两线制4-20ma原理
- 格式:docx
- 大小:15.10 KB
- 文档页数:2
两线制、三线制、四线制的区别和原理几线制的称谓,是在两线制变送器诞生后才有的。
这是电子放大器在仪表中广泛应用的结果,放大的本质就是一种能量转换过程,这就离不开供电。
因此最先出现的是四线制的变送器;即两根线负责电源的供应,另外两根线负责输出被转换放大的信号(如电压、电流、等)。
DDZ-Ⅱ型电动单元组合仪表的出现,供电为220V.AC,输出信号为0--10mA.DC的四线制变送器得到了广泛的应用,目前在有些工厂还可见到它的身影。
七十年代我国开始生产DDZ-Ⅲ型电动单元组合仪表,并采用国际电工委员会(IEC)的:过程控制系统用模拟信号标准。
即仪表传输信号采用4-20mA.DC,联络信号采用1-5V.DC,即采用电流传输、电压接收的信号系统。
采用4-20mA.DC信号,现场仪表就可实现两线制。
但限于条件,当时两线制仅在压力、差压变送器上采用,温度变送器等仍采用四线制。
现在国内两线制变送器的产品范围也大大扩展了,应用领域也越来越多。
同时从国外进来的变送器也是两线制的居多。
因为要实现两线制变送器必须同时满足以下条件:1.V≤Emin-ImaxRLmax变送器的输出端电压V等于规定的最低电源电压减去电流在负载电阻和传输导线电阻上的压降。
2. I≤Imin变送器的正常工作电流I必须小于或等于变送器的输出电流。
3. P<Imin(Emin-IminRLmax)变送器的最小消耗功率P不能超过上式,通常<90mW。
式中:Emin=最低电源电压,对多数仪表而言Emin=24(1-5%)=22.8V,5%为24V电源允许的负向变化量;Imax=20mA;Imin=4mA;RLmax=250Ω+传输导线电阻。
如果变送器在设计上满足了上述的三个条件,就可实现两线制传输。
所谓两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线,这两根电线既是电源线又是信号线。
两线制变送器由于信号起点电流为4mA.DC,为变送器提供了静态工作电流,同时仪表电气零点为4mA.DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。
二线制模拟电流4-20mA 信号变送电路设计模拟工控网上用的4-20 mA 标准电流信号是工业上最常用的信号传输方法之一。
本文将介绍二线制方式的标准电流输出为4-20mA 的变送电路。
通过对集成电路AM462(电压电流转换变送电路)的应用举例,介绍了如何实现工业上常用的二线制变送接口电路,而它可以为程控机PLC 等直接传输信息。
针对不同的控制设备,介绍了相应的电路元器件的计算方法。
注意:下面的介绍对于AMG 公司生产的所有电压电流转换集成电路(AM400, AM402,AM422, AM442, AM460)原则上都是适用的[1]。
模拟电路接口工业上通常用电压0-5(10)V 或电流0(4)-20mA 作为模拟信号传输的方法,也是被程控机经常采用的一种方法。
那么电压和电流的传输方式有什么不同,什么时候采用什么方法,下面将对此进行简要介绍。
电压信号传输比如0-5(10)V如果一个模拟电压信号从发送点通过长的电缆传输到接收点,那么信号可能很容易失真。
原因是电压信号经过发送电路的输出阻抗,电缆的电阻以及接触电阻形成了电压降损失。
由此造成的传输误差就是接收电路的输入偏置电流乘以上述各个电阻的和。
如果信号接收电路的输入阻抗是高阻的,那么由上述的电阻引起的传输误差就足够小,这些电阻也就可以忽略不计。
要求不增加信号发送方的费用又要所提及的电阻可忽略,就要求信号接收电路有一个高的输入阻抗。
如果用运算放大器OP 来做接收方的输入放大器,就要考虑到此类放大器的输入阻抗通常是小于<1MΩ。
原则上,高阻抗的电路特别是在放大电路的输入端是很容易受到电磁干扰从而会引起很明显的误差。
所以用电压信号传输就必须在传输误差和电磁干扰的影响之间寻找一个折中的方案。
电压信号传输的结论:如果电磁干扰很小或者传输电缆长度较短,一个合适的接收电路毫无疑问是可以用来传输电压信号0-5(10)V 的。
电流信号传输比如0(4)-20mA在电磁干扰较强的环境和需要传输较远距离的情况下,多年来人们比较喜欢使用标准的电流来传输信号。
变送器4-20mA电流的由来工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,它们都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
4-20mA,指的就是最小电流为4mA,最大电流为20mA。
在工业现场,要完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输线会受到噪声的干扰;第二,传输线的分布电阻会产生电压降;第三,在现场如何提供仪表放大器的工作电压也是个问题。
为了解决上述问题和避开相关噪声的影响,我们会用电流来传输信号,因为电流对噪声并不敏感。
4-20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。
为什么选择4-20mA而不是0-20mA呢?很简单,如果0是最小,那么开路故障就检测不到了!那么,为什么偏偏是4mA呢?正常工作时,电流信号不会低于4mA。
当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
有两个原因。
一个原因是为了避免干扰,另一个原因是在4-20mA使用的是两线制,即两根线即是信号线,同时也是电源线,而4mA是为了给传感器提供电路的静态工作电流用。
这个4-20mA控制回路是怎么工作的呢?4-20mA构成基础要件:24V电源供电变送器控制4-20mA信号使其与过程变量成比例变化指示器将4-20mA信号转化为相应过程变量指示器或控制器I/O输入电阻250Ω分流器生成1-5V输入信号(欧姆定律:电压=电流*电阻,4-20mAX250ohms=1-5V)通常情况下:1)它们将热电偶或热电阻传感器的温度信号转换为4-20mA信号然后再输出;2)控制器再将4-20mA反译为具体的温度值;3)基于此温度值,控制回路给实现对过程终端控制元件的控制。
同样,控制回路中的压力变送器,通常用来测量过程介质的压力值:1)传感器感知压力,又由变送器将信号转换为4-20mA 信号;2)控制器再将4-20mA信号反译为压力值;3)控制器根据压力值,给阀门发送指令,控制阀门开度实现安全阀控制,确保容器不产生危险压力。
两线制4-20mA信号隔离现场应用方案举例两线制4-20mA信号隔离器:ISO 4-20mAISO 4-20mA电流环隔离芯片是单片两线制隔离接口芯片,该IC内部包含有电流信号调制解调电路、信号耦合隔离变换电路等。
很小的输入等效电阻,使该IC的输入电压达到超宽范围(—32V),以满足用户无需外接电源而实现信号远距离、无失真传输的需要。
内部的陶瓷基板、印刷电阻工艺及新技术隔离措施使器件能达到3KVDC绝缘电压和工业级宽温度、潮湿、震动的现场恶劣环境要求。
ISO 4-20mA系列产品使用非常方便无需外接任何元件即可实现4-20mA电流环隔离或信号一进二出、二进二出等变换功能。
两线制4-20mA信号隔离调理器:ISO 4-20mA-PISO 4-20mA-P是一种两线制4-20mA 信号隔离调理器,属于SUNYUAN ISO 4-20mA系列的产品。
该IC内部包含有电流信号调制解调电路、信号耦合隔离变换电路等。
很小的输入等效电阻,使该IC能够从传感器回路中采集到的信号电压达到超宽范围(—32V),以满足用户无需外接辅助电源而实现信号远距离、无失真传输的需要。
该IC输出是针对24VDC和取样电阻(或称负载电阻)相串联的二线制供电回路来设计的,同当前流行的模拟量输入接口板(上位机)、PLC、DCS或其他仪表的模拟量输入端口相匹配。
内部的陶瓷基板、印刷电阻工艺及新技术隔离措施使器件能达到3KVDC绝缘电压和工业级宽温度、潮湿、震动的现场恶劣环境要求。
ISO 4-20mA-P产品使用非常方便,只需外接一个50KΩ的多圈电位器进行ADJ校正,即可实现两线制4-20mA信号的隔离、传输和变送功能或信号的一进二出、二进二出等变换功能。
两线制4-20mA信号隔离配电器:ISO 4-20mA-FISO 4-20mA-F是一种两线制4-20mA 信号隔离配电器,属于SUNYUAN ISO 4-20mA系列的产品。
该IC内部包含有电流信号调制解调电路、信号耦合隔离变换电路,还有一个高效率的DC-DC电路等。
两线制4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。
下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。
当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。
其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。
变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。
显示仪表只需要串在电路中即可。
这种变送器只需外接2根线,因而被称为两线制变送器。
工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。
这使得两线制传感器的设计成为可能。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。
2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。
如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。
因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。
浅谈4-20mA.DC(1-5V.DC)信号制典型电路2009-09-03 10:46:08 阅读20 评论0 字号:大中小4-20mA.DC(1-5V.DC)信号制是国际电工委员会(IEC):过程控制系统用模拟信号标准。
我国从DDZ-Ⅲ型电动仪表开始采用这一国际标准信号制,仪表传输信号采用4-20mA.DC,联络信号采用1-5V.DC,即采用电流传输、电压接收的信号系统。
这种信号制的优点有:现场仪表可实现两线制,所谓两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线。
因为信号起点电流为4mA.DC,为变送器提供了静态工作电流,同时仪表电气零点为4mA.DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。
而且两线制还便于使用安全栅,利于安全防爆。
控制室仪表采用电压并联制信号传输,同一个控制系统所属的仪表之间有公共端,便于与检测仪表、调节仪表、计算机、报警装置配用,并方便接线。
现场仪表与控制室仪表之间的联络信号采用4-20mA.DC的理由是:因为现场与控制室之间的距离较远,连接电线的电阻较大,如果用电压源信号远传,由于电线电阻与接收仪表输入电阻的分压,将产生较大的误差,而用恒电流源信号作为远传,只要传送回路不出现分支,回路中的电流就不会随电线长短而改变,从而保证了传送的精度。
控制室仪表之间的联络信号采用1-5V.DC的理由是:为了便于多台仪表共同接收同一个信号,并有利于接线和构成各种复杂的控制系统。
如果用电流源作联络信号,当多台仪表共同接收同一个信号时,它们的输入电阻必须串联起来,这会使最大负载电阻超过变送仪表的负载能力,而且各接收仪表的信号负端电位各不相同,会引入干扰,而且不能做到单一集中供电。
采用电压源信号联络,与现场仪表的联络用的电流信号必须转换为电压信号,最简单的方法就是:在电流传送回路中串接一个250欧姆的标准电阻,把4-20mA.DC转换为1-5V.DC,通常由配电器来完成这一任务。
探讨4-20mA DC电流信号传输距离首先:干扰因素:①、与激励电压高低有关,②、与变送器允许的最小工作电压有关,③、与板卡设备采集电流用的取压电阻大小有关,④、与导线电阻的大小有关通过这四项有关量,可以计算出4~20mA电流信号的理论传输距离。
其次:要使4~20mA信号,无损失在两线回路里传输,必须满足欧姆定律,即满足:(激励电压-变送器允许的最小工作电压)≥输出电流×电流环路总电阻当输出电流I=20mA,即0.02A时,上式取等号,则:电流环路总电阻=(激励电压-变送器允许的最小工作电压)÷0.03、将这个计算值记作r,即r=(激励电压-变送器允许的最小工作电压)×50 ,单位Ω这个r,业界称之为电流信号的负载电阻,也就是电流信号的最大带载能力我国电气自动化仪表从技术发展角度分类,主要分为DDZ-Ⅰ型、DDZ-Ⅱ型、DDZ-Ⅲ型和DDZ-S型等几个类型,目前基本上都是电3型和电4型仪表,分别是指DDZ-Ⅲ型和DDZ-S型。
4-20mA电流信号究竟能够传输多远?4-20mA电流信号的传输距离主要与以下几个因素有关:1. 信号的激励电压Ue;2. 仪表的最低工作电压Umin;3. 接收设备的负载(采样)电阻RL;4. 导线电阻r。
图1:二线制变送器电流信号传输回路其中,Uo是变送器的供电电压,必须在满载时(电流I=20mA)保证Uo≥Umin。
即:。
根据这个公式,可以计算出在变送器处于最低工作电压时,最大的导线电阻。
假设:已知:Ue=24V,I=20mA,RL=250Ω,Umin=12V。
求出r的最大值为175Ω:ρ——电阻率(铜电阻率=0.017,铝电阻率=0.029)L——线的长度(单位:米)S——线的截面(单位:平方毫米)注:电阻值与长度成正比,与截面积成反比。
导线越长,电阻越大,导线越粗,电阻越小。
以铜线为例,ρ= 0.017 Ω·mm2/m,即:横截面积1mm2,长度1m的铜线电阻为0.017Ω。
两线制4-20ma原理两线制4-20mA电流回路是工业自动化中一种常见的模拟信号传输方式。
它在工业控制现场中广泛应用,用于传输测量、监测和控制设备的模拟信号。
该回路的原理很简单,是通过将模拟信号转换为标准的4mA到20mA的电流,然后通过两根导线传输至远程设备,最后再将电流信号转换回模拟信号进行处理。
以下是该回路的详细解析。
1.原理概述两线制4-20mA电流回路采用4mA到20mA的电流范围来表示模拟量的变化。
其中4mA表示信号的最小值,20mA表示信号的最大值。
这种电流范围相对较大,有助于提高信号传输的抗干扰能力,特别适用于工业环境中电磁干扰较多的场合。
2.发送端在发送端,首先需要将模拟信号转换为相应的电流信号。
通常使用模拟信号转换模块,例如模拟电流输出模块,将0-10V或0-20mA等模拟信号转换为4-20mA的电流输出信号。
此时,电流根据输入模拟信号的大小进行调节,当模拟信号为0时,输出电流为4mA;当模拟信号达到最大值时,输出电流为20mA。
3.传输线路经过模拟信号转换后,输出的4-20mA电流信号将通过两根导线进行传输。
这两根导线通常称为“回路电源线”和“回路信号线”。
回路电源线提供电流回路所需的电源供电,实时监测电流波动情况;而回路信号线则用于传输电流信号。
4.接收端在接收端,需要将电流信号重新转换为模拟信号进行处理。
通常使用接收模块,例如模拟电流输入模块,将4-20mA的电流信号转换为0-10V或0-20mA等模拟信号。
接收模块会根据电流信号的大小,将其转换为相应的模拟信号输出。
5.电源供电两线制4-20mA电流回路的电源供电方式有两种常见的形式:一是使用回路电源,即在回路电源线中提供电源供电;二是使用第三方电源供电,即通过外部电源为回路提供电源。
回路电源通常具有一定的过压和短路保护功能,确保电源稳定和回路安全。
6.优势和应用两线制4-20mA电流回路在工业自动化中具有以下优势:-高抗干扰能力:电流信号相对于电压信号,具有更好的抗干扰能力,能够有效抵御外界电磁干扰对信号传输的影响。
两线制变送器原理在工业自动化领域,变送器是一种用于将物理量转换为标准信号输出的设备。
其中,两线制变送器是一种常见的类型,它通过两根导线来实现信号的传输和供电。
本文将介绍两线制变送器的工作原理及其在工业自动化中的应用。
1. 变送器的基本原理变送器是一种用于将物理量转换为标准信号输出的设备,常见的物理量有压力、温度、液位等。
它的基本原理是将物理量转换为电信号,并经过放大、线性化等处理后输出。
变送器的输出信号一般采用标准的电流信号(如4-20mA)或电压信号(如0-10V)。
2. 两线制变送器的工作原理两线制变送器是一种常见的变送器类型,它通过两根导线来实现信号的传输和供电。
其工作原理如下:- 变送器的输入端接收到物理量,如温度传感器接收到温度信号。
- 输入端的信号被转换为电信号,如温度信号被转换为电压信号。
- 变送器内部的电路对输入信号进行放大、线性化等处理,以确保输出信号与输入信号之间的一定关系。
- 处理后的信号通过两根导线传输到控制室或显示装置。
- 控制室或显示装置通过对接收到的信号进行解析,得到对应的物理量。
3. 两线制变送器的优势与应用两线制变送器相比于其他类型的变送器有以下优势:- 两线制变送器只需要两根导线进行信号传输和供电,安装简便,减少了设备和线缆的成本。
- 两线制变送器在长距离传输时的信号衰减较小,传输稳定可靠。
- 两线制变送器的输出信号一般为标准的电流信号(如4-20mA),抗干扰能力强,适用于工业环境中的长距离传输和抗干扰要求较高的场合。
两线制变送器在工业自动化中有广泛的应用,包括但不限于以下几个方面:- 温度变送器:将温度传感器测量到的温度转换为标准的电流信号输出,用于控制室的温度监测和控制。
- 压力变送器:将压力传感器测量到的压力转换为标准的电压信号输出,用于工业过程控制中的压力监测和控制。
- 液位变送器:将液位传感器测量到的液位转换为标准的电流信号输出,用于油罐、水池等液位监测和控制。
二线制变送器信号/供电原理及相关问题解答一、什么是二线制变送器或控制单元:二线制变送器或控制单元是指,采用将物理量转换成4~20mA标准电流信号通过一对(二根)导线输出的同时,电源以4~20mA的电流通过同一对导线为变送器或控制单元供电的信号传输及供电方式的电流输出型变送器或控制单元。
二、二线制的信号传输及供电原理在一个电源和带有一只可变电阻构成的回路中(见图1),改变可变电阻的阻值可以改变回路电流。
当电源电压或者电阻发生变化时,可以通过改变可变电阻的阻值可以使回路电流保持在相应位置。
同时回路中只要还存在电流,可变电阻两端就有电压存在。
如果这个变阻器图1具有一定的智能,可以自动根据需要将回路中的电流稳定在某个数值,这个变阻器就等效为可调的恒流器,而二线制变送器正是一种具有这种特性的设备。
在实际应用中变送器可以等效为一只特殊的可变电阻(见图2)。
这只可变电阻的特殊性在于:它是根据变送器的输入或控制单元的要求Array而对流过的电流在规定的数值之间进行调整从而实现信号的传输。
同时这个电流有一个下限,使回路中始终保持有一定的电流通过从而在变送器或控制单元的两端始终存在电压从而实现对变送器或控制单元的供电。
三、二线制的信号传输及供电的相关规定二线制,要在一对导线中实现同时传输信号并供电的要求,就必须对信号电流、电源电压、负载电阻、变送器的电源适应能力等,有一个统筹安排。
同时作为一项广泛运用的技术,这种安排需要有一个统一的标准。
我国国家标准 GB/T 3369-2008 《过程控制用模拟信号》(国际电工委员会标准IEC 60381-1982)中对信号和供电的要求:◆直流电流信号:4-20mA 或0-20mA,推荐使用4-20mA ;◆直流电压信号:0-5V,1-5V,1-10V,-10-10V :◆一个变送器或控制单元应能连续地驱动0Ω-300Ω之间的任何负载;◆使用外部电源电源的任何变送系统元件,当电源在20V(DC)~30 V(DC)之间变化时,应能正常工作。
4~20mA电流变送器的工业控制应用4~20mA电流环工作原理在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输信号就会受到噪声的干扰而不纯洁;第二,传输线的电阻会产生电压降,那么接收端的信号就会产生误差;第三,在现场如何提供仪表放大器的不同的工作电压也是个问题。
为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。
4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。
4~20mA电流环有两种类型:二线制和三线制。
当监控系统需要通过长线驱动现场的驱动器件如阀门等时,一般采用三线制变送器,这里XTR位于监控的系统端,由系统直接向XTR供电,供电电源是二根电流传输线以外的第三根线。
二线系统是XTR和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20mA的电流环向远端的XTR供电,通过4~20mA来反映信号的大小。
4~20mA产品的典型应用是传感和测量应用,在工业现场有许多种类的传感器可以被转换成4~20mA的电流信号,TI 拥有一些很方便的用于RTD和电桥的变送器芯片。
由于TI的变送器芯片含有通用的功能电路比如电压激励源、电流激励流、稳压电路、仪表放大器等,所以可以很方便地把许多传感器的信号转化为4~20mA的信号。
4~20mA的校正传统的4~20mA校正,要求特殊的夹具固定,需要特别的激光或手动电阻器调整,而调整是相互影响的,需要一个测试、调整,再测试、再调整的过程,调整次数和范围有限。
电子器件和传感器调整起来不够方便。
现代的数字化4~20mA校正,它允许电子器件和传感器在封装之后进行调整;可通过计算机计算出校正系数来简化数值调整;可以有无限的调整次数,并且有很好的分辨率和较宽的调整范围;调整过程中不存在相互影响;电子器件和传感器可以很方便地调整。
两线制4/20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。
下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。
当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。
其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。
变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。
显示仪表只需要串在电路中即可。
这种变送器只需外接2根线,因而被称为两线制变送器。
工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。
这使得两线制传感器的设计成为可能。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。
2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。
如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。
因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。
4~20mA电流变送器的工业控制应用4~20mA电流环工作原理在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输信号就会受到噪声的干扰而不纯洁;第二,传输线的电阻会产生电压降,那么接收端的信号就会产生误差;第三,在现场如何提供仪表放大器的不同的工作电压也是个问题。
为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。
4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。
4~20mA电流环有两种类型:二线制和三线制。
当监控系统需要通过长线驱动现场的驱动器件如阀门等时,一般采用三线制变送器,这里XTR位于监控的系统端,由系统直接向XTR供电,供电电源是二根电流传输线以外的第三根线。
二线系统是XTR和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20mA的电流环向远端的XTR供电,通过4~20mA来反映信号的大小。
4~20mA产品的典型应用是传感和测量应用,在工业现场有许多种类的传感器可以被转换成4~20mA的电流信号,TI 拥有一些很方便的用于RTD和电桥的变送器芯片。
由于TI的变送器芯片含有通用的功能电路比如电压激励源、电流激励流、稳压电路、仪表放大器等,所以可以很方便地把许多传感器的信号转化为4~20mA的信号。
4~20mA的校正传统的4~20mA校正,要求特殊的夹具固定,需要特别的激光或手动电阻器调整,而调整是相互影响的,需要一个测试、调整,再测试、再调整的过程,调整次数和范围有限。
电子器件和传感器调整起来不够方便。
现代的数字化4~20mA校正,它允许电子器件和传感器在封装之后进行调整;可通过计算机计算出校正系数来简化数值调整;可以有无限的调整次数,并且有很好的分辨率和较宽的调整范围;调整过程中不存在相互影响;电子器件和传感器可以很方便地调整。
变送器原理两线制V/I变换器IC:DH4-20工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。
下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。
当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。
其实大家可能注意到,4-20mA电流本身就可以为变送器供电,如图1C所示。
变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA 之间根据传感器输出而变化。
显示仪表只需要串在电路中即可。
这种变送器只需外接2根线,因而被称为两线制变送器。
工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。
这使得两线制传感器的设计成为可能。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。
输出为标准信号的传感器。
这个术语有时与传感器通用。
变送器种类很多,总体来说就是由变送器发出一种信号来给二次仪表使二次仪表显示测量数据。
将物理测量信号或普通电信号转换为标准电信号输出或能够以通讯协议方式输出的设备。
4~20mA电流环工作原理2008-04-07 22:40在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输线会受到噪声的干扰;第二,传输线的分布电阻会产生电压降;第三,在现场如何提供仪表放大器的工作电压也是个问题。
为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。
4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。
4~20mA电流环有两种类型:二线制和三线制。
当监控系统需要通过长线驱动现场的驱动器件如阀门等时,一般采用三线制变送器,这里XTR位于监控的系统端,由系统直接向XTR供电,供电电源是二根电流传输线以外的第三根线。
二线系统是XTR和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20mA的电流环向远端的XTR供电,通过4~20mA来反映信号的大小。
4~20mA产品的典型应用是传感和测量应用,见图1。
在工业现场有许多种类的传感器可以被转换成4~20mA的电流信号,TI拥有一些很方便的用于RTD和电桥的变送器芯片。
由于TI的变送器芯片含有通用的功能电路比如电压激励源、电流激励流、稳压电路、仪表放大器等,所以可以很方便地把许多传感器的信号转化为4~20mA的信号。
图1 (略)电桥传感器的大多数应用是用于测量压力。
在一个实际电路中,如果惠斯登电桥每条臂上的电阻为2k ,那么无论从激励电压端或差分输出端看进去,它的等效电阻都是2k 。
在没有压力的时候,它的电桥是平衡的,输出电压为0。
当施加压力时,由于电桥失衡,会产生一个差分电压,差分电压便会反映这个压力的大小。
满度和色调是压力传感器的两个主要技术指标,现实世界里使用着的传感器都存在着一定的非线性,它的输出电压会随着温度的变化而变化。
输出电压随温度的变化不是线性的,满度和色调都具有这种性质。
变送器4-20mA电流的由来工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,它们都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
4-20mA,指的就是最小电流为4mA,最大电流为20mA。
在工业现场,要完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输线会受到噪声的干扰;第二,传输线的分布电阻会产生电压降;第三,在现场如何提供仪表放大器的工作电压也是个问题。
为了解决上述问题和避开相关噪声的影响,我们会用电流来传输信号,因为电流对噪声并不敏感°4-20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。
为什么选择4-20mA 而不是0-20mA 呢?很简单,如果0是最小,那么开路故障就检测不到了!那么,为什么偏偏是4mA 呢?正常工作时,电流信号不会低于4mA 。
当传输线因故障断路,环路电流降为0。
常取2mA 作为断线报警值。
有两个原因。
一个原因是为了避免干扰,另一个原因是在4-20mA 使用的是两线制,即两根线即是信号线,同时也是电源线,而4mA 是为了给传感器提供电路的静态工作电流用。
这个4-20mA 控制回路是怎么工作的呢?4-20mA 构成基础要件:24V 电源供电变送器控制4-20mA 信号使其与过程变量成比例变化指示器将4-20mA 信号转化为相应过程变量指示器或控制器I/O 输入电阻250Q 分流器生成1-5V 输入信号(欧姆定律:电压=电流*电阻,4-20mAX250ohms=1-5V )Ph T G ffll ZERO SPAH —■-2钱制变送器忘丢准制需■JS1-薩 4tc 20mA■*I■Fg通常情况下:1)它们将热电偶或热电阻传感器的温度信号转换为4-20mA信号然后再输出;2)控制器再将4-20mA反译为具体的温度值;3)基于此温度值,控制回路给实现对过程终端控制元件的控制。
谈谈两线制4-20mA变送器工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。
下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。
当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。
其实大家可能注意到,4-20mA电流本身就可以为变送器供电。
变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。
显示仪表只需要串在电路中即可。
这种变送器只需外接2根线,因而被称为两线制变送器。
工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。
这使得两线制传感器的设计成为可能。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。
2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。
如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。
因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。
这是两线制变送器的设计根本原则之一。
两线制压力变送器设计2008-01-24 14:27分类:字号:小开篇: 认识两线制传感器工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。
这种将物理量转换成电信号的设备称为变送器。
工业上最广泛采用的是用4~20mA电流来传输模拟量。
采用电流信号的原因是不容易受干扰。
并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。
上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。
下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。
常取2mA作为断线报警值。
电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。
最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。
当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。
其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。
变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。
显示仪表只需要串在电路中即可。
这种变送器只需外接2根线,因而被称为两线制变送器。
工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。
这使得两线制传感器的设计成为可能。
在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。
两者之间距离可能数十至数百米。
按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。
2.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。
如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。
因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。
两线制4-20ma原理
4-20mA(毫安)是一种常见的电流信号传输标准,常用于工业控制系统中,例如传感器和执行器之间的信号传递。
两线制(Two-Wire)4-20mA是指使用两根导线进行信号传输的系统。
以下是两线制4-20mA的基本原理:
1.电流范围:4-20mA的范围表示电流信号的范围。
在正常运行
情况下,传感器或设备产生的电流在4mA到20mA之间变化,对应了相应的测量范围。
4mA通常表示零点,而20mA表示满
量程。
2.两线制:使用两根导线进行信号传输,其中一根是电流的信号
线,另一根是信号线和电源的共地线。
这简化了布线,降低了
系统的成本,因为只需要两根导线就能传输电源和信号。
3.电流信号:在4-20mA标准中,电流信号的范围对应于测量值
的范围。
例如,一个温度传感器可能在25摄氏度时输出4mA
的电流,而在75摄氏度时输出20mA的电流。
这种方式对比电
压信号更抗干扰,因为电流信号不容易受到电阻和线路阻抗的
影响。
4.设备供电:在两线制4-20mA系统中,通常使用环回供电
(Loop-Powered)方式。
即,传感器或设备通过同一根导线接
收电源供电。
这就要求设备能够工作在非常低的电流下,以确
保在电流范围内提供足够的电源。
5.信号解析:接收端的控制系统测量电流值,并将其解析为相应
的物理量,例如温度、压力或液位。
通常,控制系统中有专门的模块或电路用于解析4-20mA电流信号。
总体来说,两线制4-20mA系统的优势在于抗干扰性强、布线简单、成本相对较低,因此在工业环境中被广泛应用于传感器和执行器的信号传输。