(完整版)圆周运动试题及参考答案
- 格式:doc
- 大小:32.51 KB
- 文档页数:4
1、如图所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕其中心的竖直轴转动时,由于摩擦的作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( ) A .线速度大小之比为3∶2∶2 B .角速度之比为3∶3∶2 C .转速之比为2∶3∶2D .向心加速度大小之比为9∶6∶42、如图所示,两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O 点。
设法让两个小球均在水平面上做匀速圆周运动。
已知L 1跟竖直方向的夹角为60°,L 2跟竖直方向的夹角为30°,下列说法正确的是( )A .细线L 1和细线L 2所受的拉力大小之比为3∶1B .小球m 1和m 2的角速度大小之比为3∶1C .小球m 1和m 2的向心力大小之比为3∶1D .小球m 1和m 2的线速度大小之比为33∶13、如图所示,一光滑轻杆沿水平方向放置,左端O 处连接在竖直的转动轴上,a 、b 为两个可视为质点的小球,穿在杆上,并用细线分别连接Oa 和ab,且Oa=ab,已知b 球质量为a 球质量的3倍.当轻杆绕O 轴在水平面内匀速转动时,Oa 和ab 两线的拉力之比为( ) A.1∶3 B.1∶6 C.4∶3 D.7∶64、如图所示,在光滑水平面上,钉有两个钉子A 和B ,一根长细绳的一端系一个小球,另一端固定在钉子A 上,开始时小球与钉子A 、B 均在一条直线上(图示位置),且细绳的一大部分沿俯视顺时针方向缠绕在两钉子上,现使小球以初速度v 0在水平面上沿俯视逆时针方向做匀速圆周运动,使两钉子之间缠绕的绳子逐渐释放,在绳子完全被释放后与释放前相比,下列说法正确的是( )A .小球的速度变大B .小球的角速度变大C .小球的加速度变小 D.细绳对小球的拉力变小5、如图所示,两物块A 、B 套在水平粗糙的CD 杆上,并用不可伸长的轻绳连接,整个装置能绕过CD 中点的轴OO 1转动。
1 f; T匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为v =s=2r t T其方向沿轨迹切线,国际单位制中单位符号是m/s;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为==2t T在国际单位制中单位符号是rad/s;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是Hz;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r/min.2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v=rω.T =,v =2,= 2 f 。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为v 2 a n=r 公式:=2r 42rT 21. 线速度V=s/t=2πr/T ;== v 2. 角速度 ω=Φ/t =2π/T =2πf 3. 向心加速度 a =V 2/r =ω2r =(2π/T)2r4. 向心力 F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5. 周期与频率:T =1/f6. 角速度与线速度的关系:V =ωr7. 角速度与转速的关系 ω=2πn (此处频率与转速意义相同)8. 主要物理量及单位:弧长 s:米(m);角度 Φ:弧度(rad );频率 f :赫(Hz );周期 T :秒(s );转速n :r/s ;半径 r :米(m );线速度 V :(m/s );角速度 ω:(rad/s );向心加速度:(m/s 2)。
一、选择题1.如图所示,一个小球在F作用下以速率v做匀速圆周运动,若从某时刻起,小球的运动情况发生了变化,对于引起小球沿a、b、c三种轨迹运动的原因,下列说法正确的是()A.沿a轨迹运动,可能是F减小了一些B.沿b轨迹运动,一定是v增大了C.沿b轨迹运动,可能是F减小了D.沿c轨迹运动,一定是v减小了2.如图所示,竖直平面上的光滑圆形管道里有一个质量为m可视为质点的小球,在管道内做圆周运动,管道的半径为R,自身质量为3m,重力加速度为g,小球可看作是质点,管道的内外径差别可忽略。
已知当小球运动到最高点时,管道刚好能离开地面,则此时小球的速度为()A.gR B.2gR C.3gR D.2gR3.如图所示,一个水平大圆盘绕过圆心的竖直轴匀速转动,一个小孩坐在距圆心为r处的P点不动(P未画出),关于小孩的受力,以下说法正确的是()A.小孩在P点不动,因此不受摩擦力的作用B.小孩随圆盘做匀速圆周运动,其重力和支持力的合力充当向心力C.小孩随圆盘做匀速圆周运动,圆盘对他的摩擦力充当向心力D.若使圆盘以较小的转速转动,小孩在P点受到的摩擦力不变4.关于做匀速圆周运动物体的线速度、角速度、周期的关系,下列说法中正确的是()A.线速度大的角速度一定大B.线速度大的周期一定小C.角速度大的周期一定小D.角速度大的半径一定小5.火车转弯时,如果铁路弯道的内、外轨一样高,则外轨对轮缘(如左图所示)挤压的弹力F提供了火车转弯的向心力(如图中所示),但是靠这种办法得到向心力,铁轨和车轮极易受损。
在修筑铁路时,弯道处的外轨会略高于内轨(如右图所示),当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的侧向挤压,设此时的速度大小为v,重力加速度为g,以下说法中正确的是()A.该弯道的半径R=2 v gB.当火车质量改变时,规定的行驶速度也将改变C.当火车速率大于v时,外轨将受到轮缘的挤压D.按规定速度行驶时,支持力小于重力6.一个圆锥摆由长为l的摆线、质量为m的小球构成,小球在水平面内做匀速圆周运动,摆线与竖直方向的夹角为θ,如图所示。
1.在观看双人花式溜冰表演时,观众有时会看到女运动员被男运动员拉着走开冰面在空中做水平方向的匀速圆周运动.已知经过目测预计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加快度为g= 10 m/s2,若已知女运动员的体重为35 k g,据此可估量该女运动员()A .遇到的拉力约为350 2 NB .遇到的拉力约为350 NC.向心加快度约为10 m/s2 D .向心加快度约为10 2 m/s2图 4-2-111.分析:此题考察了匀速圆周运动的动力学剖析.以女运动员为研究对象,受力剖析如图.依据题意有 G=mg= 350 N;则由图易得女运动员遇到的拉力约为350 2 N,A 正确;向心加快度约为10 m/s2,C 正确.答案:AC2.中央电视台《今天说法》栏目近来报导了一同发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭受了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲入李先生家,造成三死一伤和房子严重损毁的血腥惨案.经公安部门和交通部门合力调查,画出的现场表示图如图4-2- 12 所示.交警依据图示作出以下判断,你以为正确的选项是()A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内 (东 )高外 (西 )低D.公路在设计上可能外 (西) 高内 (东 )低图 4-2-12 2分析:由题图可知发惹祸故时,卡车在做圆周运动,从图能够看出卡车冲入民宅时做离心运动,故选项 A 正确,选项 B 错误;假如外侧高,卡车所受重力和支持力供给向心力,则卡车不会做离心运动,也不会发惹祸故,应选项 C 正确.答案: AC3. (2010 湖·北部分要点中学联考)如图 4- 2- 13 所示,质量为m 的小球置于正方体的圆滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加快度为 g,空气阻力不计,要使在最高点时盒子与小球之间恰巧无作使劲,则()A .该盒子做匀速圆周运动的周期必定小于2πR gB.该盒子做匀速圆周运动的周期必定等于2πR gC.盒子在最低点时盒子与小球之间的作使劲大小可能小于2mgD.盒子在最低点时盒子与小球之间的作使劲大小可能大于2mg图 4-2-133 分析: 要使在最高点时盒子与小球之间恰巧无作使劲,则有mg = mv 2R ,解得该盒子做匀速圆周运动的速2πR R度 v = gR ,该盒子做匀速圆周运动的周期为T = v= 2πg .选项 A 错误, B 正确;在最低点时,盒子mv2与小球之间的作使劲和小球重力的合力供给小球运动的向心力,由F - mg = R ,解得 F = 2mg ,选项 C 、D 错误. 答案: B4.图示所示 , 为某一皮带传动装置.主动轮的半径为r 1 ,从动轮的半径为 r 2.已知主动轮做顺时针转动,转速为 n ,转动过程中皮带不打滑.以下说法正确的选项是()A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r1 D .从动轮的转速为 r 2nnr2r 14 分析: 此题考察的知识点是圆周运动.因为主动轮顺时针转动,从动轮经过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;因为经过皮带传动,皮带与轮边沿接触处的速度相等,n 为频次, 2πn 为角速度,得从动轮的转速为nr 1所以由 2πnr 1= 2πn 2r 2 n 2= r 2 ,选项 C 正确D 错误. 答案: BC5.质量为 m 的石块从半径为 R 的半球形的碗口下滑到碗的最低点的过程中,假如摩擦力的作用使得石块的速度大小不变,如图 4- 2-17 所示,那么 ()A .因为速率不变,所以石块的加快度为零B .石块下滑过程中受的合外力愈来愈大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加快度大小不变,方向一直指向球心图 4-2-175 分析:因为石块做匀速圆周运动, 只存在向心加快度, 大小不变, 方向一直指向球心, D 对,A 错.由 F 合=F向 =ma向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不停减小,所以摩擦力不停减小,答案: DC 错.6.2008 年 4 月 28 日清晨,山东境内发生两列列车相撞事故,造成了大批人员伤亡和财富损失.引起事 故的主要原由是此中一列列车转弯时超速行驶.如图 4- 2- 18 所示,是一种新式高速列车,当它转弯 时,车厢会自动倾斜, 供给转弯需要的向心力; 假定这类新式列车以 360 km/h 的速度在水平面内转弯, 弯道半径为 1.5 km ,则质量为 75 kg 的乘客在列车转弯过程中所遇到的合外力为 ()A . 500 NB .1 000 NC .500 2 ND .0图 4-2- 186 分析:360 km/h = 100 m/s ,乘客在列车转弯过程中所受的合外力供给向心力 F =mv 21002r = 75×1.5× 103 N= 500 N.答案: A7.如图 4- 2- 19 甲所示,一根细线上端固定在 S 点,下端连一小铁球 A ,让小铁球在水平面内做匀速圆周运动,此装置组成一圆锥摆 (不计空气阻力 ).以下说法中正确的选项是 ( )A .小球做匀速圆周运动时,遇到重力、绳索的拉力和向心力作用gB .小球做匀速圆周运动时的角速度必定大于 l (l 为摆长 )C .还有一个圆锥摆,摆长更大一点,二者悬点相同,如图 4- 2- 19 乙所示,假如改变两小球的角速 度,使二者恰幸亏同一水平面内做匀速圆周运动,则 B 球的角速度大于 A 球的角速度D .假如两个小球的质量相等,则在图乙中两条细线遇到的拉力相等图 4- 2-197 分析: 以以下图所示,小铁球做匀速圆周运动时,只遇到重力和绳索的拉力,而向心力是由重力和拉力的合力供给,故 A 项错误.依据牛顿第二定律和向心力公式可得: mgtan θ=ml ω2sin θ,即 ω= g/lcos θ.当小铁球做匀速圆周运动时, θ必定大于零,即 cos θ必定小于 1,所以,当小铁球做匀速圆周运动时角速度必定大于g/l ,故 B 项正确.设点 S 到点 O 的距离为 h ,则 mgtan θ=mh ω2tan θ,即 ω= g/h ,若两圆锥摆的悬点相同,且二者恰幸亏同一水平面内做匀速圆周运动时,它们的角速度 大小必定相等,即C 项错误.如右上图所示,细线遇到的拉力大小为F T =mg,当两个小球的质量相cos θ等时,因为 θABABB 球遇到的拉力,从而能够判断两条< θ,即 cos θ> cos θ,所示 A 球遇到的拉力小于细线遇到的拉力大小不相等,故 D 项错误. 答案: B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿 半径方向遇到的摩擦力分别为 Ff 甲 和 Ff 乙. 以下说法正确的选项是 ( )A . Ff 甲 小于 Ff 乙B .Ff 甲 等于 Ff 乙C . Ff 甲大于 Ff 乙D . Ff 甲和 Ff 乙 大小均与汽车速率没关8 分析: 此题要点考察的是匀速圆周运动中向心力的知识.依据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来供给其做圆周运动的向心力,则F 向= f ,又有向心力的表达式F mv 2向= ,因为两车的质量相同, r两车运转的速率相同, 所以轨道半径大的车的向心力小,即摩擦力小,A 正确.答案: A9. 在高速公路的拐弯处,往常路面都是外高内低.如图 4- 2- 20 所示,在某路段汽车向左拐弯,司机左侧的路面比右边的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为 h ,路 基的水平宽度为 d ,路面的宽度为 L.已知重力加快度为g.要使车轮与路面之间的横向摩擦力(即垂直于行进方向 )等于零,则汽车转弯时的车速应等于 ()A.gRhB.gRh C.gRL D.gRdLdhh图 4-2- 209 分析: 考察向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力供给,且向心力的方向水平,向心力大小F 向= mgtan θ,依据牛顿第二定律:F 向=m v2hv =gRh R , tan θ= ,解得汽车转弯时的车速d,B 对.d答案: B 10.如图 4- 2- 24 所示,一个竖直搁置的圆锥筒可绕此中心 OO ′转动,筒内壁粗拙,筒口半径和筒高分别为 R 和 H ,筒内壁 A 点的高度为筒高的一半. 内壁上有一质量为m 的小物块随圆锥筒一同做匀速转动,则以下说法正确的选项是 ( ) A .小物块所受合外力指向 O 点B .当转动角速度ω= 2gH时,小物块不受摩擦力作用RC .当转动角速度ω>2gH 时,小物块受摩擦力沿AO 方向RD .当转动角速度ω<2gH 时,小物块受摩擦力沿AO 方向R图 4-2-2410 分析: 匀速圆周运动物体所受合外力供给向心力,指向物体圆周运动轨迹的圆心, A 项错;当小物块在 A 点随圆锥筒做匀速转动,且其所遇到的摩擦力为零时,小物块在筒壁 A 点时遇到重力和支持力的作用,它们的合力供给向心力,设筒转动的角速度为2R,由几何关系得: tan θω,有: mgtan θ= m ω ·2= H R ,联立以上各式解得 ω= 2gH R , B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿 AO 方向,其水平方向分力供给部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿 OA 方向,抵消部分支持力的水均分力, D 项错.答案: BC11. 如图 4- 2- 25 所示,一水平圆滑、距地面高为h 、边长为 a 的正方形 MNPQ 桌面上,用长为 L 的不行伸长的轻绳连结质量分别为m A 、m B 的 A 、B 两小球,两小球在绳索拉力的作用下,绕绳索上的某点 O 以不一样的线速度做匀速圆周运动, 圆心 O 与桌面中心重合, 已知 m A = 0.5 kg ,L = 1.2 m ,L AO = 0.8 m ,a = 2.1 m , h = 1.25 m , A 球的速度大小 v A = 0.4 m/s ,重力加快度 g 取 10 m/s 2,求:(1) 绳索上的拉力 F 以及 B 球的质量 m B ;(2) 若当绳索与 MN 平行时忽然断开,则经过 1.5 s 两球的水平距离; (与地面撞击后。
高考物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:20 1142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A =16.1m/s设滑块在A 点受到的冲量大小为I ,根据动量定理I=mv A解得:I=8.1kg•m/s ;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g )(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gR v =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u = C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gR v =253gR v =4.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R 处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力,g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W(3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2B N v F mg m R-= 解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭ 解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BC v v L g μ-= 从C 点到落地的时间:020.8h t s g== B 到P 的水平距离:2202B C C v v L v t gμ-=+代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.5.如图所示,半径为4l ,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内).①小球恰好离开竖直杆时,竖直杆的角速度0ω多大?②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)415T =(2)①ω0=15215g l②2g l ω≥【解析】【详解】 (1)设轻绳a 与竖直杆的夹角为α15cos α=对小球进行受力分析得 cos mg T α=解得: 415T mg = (2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。
必修2第二章圆周运动测试题班级 姓名 _ _____________ 总分 _____________ 本题共12小题,每小题6分,共72分。
在每小题给出的四个选项中,有的小题只有 一个正确选项,有的小题可能不止一个正确选项,全部选对的得6分,选对但不全的得 分,有错选或不答的得 0分。
1.关于匀速圆周运动的下述说法中正确的是A. 角速度不变B. 线速度不变 下列说法中,正确的是( ) 物体在恒力作用下不可能作曲线运动 物体在变力作用下不可能作直线运动C. ( 是匀速运动D. ) 是变速运动 2 .A. C. 3. .物体在恒力作用下不可能作圆周运动 .物体在变力作用下不可能作曲线运动 如图1所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同 的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则( 球A 的角速度一定大于球 B 的角速度 球A 的线速度一定大于球 B 的线速度 球A 的运动周期一定小于球 B 的运动周期 球A 对筒壁的压力一定大于球 B 对筒壁的压力 A. B. C. D. 图14.正常走动的钟表,其时针和分针都在做匀速转动. 下列关系中正确的有( A. 时针和分针角速度相同B. 分针角速度是时针角速度的12倍C. 时针和分针的周期相同 D .分针的周期的时针周期的12倍 5 .有两人坐在椅子上休息, 他们分别在中国的大连和广州, 关于他们具有的线速度和角速 度相比较( ) A .在广州的人线速度大,在大连的人角速度大. B. 在大连的人线速度大,在广州的人角速度大.C. 两处人的线速度和角速度一样大 D .两处人的角速度一样大,在广州处人的线速度比在大连处人的线速度大6.小球m 用长为L 的悬线固定在 0点,在0点正下方L/2处有一个光滑钉子 C ,如图2所 示,今把小球拉到悬线成水平后无初速度地释放, A .小球的速度突然增大 B. 小球的角速度突然增大 C .小球的向心加速度突然增大 D .悬线的拉力突然增大当悬线成竖直状态且与钉子相碰时 ( ) 7 .用材料和粗细相同、 长短不同的两段绳子, 各栓一个质量相同的小球在光滑水平面上做 匀速圆周运动,那么 ( ) A .两个球以相同的线速度运动时,长绳易断 B.两个球以相同的角速度运动时,长绳易断 C .两个球以相同的周期运动时,长绳易断 D .无论如何,长绳易断8 .如图3,细杆的一端与一小球相连,可绕过 0点的水平轴自由转动现给小球一初速度,使它做圆周运动,图中 a 、b 分别表示小球轨道的最低点和最高点,则杆对球的作用力可能 是()A. a 处为拉力,b 处为拉力B.a 处为拉力,b 处为推力C.a 处为推力,b 处为拉力D.a 处为推力,b 处为推力随半径变化的关系图线中可以看出()A. B 物体运动时,其线速度的大小不变B. B 物体运动时,其角速度不变C. A 物体运动时,其角速度不变D. A 物体运动时,其线速度随 r 的增大而减小10.如图5所示,水平转台上放着 A B 、C 三个物体,质量分别为 2m m m 离转轴的距离分别为R 、R 、2R,与转台间的摩擦因数相同, 转台旋转时,下列说法中,正确的是 ( )A.若三个物体均未滑动, C 物体的向心加速度最大B.若三个物体均未滑动,B 物体受的摩擦力最大C.转速增加,A 物比B 物先滑动D.转速增加,C 物先滑动图511.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
圆周运动基础训练A1.如图所示,轻杆的一端有个小球,另一端有光滑的固定轴O现给球一初速度,使球和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示球到达最高点时杆对小球的作用力,则F()A.一定是拉力B.一定是推力C.一定等于0 D.可能是拉力,可能是推力,也可能等于02.如图所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮半径为4r,小轮半径2r,b点在小轮上,到小轮中心距离为r,c点和d点分别位于小轮和大轮的边缘上。
若在传动过程中皮带不打滑,则()A.a点与b点速度大小相等B.a点与c点角速度大小相等C.a点与d点向心加速度大小相等D.a、b、c、d四点,加速度最小的是b点3.地球上,赤道附近的物体A和北京附近的物体B,随地球的自转而做匀速圆周运动.可以判断()A.物体A与物体B的向心力都指向地心B.物体A的线速度的大小小于物体B的线速度的大小C.物体A的角速度的大小小于物体B的角速度的大小D.物体A的向心加速度的大小大于物体B的向心加速度的大小4.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是()A.a处B.b处C.c处D.d处5.如图为A、B两物体做匀速圆周运动时向心加速度随半径r变化的图线,由图可知()A.A物体的线速度大小不变B.A物体的角速度不变C.B物体的线速度大小不变D.B物体的角速度与半径成正比6.由上海飞往美国洛杉矶的飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海面的高度均不变,则以下说法正确的是()A.飞机做的是匀速直线运动B.飞机上的乘客对座椅压力略大于地球对乘客的引力C.飞机上的乘客对座椅的压力略小于地球对乘客的引力D.飞机上的乘客对座椅的压力为零7.有一种大型游戏器械,它是一个圆筒形大容器,筒壁竖直,游客进人容器后靠筒壁站立,当圆筒开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为()A.游客受到的筒壁的作用力垂直于筒壁B.游客处于失重状态C.游客受到的摩擦力等于重力D.游客随着转速的增大有沿壁向上滑动的趋势8.如图所示是一种娱乐设施“魔盘”,而且画面反映的是魔盘旋转转速较大时,盘中人的情景.甲、乙、丙三位同学看了图后发生争论,甲说:“图画错了,做圆周运动的物体受到向心力的作用,魔盘上的人应该向中心靠拢”.乙说:“画画得对,因为旋转的魔盘给人离心力,所以人向盘边缘靠拢”.丙说:“图画得对,当盘对人的摩擦力不能满足人做圆周运动的向心力时,人会逐渐远离圆心”.该三位同学的说法应是()A.甲正确B.乙正确C.丙正确D.无法判断9.在光滑杆上穿着两上小球m1、m2,且m l=2m2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如图所示,此时两小球到转轴的距离r l与r2之比为()A .1:1 B.1:2C.2:1 D.1:210.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同,当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是()A.两物体均沿切线方向滑动B.两物全均沿半径方向滑动,离圆盘圆心越来越远C两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远11.司机为了能够控制驾驶的汽车,汽车对地面的压力一定要大于0,在高速公路上所建的高架桥的顶部可看作是一个圆弧,若高速公路上汽车设计时速为4 0m/s,则高架桥顶部的圆弧半径至少应为______(g取10m/s2)解析设当汽车行驶到弧顶时,对地面压力刚好为零的圆12.AB是竖直平面内的四分之一圆弧轨道,在下端B与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径为R,小球的质量为m,不计各处摩擦.求:(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R/2时速度的大小和方向;(3)小球经过圆弧轨道的B点和水平轨道的c点时,所受轨道支持力N B、Nc各是多大?13、用钳子夹住一块质量m=50kg的混凝土砌块起吊(如图所示).已知钳子与砌块间的动摩擦因数µ=0. 4,砌块重心至上端间距L=4m,在钳子沿水平方向以速度v=4m/ s匀速行驶中突然停止,为不使砌块从钳子口滑下,对砌块上端施加的压力至少为多大?(g=10m/s2)圆周运动B能力提升1.半径为R的光滑半圆球固定在水平面上(如图),顶部有一小物体A,今给它一个水平初速v0=gR,,则物体将()A.沿球面下滑至M点B.沿球面下滑至某一点N,便离开球面做斜下抛运动C.按半径大于R的新的圆弧轨道作圆周运动D.立即离开半圆球做平抛运动2.如图所示,固定在竖直平面内的光滑圆形轨道ABCD,D点为轨道最高点,DB为竖直直径,AE为过圆心的水平面,今使小球自A点正上方某处由静止释放,且从A点内侧进人圆轨道运动,只要适当调节释放点的高度,总能保证小球最终通过最高点D,则小球在通过D点后(不计空气阻力)()A、一定会落在水平面AE上B、一定会再次落到圆轨道上C、可能会落到水平面AED、可能会再次落到圆轨道上。
答案1.如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,最后落在水平地面上C 点处,不计空气阻力,求:(1)小球运动到轨道上的B 点时,对轨道的压力多大?(2)小球落地点C 与B 点水平距离s 是多少?解析:(1)小球由A →B 过程中,根据机械能守恒定律有: mgR =212B mv ① 2B v gR =②小球在B 点时,根据向心力公式有;R vm mg F BN 2=-③mgR vm mg F B N 32=+=根据牛顿第三定律,小球对轨道的压力大小等于轨道对小球的支持力,为3mg(2)小球由B →C 过程,水平方向有:s=vB ·t ④ 竖直方向有:212H R gt -=⑤解②④⑤得2()s H R R =-2.如图所示,有一长为L 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在竖直面内做完整的圆周运动。
已知水平地面上的C 点位于O 点正下方,且到O 点的距离为1.9L 。
不计空气阻力。
(1)求小球通过最高点A 时的速度v A ;(2)若小球通过最低点B 时,细线对小球的拉力T 恰好为小球重力的6倍,且小球经过B 点的瞬间让细线断裂,求小球落地点到C 点的距离。
【解析】(1)小球恰好能做完整的圆周运动,则小球通过A 点时细线的拉力刚好为零,根据向心力公式有:mg=2A v mL解得:A v gL =。
(2)小球在B 点时根据牛顿第二定律有T-mg=m 2B v L其中T=6mg解得小球在B 点的速度大小为vB=5gL细线断裂后,小球从B 点开始做平抛运动,则由平抛运动的规律得:竖直方向上1.9L-L=21gt 2(2分) 水平方向上x=vBt(2分) 解得:x=3L(2分)即小球落地点到C 点的距离为3L 。
答案:(1)gL(2)3L3.如图所示,被长L 的轻杆连接的球A 能绕固定点O 在竖直平面内作圆周运动,O 点竖直高度为h ,如杆受到的拉力等于小球所受重力的5倍时,就会断裂,则当小球运动的角速度为多大时,杆恰好断裂?小球飞出后,落地点与O 点的水平距离是多少?4.如图所示,位于竖直平面内的光滑有轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R 。
必修 2 第五章第五节圆周运动一、学点:皮带传动、共轴转动类问题1.分析下图中,A、B 两点的线速度有什么关系?分析得到:2.分析下列情下,轮上各点的角速度有什么关系?分析得到:二、课堂例题1.在匀速圆周运动中,保持不变的物理量有( )A.线速度B.角速度C.周期D.转速2.如图所示,门上有A、B 两点,在开门过程中,A、B 两点的角速度、线速度大小关系是( )A.ωA>ωBB.ωA<ωBC.vA>vBD.v A<v B3.甲、乙两个物体分别放在广州和北京,它们随地球一起转动时,下面说法正确的是()A.甲的线速度大,乙的角速度小B.甲的线速度大,乙的角速度大C.甲和乙的线速度相等D.甲和乙的角速度相等4.对自行车的三个轮子的描述:(1)A、B 两点的相同;(2)B、C 两点的相同;(3)B、C 比A 的角速度;(4)A、B 比C 的线速度。
三、巩固练习1.质点做匀速圆周运动时,下列说法正确的是()A.线速度越大,周期一定越小B.角速度越大,周期一定越小C.转速越大,周期一定越小D.圆周半径越小,周期一定越小2.关于匀速圆周运动的角速度与线速度,下列说法中正确的是()A.半径一定,角速度与线速度成反比B.半径一定,角速度与线速度成正比C.线速度一定,角速度与半径成反比D.角速度一定,线速度与半径成正比3.A、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A∶s B=2∶3,转过的角度之比A∶B=3∶2,则下列说法正确的是()A.它们的半径之比R A∶R B=2∶3B.它们的半径之比R A∶R B=4∶9C.它们的周期之比T A∶T B=2∶3D.它们的频率之比f A∶f B=2∶35.电扇的风叶的长度为1200 mm,转速为180 r/min,则它的转动周期是s,角速度是rad/s,叶片端点处的线速度是m/s。
6.一个圆环,以竖直直径AB 为轴匀速转动,如图所示,则环上M、N 两点的线速度大小之比v M∶第 1 页共3 页v N= ;角速度之比ωM ∶ωN = ;周期之比 T M ∶T N = 。
【物理】物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅解得:123gRv =,253gR v =3.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s4.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R5.如图所示,A 、B 两球质量均为m ,用一长为l 的轻绳相连,A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B 球水平向右的初速度v 0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l /2处.(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T ; (2)B 球第一次到达最高点时,A 球的速度大小v 1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W .【答案】(1)mg+m 20v l (2)2012v gl v -=(3)204mgl mv - 【解析】 【详解】(1)B 球刚开始运动时,A 球静止,所以B 球做圆周运动对B 球:T-mg =m 2v l得:T =mg +m 20v l(2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -=(3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理 W -mg221011222l mv mv =- 得:W =204mgl mv -6.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :2h t g=y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =7.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =.一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m .小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径3R 应满足的条件.(重力加速度取210m/s g =,计算结果保留小数点后一位数字.)【答案】300.4R m <≤或 31.027.9m R m ≤≤ 【解析】 【分析】 【详解】设小球在第二个圆轨道的最高点的速度为v 2,由题意222v mg m R =①()22122011222mg L L mgR mv mv μ-+-=- ② 由①②得 12.5L m = ③要保证小球不脱离轨道,可分两种情况进行讨论:I .轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足233v mg m R = ④()221330112222mg L L mgR mv mv μ-+-=- ⑤ 由④⑤得30.4R m = ⑥II .轨道半径较大时,小球上升的最大高度为R 3,根据动能定理()213012202mg L L mgR mv μ-+-=- ⑦解得 3 1.0R m = ⑧为了保证圆轨道不重叠,R 3最大值应满足()()2222332R R L R R +=+- ⑨解得:R 3=27.9m ⑩综合I 、II ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件300.4R m <≤或 31.027.9m R m ≤≤ ⑾【点睛】本题为力学综合题,要注意正确选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小球恰能通过圆形轨道的含义以及要使小球不能脱离轨道的含义.8.光滑水平面上放着质量m A =1kg 的物块A 与质量m B =2kg 的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,用手挡住B 不动,此时弹簧弹性势能E P =49J 。
圆周运动测试题及答案一、选择题1. 一个物体做匀速圆周运动,下列哪些物理量是保持不变的?()A. 线速度B. 角速度C. 向心加速度D. 周期答案:B2. 一个物体在水平面上做匀速圆周运动,向心力的方向指向()A. 圆心B. 圆外C. 切线方向D. 法线方向答案:A3. 以下哪个公式与匀速圆周运动的向心力无关?()A. F = mv^2/rB. F = mω^2rC. F = maD. F = 2mv答案:D二、填空题4. 一个物体做匀速圆周运动时,其向心加速度的大小为________,其中v是线速度,r是半径。
答案:v^2/r5. 如果一个物体的角速度增加,而半径保持不变,那么其线速度会________。
答案:增加三、计算题6. 一个物体在水平面上以2米/秒的速度做匀速圆周运动,半径为5米。
求物体的向心加速度大小。
答案:向心加速度 a = v^2/r = (2 m/s)^2 / 5 m = 0.8 m/s^27. 一个物体绕垂直轴旋转,其角速度为10 rad/s,半径为0.5米。
求物体的线速度。
答案:线速度v = ωr = 10 rad/s * 0.5 m = 5 m/s四、简答题8. 描述一下匀速圆周运动的特点。
答案:匀速圆周运动的特点是物体在圆周轨迹上运动,速度大小保持不变,但方向始终指向圆心,因此存在向心加速度。
向心加速度的方向始终指向圆心,大小与物体的速度、半径成反比。
9. 解释为什么在匀速圆周运动中,物体的速度方向时刻改变。
答案:在匀速圆周运动中,虽然速度的大小保持不变,但由于物体在圆周轨迹上运动,其运动方向不断改变,始终沿着圆的切线方向。
因此,速度的方向时刻在变化,即使大小不变,速度矢量也在变化。
五、实验题10. 设计一个实验来验证匀速圆周运动的向心力公式 F = mv^2/r。
答案:实验设计应包括以下步骤:a. 准备一个可旋转的圆盘和一个可变质量的物体。
b. 将物体固定在细绳的一端,细绳的另一端固定在圆盘的中心。
圆周运动基础训练A1.如图所示,轻杆的一端有个小球,另一端有光滑的固定轴O现给球一初速度,使球和杆一起绕O轴在竖直面内转动,不计空气阻力,用F表示球到达最高点时杆对小球的作用力,则F()A.一定是拉力B.一定是推力C.一定等于0 D.可能是拉力,可能是推力,也可能等于02.如图所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮半径为4r,小轮半径2r,b点在小轮上,到小轮中心距离为r,c点和d点分别位于小轮和大轮的边缘上。
若在传动过程中皮带不打滑,则()A.a点与b点速度大小相等B.a点与c点角速度大小相等C.a点与d点向心加速度大小相等D.a、b、c、d四点,加速度最小的是b点3.地球上,赤道附近的物体A和北京附近的物体B,随地球的自转而做匀速圆周运动.可以判断()A.物体A与物体B的向心力都指向地心B.物体A的线速度的大小小于物体B的线速度的大小C.物体A的角速度的大小小于物体B的角速度的大小D.物体A的向心加速度的大小大于物体B的向心加速度的大小4.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是()A.a处B.b处C.c处D.d处5.如图为A、B两物体做匀速圆周运动时向心加速度随半径r变化的图线,由图可知()A.A物体的线速度大小不变B.A物体的角速度不变C.B物体的线速度大小不变D.B物体的角速度与半径成正比6.由上海飞往美国洛杉矶的飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海面的高度均不变,则以下说法正确的是()A.飞机做的是匀速直线运动B.飞机上的乘客对座椅压力略大于地球对乘客的引力C.飞机上的乘客对座椅的压力略小于地球对乘客的引力D.飞机上的乘客对座椅的压力为零7.有一种大型游戏器械,它是一个圆筒形大容器,筒壁竖直,游客进人容器后靠筒壁站立,当圆筒开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为()A.游客受到的筒壁的作用力垂直于筒壁B.游客处于失重状态C.游客受到的摩擦力等于重力D.游客随着转速的增大有沿壁向上滑动的趋势8.如图所示是一种娱乐设施“魔盘”,而且画面反映的是魔盘旋转转速较大时,盘中人的情景.甲、乙、丙三位同学看了图后发生争论,甲说:“图画错了,做圆周运动的物体受到向心力的作用,魔盘上的人应该向中心靠拢”.乙说:“画画得对,因为旋转的魔盘给人离心力,所以人向盘边缘靠拢”.丙说:“图画得对,当盘对人的摩擦力不能满足人做圆周运动的向心力时,人会逐渐远离圆心”.该三位同学的说法应是()A.甲正确B.乙正确C.丙正确D.无法判断9.在光滑杆上穿着两上小球m1、m2,且m l=2m2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如图所示,此时两小球到转轴的距离r l与r2之比为()A .1:1 B.1:2C.2:1 D.1:210.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同,当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是()A.两物体均沿切线方向滑动B.两物全均沿半径方向滑动,离圆盘圆心越来越远C两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远11.司机为了能够控制驾驶的汽车,汽车对地面的压力一定要大于0,在高速公路上所建的高架桥的顶部可看作是一个圆弧,若高速公路上汽车设计时速为4 0m/s,则高架桥顶部的圆弧半径至少应为______(g取10m/s2)解析设当汽车行驶到弧顶时,对地面压力刚好为零的圆12.AB是竖直平面内的四分之一圆弧轨道,在下端B与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径为R,小球的质量为m,不计各处摩擦.求:(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R/2时速度的大小和方向;(3)小球经过圆弧轨道的B点和水平轨道的c点时,所受轨道支持力N B、Nc各是多大?13、用钳子夹住一块质量m=50kg的混凝土砌块起吊(如图所示).已知钳子与砌块间的动摩擦因数µ=0. 4,砌块重心至上端间距L=4m,在钳子沿水平方向以速度v=4m/ s匀速行驶中突然停止,为不使砌块从钳子口滑下,对砌块上端施加的压力至少为多大?(g=10m/s2)圆周运动B能力提升1.半径为R的光滑半圆球固定在水平面上(如图),顶部有一小物体A,今给它一个水平初速v0=gR,,则物体将()A.沿球面下滑至M点B.沿球面下滑至某一点N,便离开球面做斜下抛运动C.按半径大于R的新的圆弧轨道作圆周运动D.立即离开半圆球做平抛运动2.如图所示,固定在竖直平面内的光滑圆形轨道ABCD,D点为轨道最高点,DB为竖直直径,AE为过圆心的水平面,今使小球自A点正上方某处由静止释放,且从A点内侧进人圆轨道运动,只要适当调节释放点的高度,总能保证小球最终通过最高点D,则小球在通过D点后(不计空气阻力)()A、一定会落在水平面AE上B、一定会再次落到圆轨道上C、可能会落到水平面AED、可能会再次落到圆轨道上。
《圆周运动》练习题(一)1.A. 线速度不变2. A 和B A. 球AB. 球AC. 球AD. 球A 3. 演,如图5A. 《B. C. D. 4.A. B. C. D. …5.如图1个质量为应为( )A. 5.2cmB. 5.3cmC. 5.0cmD. 5.4cm6. (M>m A.mLgm M )(-μC.MLgm M )(+μ7. 如图3A. A 、B 【C. 若︒=30θ,则8. A. 木块A B. 木块A C. 木块A 受重力、支持力和静摩擦力,摩擦力的方向指向圆心D. 木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同9. 如图5所示,质量为m :A. B.C. D.10. 一辆质量为4t;11.和60°,则A 、B12.如图所示,a 、b B r OC =(1)B C ωω:13. 转动时求杆OA 和AB!14. 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。
)18.^(1(2答案—1.解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B 、D 。
2. 解析:对小球A 、B 受力分析,两球的向心力都来源于重力mg 和支持力N F 的合力,其合成如图4所示,故两球的向心力αcot mg F F B A ==比较线速度时,选用rv m F 2=分析得r 大,v 一定大,A 答案正确。
比较角速度时,选用r m F 2ω=分析得r 大,ω一定小,B 答案正确。
比较周期时,选用r Tm F 2)2(π=分析得r 大,T 一定大,C 答案不正确。
小球A 和B 受到的支持力N F 都等于αsin mg,D 答案不正确。
点评:①“向心力始终指向圆心”可以帮助我们合理处理物体的受力;② 根据问题讨论需要,解题时要合理选择向心力公式。
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
圆盘上的圆周运动问题圆周运动专题一题号一二三总分得分一、单选题(本大题共7小题,共28.0分)1.两个质量分别为2m和m的小木块a和可视为质点放在水平圆盘上,a与转轴的距离为L,b与转轴的距离为2L,a、b之间用长为L的强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。
若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用表示圆盘转动的角速度,下列说法正确的是()A. a比b先达到最大静摩擦力B。
a、b所受的摩擦力始终相等C. 是b开始滑动的临界角速度D. 当时,a所受摩擦力的大小为【答案】D【解析】【分析】木块随圆盘一起转动,静摩擦力提供向心力,而所需要的向心力大小由物体的质量、半径和角速度决定。
当圆盘转速增大时,提供的静摩擦力随之而增大,当需要的向心力大于最大静摩擦力时,物体开始滑动。
因此是否滑动与质量无关,是由半径大小决定.本题的关键是正确分析木块的受力,明确木块做圆周运动时,静摩擦力提供向心力,把握住临界条件:静摩擦力达到最大,由牛顿第二定律分析解答.【解答】A.木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律得:木块所受的静摩擦力,a和b的质量分别是2m和m,而a与转轴的距离为L,b与转轴的距离为2L,所以开始时a和b受到的摩擦力是相等的;b受到的静摩擦力先达到最大,故A错误;B。
在b的摩擦力没有达到最大前,静摩擦力提供向心力,由牛顿第二定律得:木块所受的静摩擦力,a 和b的质量分别是2m和m,而a与转轴的距离为L,b与转轴的距离为2L,所以开始时a和b受到的摩擦力是相等的;当b受到的静摩擦力达到最大后,b受到的摩擦力与绳子的拉力的和提供向心力,即:,而a的受力:,联立得:,可知二者受到的摩擦力不一定相等,故B错误;C。
当b刚要滑动时,有,解得:,故C错误;D。
当时,此时b所受摩擦力已达最大,a所受摩擦力的大小为:,故D正确。
故选D。
1曲线运动1 如图所示,绕同一恒星运行的两颗行星 A 和B ,A 是半径为r 的圆轨道,B 是长轴为2r 椭圆轨道,其中Q′ 到恒星中心的距离为Q 到恒星中心距离的2倍,两轨道相交于P 点。
以下说法不正确的是( )A .A 和B 经过P 点时加速度相同 B .A 和B 经过P 点时的速度相同C .A 和B 绕恒星运动的周期相同D .A 的加速度大小与B 在Q ′处加速度大小之比为16︰9 【答案】B解析:由牛顿第二定律得:ma r Mm G=2,解得:a =2r GM,经过P 点时M 、r 都相同,则加速度相同,故A 正确;A 行星做匀速圆周运动,而B 做的是椭圆运动,二者在同一点处的速度方向不相同,速度不同,故B 错误;根据开普勒第三定律,两行星围绕同一中心天体运动,且半长轴相同,故周期相同,故C 正确;B 在Q′处时与恒星球心的距离为 r ,根据a =2rGM, 故A 的加速度大小与B 在Q′处加速度大小之比为9163422==r ra a B A ,故D 正确。
故选B 。
2 (多选)为适应国民经济的发展需要,我国铁路正式实施第六次提速。
火车转弯可以看做是做匀速圆周运动,火车速度提高易使外轨受损。
为解决火车高速转弯时使外轨受损这一难题,你认为理论上可行的措施是( ) A. 减小弯道半径 B. 增大弯道半径C. 适当减小内外轨道的高度差2D. 适当增加内外轨道的高度差 【答案】BD解析 若火车转弯时铁轨不受挤压,即由重力和支持力的合力提供向心力, 火车转弯平面是水平面。
如图所示,由牛顿第二定律rvmmg 2tan =α 得: v =αtan gr α,所以要提速可增大转弯半径;适当增大轨道平面的倾角α,即适当增大内外轨道的高度差。
3 公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。
如图所示,汽车通过凹形桥的最低点时( )A. 车对桥的压力等于汽车的重力B. 车对桥的压力小于汽车的重力C. 车的速度越大,车对桥面的压力越小D. 车的速度越大,车对桥面的压力越大 【答案】 D解析 汽车在凹形桥的最低点时受重力和支持力,设汽车的重力为G ,汽车做圆周运动的半径为r ,桥对汽车的支持力大小为F ,由牛顿第三定律知,汽车对桥的压力大小也为F ,由牛顿第二定律得F -G =rv m 2,当汽车通过凹形桥的最低点时v >0,所以F >G ,选项A 、B 错误; 由上式可知,汽车的速度v 越大,F 越大,选项C 错误,选项D 正确。
1.在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动•已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为力加速度为g=10 m/s2,若已知女运动员的体重为35 kg,据此可估算该女运动员(A .受到的拉力约为350 ,'2 NB .受到的拉力约为350 NC .向心加速度约为10 m/sD .向心加速度约为10 2 m/s45°重图 4 —2- 112.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4—2 —12所示•交警根据图示作出以下判断,你认为正确的是 A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动C •公路在设计上可能内(东)高外(西)低D •公路在设计上可能外(西)高内(东)低3. (2010湖北部分重点中学联考)如图4—2 —13所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径•某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则A .该盒子做匀速圆周运动的周期一定小于2B .该盒子做匀速圆周运动的周期一定等于2C •盒子在最低点时盒子与小球之间的作用力大小可能小于D •盒子在最低点时盒子与小球之间的作用力大小可能大于2mg2mg)JE中4.图示所示,为某一皮带传动装置.主动轮的半径为r1,从动轮的半径为转速为n,转动过程中皮带不打滑.下列说法正确的是A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为?nD .从动轮的转速为严nr2 r 1 r2 .已知主动轮做顺时针转动, ()5.质量为m的石块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图4- 2 —17所示,那么()A .因为速率不变,所以石块的加速度为零B .石块下滑过程中受的合外力越来越大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加速度大小不变,方向始终指向球心6.2008年4月28日凌晨,山东境内发生两列列车相撞事故,造成了大量人员伤亡和财产损失.引发事故的主要原因是其中一列列车转弯时超速行驶. 新型高速列车,当它转弯时,车厢会自动倾斜,提供转弯需要的向心力;的速度在水平面内转弯,弯道半径为B . 1 000 N MN如图4— 2 —18所示,是一种假设这种新型列车以360 km/h 1.5 km,则质量为75 kg的乘客在列车转弯过程中所受到的合外)D. 0力为(C. 500 .2 N7•如图甲所示,一根细线上端固定在S点,下端连一小铁球A,让小铁球在水平面内做匀速圆周运动,此装置构成一圆锥摆(不计空气阻力)•下列说法中正确的是()A •小球做匀速圆周运动时,受到重力、绳子的拉力和向心力作用B •小球做匀速圆周运动时的角速度一定大于.^(1为摆长)C •另有一个圆锥摆,摆长更大一点,两者悬点相同,如图乙所示,如果改变两小球的角速度,使两者恰好在同一水平面内做匀速圆周运动,则的角速度大于A球的角速度D .如果两个小球的质量相等,则在图乙中两条细线受到的拉力相等&汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,沿半径方向受到的摩擦力分别为Ff甲和Ff 乙.以下说法正确的是()A. Ff甲小于Ff乙B. Ff甲等于Ff乙C . Ff甲大于Ff乙D . Ff甲和Ff乙大小均与汽车速率无关9.在高速公路的拐弯处,通常路面都是外高内低•如图4-2—20所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些•汽车的运动可看作是做半径为R的圆周运动•设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为方向)等于零,则汽车转弯时的车速应等于()g.要使车轮与路面之间的横向摩擦力(即垂直于前进11.如图4 —2 —25所示,一水平光滑、距地面高为h、边长为a的正方形MNPQ桌面上,用长为L的不可伸长的轻绳连接质量分别为m A、m B的A、B两小球,两小球在绳子拉力的作用下,绕绳子上的某点O以不同的线速度做匀速圆周运动,圆心O与桌面中心重合,已知m A= 0.5 kg, L = 1.2 m , L AO =0.8 m, a= 2.1 m , h = 1.25 m , A 球的速度大小V A = 0.4 m/s,重力加速度g 取10 m/s2,求:⑴绳子上的拉力F以及B球的质量m B;(2)若当绳子与MN平行时突然断开,则经过 1.5 s两球的水平距离;(与地面撞击后。
精心整理
第(63)单元测试题
一、单项选择题
1、在某转弯处,规定火车行驶的速率为v0,则下列说法中正确的是()
A.当火车以速率v0行驶时,火车的重力与支持力的合力方向一定沿水平方向
B.当火车的速率v>v0时,火车对外轨有向外的侧向压力
C.当火车的速率v>v0时,火车对内轨有向内的挤压力
D.当火车的速率v<v0时,火车对内轨有向内侧的压力
2、一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是()
A.a
C.c
3
A.
4v,()
A.
5
A
C
6
7、
v
8
A
B
C.小球的角速度突然减小
D.悬线拉力突然增大
9、如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()
A.小球在圆周最高点时所受的向心力一定为重力
B.小球在最高点时绳子的拉力不可能为零
C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为gL
D.小球过最低点时绳子的拉力一定大于小球重力
10、汽车驶向一凸形桥,为了在通过桥顶时,减小汽车对桥的压力,司机应()
A.以尽可能小的速度通过桥顶
B.适当增大速度通过桥顶
C.以任何速度匀速通过桥顶
D.使通过桥顶的向心加速度尽可能小
11、
图8
两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图8所示,A运动的半径比B的大,则()
A.A受到的向心力比B的大
B.B受到的向心力比A的大
C.A的角速度比B的大
D.B的角速度比A的大
12、关于铁路转弯处内外轨道间有高度差,下列说法正确的是()
A
B
C
D
13
v
A.
14
A.v
C.v
15、
如图P A
B
C
D
16
小球m在竖直放置的光滑圆形管道内做圆周运动,下列说法中正确的是()
A.小球通过最高点时的最小速度是v=
B.小球通过最高点时的最小速度为0
C.小球在水平线ab以下的管道中运动时内侧管壁对小球一定无作用力
D.小球在水平线ab以上的管道中运动时外侧管壁对小球一定无作用力
17、洗衣机的脱水筒在工作时,有一衣物附着在竖直的筒壁上,则此时()
A.衣物受重力、筒壁弹力和摩擦力作用
B.衣物随筒壁做圆周运动的向心力由摩擦力提供
C.筒壁的弹力随筒转速的增大而增大
D.筒壁对衣物的摩擦力随筒转速的增大而增大
18、铁路转弯处的弯道半径r主要是根据地形决定的.弯道处要求外轨比内轨高,其内外
轨高度差h的设计不仅与r有关,还与火车在弯道上的行驶速率v有关.下列说法正确
的是()
A.v一定时,r越小则要求h越大
B.v一定时,r越大则要求h越大
C.r一定时,v越大则要求h越大
D.r一定时,v越小则要求h越大
19、修铁路时,两轨间距是1435 mm,某处铁路转弯的半径是300 m,若规定火车通过
这里的速度是72 km/h.请你运用学过的知识计算一下,要想使内外轨均不受轮缘的挤压,内外轨的高度差应是多大?
20、如图所示,半径为R、内径很小的光滑半圆管置于竖直平面内,两个质量均为m的小球A、B,以不同的速度进入管内,A通过最高点C时,对管壁上部的压力为3mg,B通过最高点C时,对管壁下部的压力为0.75mg,求A、B两球落地点间的距离。
21、如图2所示,链球运动员在将链球抛掷出手之前,总要双手拉着链条加速转动几圈,
1、
8、
11、
2==,故
12、
13、
同
14、必须满足f=
15、反之,F
16、BC[小球沿管道做圆周运动的向心力由重力及管道对小球的支持力的合力沿半径方向的分力提供.由于管道的内、外壁都可以提供支持力,因此过最高点的最小速度为0,A错误,B正确;小球在水平线ab以下受外侧管壁指向圆心的支持力作用,C正确;在ab线以上是否受外侧管壁的作用力由速度大小决定,D错误.]
17、AC[对衣物研究,竖直方向:f=mg.水平方向:N=mrω2=mr(2πn)2.当转速增大时,摩擦力f不变,弹力N增大.]
18、AC[火车转弯时重力和支持力的合力提供向心力,则
mg tanθ=m,v=
当v一定时,r越小,θ越大,而车轨间距恒定,故h越大,A对,B错;当r一定时,v越大,θ越大,同理h越大,C对,D错.]
三、计算题
19、0.195 m
解析火车在转弯时所需的向心力由火车所受的重力和轨道对火车支持力的合力提供的,如图所示,图中h为两轨高度差,d为两轨间距,mg tanα=m,tanα=,又由于轨道平面和水平面间的夹角一般较小,可近似认为:tanα≈sinα=.
因此:=,则h==m=0.195 m.
点评近似计算是本题关键的一步,即当角度很小时
sinα≈tanα.
20、3R
21、见解析
解析如图所示,设链球的绳长为L,绳对球的拉力为F,链球重力为mg,由正交分解得F cos θ=mg,F sinθ=mω2r,r=L sinθ
联立三式解得cosθ=.
由此式可以看出转速增大,ω增大,cosθ值减小,θ变大,所以θ角随链球转速的增大而增
大.
点评。