些点表示的数不在有理数的范围内)3.利用数轴比较两个有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.图2—1(2)正数大于0,负数小于0,正数大于负数.图2—2 由于数轴上正数在0的右边,0在负数的右边,所以正数>0,0>负数,正数>负数.如:+7>-10(正数大于负数)0>-3(0大于负数),0<+2(0小于正数)4.相反数的有关知识(1)定义:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.如:-3和3,11和-,-3.2和+3.2…… 77(2)在数轴上,表示互为相反数的两个点位于原点的两侧,并且与原点的距离相等.图2—3 如:-3和+3是一对互为相反数,它们在原点的左右两侧,且它们到原点的距离都是3个单位长度.(3)相反数是它本身的数是0.说明:数轴是数学中数与图形结合的典范.理解数轴及和数轴有关的知识都可以从几何和代数两方面入手.【学习方法指导】[例1]画一个数轴,并在数轴上表示出下列各数,并用“<”号连接起来.111,-3,-1,0,2 23点拨:①画数轴应必须具备数轴三要素:原点、单位长度、正方向.②用“<”号连接这些数,需要将这些数从小到大排列.而在数轴上右边的数总是大于左边的数,所以只要将数轴上的数从左到右用“<”号连接即可.解答:图2—4 -3<-111<0<1<2 32[例2]m,n在数轴上位置如图2—5,则下面结论正确的是…()图2—5 a.m>0,n<0 b.m>0,n>0 c.m<0,n<0 d.m <0,n>0 点拨:在数轴上的数,右边的总比左边的大.对于m和0,m在0的右边,即m>0,而n在0的左边,所以0>n 即n<0.解答:m>0,n<0.选a.[例3]数轴上距离原点3个单位长度的数是_____.点拨:先画出数轴,找到原点.从原点开始向左、向右各数3个单位长度,这两个点到原点的距离相等,且符合题意.记住:类似的题目答案一般会有两个数.解答:+3和-3 [例4]填空:(1)-5的相反数是_____ 2(2)b的相反数是_____(3)-m的相反数是_____ 点拨:不管是数字或是字母,互为相反数的两个数只有符号不同.解答:(1)5(2)-b(3)m 2[例5]数轴上表示互为相反数的两个点a和b,它们两点间的距离是5,则这两个数分别是_____和_____.点拨:画出数轴,表示出a和b.由于它们互为相反数,所以这两个点到原点的距离相等,则每个点距原点2.5个单位长度.在原点左边的点为-2.5,在原点右边则为+2.5.图2—6 解答:+2.5和-2.5.[例6]比较大小(1)0_____-(2)-1_____-(3)7_____-10 2点拨:若正数、负数、0互相比较,则用“正数>0>负数”进行比较.若两负数进行比较,将它们标注在数轴上,右边的数大于左边的数.解答:(1)>(0大于负数)(2)>(数轴上,-1所对应的点在-2所对应点的右侧)2图2—7(3)>(正数大于负数)【拓展训练】求下列各数的相反数.(1)-(+7)(2)+(-m)点拨:由于互为相反数的两个数只有一个符号不同:一个为正,一个为负.因为在此题中将括号里的数看做一个整体,括号外的才是它的符号.找相反数时,只要改变括号外的符号即可.解答:(1)-(+7)的相反数是+(+7)(2)+(-m)的相反数是-(-m)人教版七年级上册数学数轴教案七年级上册数学数轴教学设计篇二人教版七年级数学上册数轴说课稿一:教材分析:本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。
1.2.2数轴(教案,新教材)【教学目标】1.借助生活中的实例理解数轴的概念;2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3.感受数与形是可以相互转化的,渗透数形结合的数学思想.【教学重点】理解数轴的概念,数与形的相互转化.【教学难点】会用数轴上的点表示给定的有理数.【教学过程】一、情境导入情境:医生在给病人测量体温时常使用温度计.这是小学里我们学习了在有刻度的直线上表示出0和正数,借助这个图形直观和分析问题。
我们起来看一个实例:活动一:教师创设问题情况,引入课题问题:在一条东西的马路旁,有一个汽车站牌,汽车站牌东侧3 m和7.5 m处分别有一颗柳树和一根交通标志,汽车站牌西侧3m和4.8 m处分别有一颗槐树和一根电线杆,试画图表示这一情境。
学生活动:小组合作,动手操作画出示意图.教师活动:启发学生“画一直线表示马路,从左向右表示从西向东,直线上取一点O表示汽车站牌”,怎样用数简明表示各处的位置?师生活动:师生共同探究,情境中东、西,左、右都具有相反意义,在画的直线中,O点表示基点,取1个单位长度代表1m长,再用0表示点O,用负数表示点O左边的点,用正数表示点O右边的点。
二、合作探究活动二:认识理解数轴前面讲到的温度计可以看作表示正数、0和负数的直线,它和上面同学们所画的图有什么共同点?学生活动:和其他同学交流,注意交流时要发表自己的见解.师生活动:师生共同总结,具有三个条件:原点,正方向,单位长度.抽象出数轴定义,规定是正半轴,负半轴,原点的直线.活动三:强化对数轴的认识例1.下列图形中是数轴的是()A. B.C. D.学生活动:根据自己的认识判断.师生活动:教师给学生的判断进行评价,并总结要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.活动四:读出数轴上的点所表示的数例2.如图中所示,指出数轴上的A、B、C、D、E、F各点所表示的数.师生活动:师生共同探讨要确定数轴上的点所表示的数的步骤:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.活动五:有理数在数轴上表示问题:基于以上数据,讨论有理数a如何在数轴上表示?学生活动:当a是正数,负数时,讨论如何在数轴找到相应的点表示数a.教师活动:对学生讨论结果进行评价,并强调如何确定数轴上与原点距离是a的点.例3.画出数轴,并用数轴上的点表示下列各数5---3,4,4,0.5,0,,12学生活动:学生画出数轴,并在数轴上表示以上各数.师生活动:教师评价学生的操作,并关注所画数轴是否具备“三要素”.师生共同总结方法:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.活动六:拓展提升,数轴上两点间的距离问题例4.数轴上的点A表示的数是3,那么与点A相距5个单位长度的点表示的数是() A.2 B.±2 C.8D.8或-2学生活动:讨论与点A相距5个单位长度的点表示的数有2个,分别是8或-2.师生活动:评价学生讨论结果,总结如何求两点间的距离问题,解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.三、强化巩固1.学生练习:课本练习题1、3.学生解答,教师评价并给予规范.2. 快递小哥骑车从快递投放点出发,先向东骑行2.5km到达A村,继续向东骑行2km到达B村,然后向西骑行7km到C村,最后回到快递投放点.(1)以快递投放点为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)快递小哥一共骑了多少千米?学生讨论解答,教师规范写出解答过程.四、总结拓展学生小组合作对知识总结:1.什么是数轴,数轴三要素:(1)原点,(2)正方向,(3)单位长度.2.数轴上的点与有理数间的关系:原点表示零;原点右边的点表示正数;原点左边的点表示负数.3.数轴上点数a到原点的距离,两点间的距离的求法.学生小组合作对数学思想方法总结:数形结合,分类等数学思想。
初中数学数轴人教版教案教学目标:1. 让学生理解数轴的概念,掌握数轴的基本性质。
2. 培养学生利用数轴解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
教学重点:1. 数轴的概念及基本性质。
2. 利用数轴解决实际问题。
教学难点:1. 数轴上点的表示方法。
2. 数轴上距离的计算。
教学准备:1. 数轴教具。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾已学的平面直角坐标系,复习点的坐标表示方法。
2. 提问:同学们,你们知道吗?在数学中,还有一种用来表示数的方式,它叫做数轴。
接下来,我们就来学习数轴。
二、新课讲解(15分钟)1. 讲解数轴的概念:数轴是一条直线,它有一个原点、一个正方向和一个单位长度。
数轴上的点表示实数。
2. 讲解数轴的基本性质:数轴上的点与实数是一一对应的;数轴上的距离表示两个数的大小关系;数轴上的点可以进行加减乘除等运算。
3. 讲解数轴上点的表示方法:数轴上的点可以用整数、分数、小数等表示,也可以用集合表示。
4. 讲解数轴上距离的计算:数轴上两点之间的距离等于它们在数轴上的坐标差的绝对值。
三、实例演示(10分钟)1. 利用数轴教具,演示数轴的基本性质和点的表示方法。
2. 让学生上台演示数轴上距离的计算方法。
四、练习巩固(10分钟)1. 让学生独立完成练习题,巩固数轴的概念和基本性质。
2. 组织学生进行小组讨论,共同解决练习题中的问题。
五、课堂小结(5分钟)1. 回顾本节课所学的内容,让学生总结数轴的概念、基本性质、点的表示方法和距离的计算。
2. 强调数轴在实际问题中的应用。
六、课后作业(课后自主完成)1. 绘制一个数轴,标出以下点:2, -3, 1.5, -2.5。
2. 利用数轴解决实际问题:小明家距离学校2公里,小明以每小时4公里的速度骑自行车去学校,问小明需要多少时间才能到达学校?教学反思:本节课通过讲解数轴的概念、基本性质、点的表示方法和距离的计算,使学生掌握了数轴的基本知识。
数学《数轴》教案教案标题:《数轴》教学内容:一、知识目标:1.掌握数轴的定义和相关术语。
2.能够在数轴上表示各种数及其相互关系。
3.能够解决与数轴相关的实际问题。
二、能力目标:1.提高学生的观察力和空间想象力。
2.培养学生对数轴的分析与判断能力。
3.培养学生解决实际问题的能力。
三、情感目标:1.培养学生合作学习和互助学习的能力。
2.培养学生乐于观察和探索的精神。
3.培养学生对数学的兴趣和自信心。
四、教学重点:1.数轴的定义和相关术语的掌握。
2.各种数在数轴上的表示方法。
五、教学难点:1.解决与数轴相关的实际问题。
2.培养学生的分析与判断能力。
教学过程:一、导入与引入活动(5分钟)1.引入活动:教师给学生展示一些实物并要求学生分辨它们的大小,引导学生思考如何准确地比较这些实物的大小。
2.导入活动:教师提问学生,有没有一种方法可以准确地比较数的大小?学生可能会提到数轴。
二、理论知识讲授(15分钟)1.讲解数轴的定义和相关术语:数轴是由一条直线和一个原点组成的,用于表示各种数及其相互关系;原点是数轴上的零点,它将数轴分为正半轴和负半轴;数轴上的点与实数一一对应。
2.讲解如何在数轴上表示各种数:正数和负数在数轴上的表示方法;整数、分数和小数在数轴上的表示方法。
三、案例分析与讨论(15分钟)1.案例一:小明家离学校有5千米,小红家离学校有8千米,请用数轴比较两者之间的距离。
2.案例二:小明和小红同时从学校出发,小明向正方向走了6千米,小红向负方向走了3千米,请用数轴表示两者的位置。
3.学生分组进行讨论,并分享各自的答案。
教师与学生共同分析得出正确答案。
四、练习与训练(15分钟)1.练习一:请用数轴表示下列数的位置,并判断它们的正负关系:-3,0,2.5,72.练习二:小明离小红比较远,请用数轴表示他们之间的距离,已知小明到小红的距离是6,小红到小明的距离是3五、拓展与应用(20分钟)1.拓展一:你能想到其他实际问题,并运用数轴解决吗?2.拓展二:请用数轴表示温度的变化,并解决以下问题:今天上午气温是10摄氏度,下午升高了12摄氏度,晚上降低了8摄氏度,最后的气温是多少度?六、归纳与总结(10分钟)1.教师对本节课的内容进行总结,并强调重点和难点。
数轴教案(优秀10篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!数轴教案(优秀10篇)举报信文化建设反问句主要,习题对策三字经卷首,文言文民族申请书广播稿说说的自我介绍问候语了记事工作打算弘扬的挑战书词语简报答谢词规章。
《数轴》七年级数学教案(精选6篇)《数轴》七年级数学教案1教学目标1.了解数轴的概念和数轴的画法,掌握数轴的三要素;2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议一、重点、难点分析本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。
难点是正确理解有理数与数轴上点的对应关系。
数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。
另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。
通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础二、知识结构有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的。
重要思想方法,本课知识要点如下表:定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫数轴原点正方向单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。
《数轴》七年级数学教案2教学目标:1、正确理解数轴的意义,理解数轴的三要素。
2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。
3、理解相反数的意义及求法。
4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。
重点难点:1、正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。
2、有理数和数轴上的的点的对应关系。
教学方法:合作探究交流学法指导:观察归纳概括教学过程:一、情景引入:(1)你会读温度计吗?完成课本43页最上面的读温度计的问题。
数轴教案人教版教案标题:数轴教案(人教版)教案目标:1. 学生能够理解数轴的概念,并能够正确使用数轴表示数值。
2. 学生能够在数轴上进行数值的比较和排序。
3. 学生能够解决与数轴相关的问题,并能够灵活运用数轴进行数学推理和解决实际问题。
教学重点:1. 数轴的概念及表示方法。
2. 数轴上数值的比较和排序。
3. 运用数轴解决问题的能力。
教学难点:1. 运用数轴进行数学推理和解决实际问题。
2. 数轴上数值的比较和排序。
教学准备:1. 教师准备:数轴模型、纸张、铅笔。
2. 学生准备:练习册、铅笔、橡皮擦。
教学过程:Step 1:引入1. 教师出示一张数轴模型,向学生解释数轴的概念和作用,引导学生思考数轴在日常生活中的应用。
2. 教师与学生一起探讨数轴的表示方法,例如正数、负数、小数等。
Step 2:数轴的绘制与标注1. 教师向学生展示如何绘制数轴,并让学生跟随操作。
2. 教师提供一些数值,要求学生在数轴上标注出对应的位置。
3. 学生互相检查标注的准确性,并与教师讨论纠正错误。
Step 3:数值的比较和排序1. 教师出示一些数值,要求学生在数轴上比较大小并进行排序。
2. 学生互相交流讨论,找出正确答案,并与教师进行验证。
Step 4:运用数轴解决问题1. 教师提供一些与数轴相关的问题,要求学生运用数轴进行推理和解决。
2. 学生个别或小组合作解决问题,并向全班展示他们的解决方法和答案。
Step 5:巩固练习1. 学生完成练习册上与数轴相关的练习题,巩固所学知识。
2. 教师批改练习册,并对学生的答案进行讲解和评价。
Step 6:拓展延伸1. 教师提供一些拓展问题,要求学生运用数轴进行更复杂的数学推理和解决实际问题。
2. 学生个别或小组合作解决问题,并向全班展示他们的解决方法和答案。
Step 7:总结反思1. 教师与学生一起总结本节课所学内容,强调数轴在数学学习中的重要性。
2. 学生对本节课的学习进行反思,提出问题和建议。
《数轴》参考教案一、教学目标知识与技能:1. 理解数轴的定义和基本性质;2. 能够绘制和解读数轴上的点表示的数值;3. 学会使用数轴解决实际问题。
过程与方法:1. 通过观察和操作,培养学生的空间观念和直观能力;2. 利用数轴模型,培养学生的数学思维和解决问题的能力。
情感态度价值观:1. 激发学生对数学的兴趣和好奇心;2. 培养学生的团队合作意识和交流表达能力。
二、教学重点与难点重点:1. 数轴的定义和基本性质;2. 数轴上点的表示方法。
难点:1. 数轴上点的表示与数值关系的理解;2. 利用数轴解决实际问题。
三、教学准备教具:1. 数轴教具;2. 点子卡片;3. 练习题纸张。
学具:1. 数轴学具;2. 点子卡片;3. 练习题纸张。
四、教学过程1. 导入:通过数轴教具的展示,引导学生观察和思考数轴的形状和特点,激发学生的兴趣和好奇心。
2. 新课导入:介绍数轴的定义和基本性质,解释数轴上的点和数值之间的关系。
3. 教学互动:学生分组讨论,通过数轴学具的操作,探索数轴上点的表示方法,培养学生的空间观念和直观能力。
4. 实例讲解:老师给出一些实际问题,引导学生利用数轴解决问题,巩固学生对数轴的理解和应用能力。
5. 练习与反馈:学生完成一些数轴相关的练习题,老师进行点评和指导,及时纠正学生的错误,帮助学生巩固所学知识。
五、教学反思通过本节课的教学,学生应该能够理解数轴的定义和基本性质,掌握数轴上点的表示方法,并能够利用数轴解决实际问题。
在教学过程中,要注意引导学生观察和操作,培养学生的空间观念和直观能力。
也要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够扎实掌握数轴的知识和技能。
六、教学评价1. 课堂参与度:观察学生在课堂中的参与程度,是否积极回答问题、参与讨论和操作活动。
2. 练习题完成情况:检查学生完成练习题的数量和质量,评估学生对数轴知识的掌握程度。
3. 小组合作:评估学生在小组合作中的表现,包括交流表达能力、团队合作意识和解决问题能力。
第课时:数轴()
教学内容:
教科书第—页,.数轴
教学目的和要求:
.使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示。
.向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。
教学重点和难点:
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。
难点:正确理解有理数与数轴上点的对应关系。
教学工具和方法:
工具:应用投影仪,投影片。
方法:分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
.有理数包括哪些数?是正数还是负数?
.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?
数学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。
演示从温度计抽象成数轴,激发学生学习兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程。
二、讲授新课:
.请学生阅读新课第―页,思考并讨论:
①零上℃用正数表示。
℃用数表示;零下℃用负数表示。
②数轴要具备哪三个要素?
③原点表示什么数?原点右方表示什么数?原点左方表示什么数?
④表示的点在什么位置?表示―的点在什么位置?
1个单位长度的点表示什么数?
⑤原点向右个单位长度的点表示什么数?原点向左
2
.数轴的画法:
师生共同总结数轴的画法步骤:
第一步:画一条直线(通常是水平的直线),在这条直线上任取一点,叫做原点,用这点表示数;(相当于温度计上的℃。
)
第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来)。
相反的方向就是负方向;(相当于温度计℃以上为正,℃以下为负。
)
第三步:适当地选取一条线段的长度作为单位长度,也就是在的右面取一点表示,与之间的长就是单位长度。
(相当于温度计上℃占小格的长度。
)
在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示,,,…,从原点向左,每隔一个单位长度取一点,它们依次表示–,–,–,…。
.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。
直线也不一定是水平的。
动态演示各种类型的数轴。
认识和掌握判断一条直线是不是数轴的依据。
.例题;
例:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?
分析:原点、正方向、单位长度这数轴的三要素缺一不可。
解答:都不正确,()缺少单位长度;()缺少正方向;()缺少原点;()单位长度不一致。
例:把下面各小题的数分别表示在三条数轴上:
(),,,3
23 , ()―,,,,;
()―,―,,,。
分析:要在数轴上表示数,首先要正确画出数轴,标明原点、正方向(一般从左到右为正方向)和单位长度这三要素,然后再表示数,第()题,数不大,单位长度取代表,第()、()题数轴较大,可取分别代表和。
数轴上原点的位置要根据需要来定,不一定要居中,如第()题的原点可居中,()的原点可偏左,()的原点可偏右,单位长度也应根据需要来确定,但在同一条数轴上,单位长度不能变。
表示某个数的点,在图形上一定要用较大的“.”突出来,并且在数轴上写出该点表示的数。
这样画出的图形较合理、美观。
例:借助数轴回答下列问题
()有没有最小的正整数?有没有最大的正整数?如果有,把它指出来;
()有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。
解答:观察数轴易知:
()有最小的正整数,它是,没有最大的正整数;
()没有最小的负整数,有最大的负整数,它是。
.课堂练习:
课本::,,。
三、课堂小结:
.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;
.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。
四、课堂作业:
课本::,,,。
板书设计:
教学后记:。