铷原子频率标准
- 格式:doc
- 大小:162.00 KB
- 文档页数:3
时间频率计量常见仪器校准及高端仪器设备标准广电计量杜亚俊广电计量配备了铯原子频标、铷原子频标、GPS接收机、频标比对器、相位噪声测试系统等时间频率计量标准,频率范围从直流到40GHz,准确度达到1×10-13,直接溯源至中国计量科学研究院(NIM),可对时间频率类仪器进行校准。
常见仪器计量校准:频率标准、高稳晶振、频率合成器:频率标准仪、频率合成器、频率交换器、石英频率标准等。
频率计、计数器、秒表:频率计、通用计数器、数字电子毫秒仪、微波频率计、时间间隔测量仪、机械秒表、电子秒表等各类计时器等。
调制域分析仪频稳对比器石英分析仪、时钟分析仪高端仪器设备标准:名称型号实图功能指标铯原子频率标准3235B 校准频率:准确度、频率稳定度、相位噪声、秒信号频率准确度:5×10-13频率稳定度:σ(y)(10s):1.7×10-11σ(y)(1s):2.7×10-14相对噪声:ξ(1Hz)≤-100dBc/Hz ξ(100kHz)≤-154dBc/Hz铷原子频率标准DH1001 校准频率:准确度、频率稳定度频率准确度:1×10-10频率稳定度:σ(y)(1s):1×10-11σ(y)(10s):3.2×10-12σ(y)(100s):1×10-12 频率漂移K(d):2×10-12频标比对器 PO7D-2校准频率:稳定度、准确度比对不确定度:u c=1×10-10/0.01su c=1×10-11/0.1su c=1×10-12/1s u c=2×10-13/10su c=3×10-14/100s。
铷原子频标基于铷原子能级跃迁结合光抽运技术形成的铷原子振荡器。
由晶体振荡器(VCO)输出的信号经过倍频综合后得到铷原子谐振器相关的微波激励信号。
谐振器将该信号相关处理(铷原子跃迁判定)后产生误差信号,再经伺服电路反馈给压控晶体振荡器,使压控晶振频率锁定在铷谐振器的中心频率,从而实现以铷原子跃迁为参考的晶体振荡器。
铷原子钟溯源同步到GPS卫星铯原子钟上,输出频率几乎没有漂移,所以不需送上级计量部门进行周期校准,性能接近铯钟,但却远远低于铯钟的价格,而且不存在铯钟那样铯束管寿命短需要高成本更换的问题。
铷原子钟非常适合应用于SDH数字同步网的1,2级节点时钟,为电力、电信、广电、时统、计量校准、雷达设备等提供高精度的时间和频率基准。
主要特点1内置铷振荡器2.日平均频率准确度<2×10P-12P3.时间实时显示4.驯服、保持自动切换5.GPS失锁后依靠铷钟高精度守时6.低相噪频率信号输出7.测频精度<2×10P-12P/天8.具备TRAIM算法的GPS接收机铷频率标准不需要真空系统、致偏磁铁和原子束,因而体积小、质量小、预热时间短、价格便宜,但准确度差、频率漂移比较大,仅能用作二级标准。
铷频率标准可通过GPS进行快速驯服和外秒同步,克服铷振荡器本身的漂移,可被看作是一个基本的同步时钟单元。
通过设计和工艺的改进,产品的可靠性和批量生产也得到保证,现已具备产业化的条件。
可以预计,这种带外秒驯服的高性能小型化铷钟将应用于无人值守等苛刻环境,将大大拓展铷钟的应用领域。
铷原子频率标准常常被分为普通型、军用型、航天型。
SYN3102型铷原子频率标准产品概述SYN3102型铷原子频率标准是是西安同步电子科技有限公司研发生产的一款高性能铷原子频率标准源,选用国外进口的高精度铷原子振荡器,提供精确的频率(量值)信号,能够为计量、通信、国防等部门提供高精度频率标准信号。
产品功能1)提供一路标准的10MHz正弦信号;产品特点a)锁定快;b)低相噪;c)高可靠性;d)可长期连续稳定工作。
高性能铷原子钟的高精度频率漂移补偿研究
徐俊秋;李俊瑶;赵峰;康松柏;王鹏飞;明刚
【期刊名称】《波谱学杂志》
【年(卷),期】2024(41)2
【摘要】铷原子钟可靠性高、体积小、功耗低,在导航、通信等领域被广泛使用.尤其对于导航卫星星载铷原子钟,发展至今具有了优异的稳定度性能,但其固有的频率漂移特性(约E-12~E-13/天)会恶化其长期性能,影响卫星自主守时能力.通过对高性能铷原子钟的频率数据进行充分分析,评估可能导致频率漂移的物理机制,提出一种高精度频率漂移补偿的方案并开展了实验验证.结果表明,在无外部驯服情况下60天内高性能铷原子钟的漂移率可保持E-15/天量级,天稳定度达到E-15量级(Allan 偏差),极大提升铷原子钟的自主守时能力.
【总页数】7页(P184-190)
【作者】徐俊秋;李俊瑶;赵峰;康松柏;王鹏飞;明刚
【作者单位】中国科学院原子频标重点实验室(中国科学院精密测量科学与技术创新研究院);中国科学院大学
【正文语种】中文
【中图分类】O482.53
【相关文献】
1.星载铷原子钟频率特性星地测量技术研究
2.铷原子钟温度补偿技术研究
3.小型化铷原子钟高精度频率调节电路设计
4.高性能铷原子钟频率长期特性参量估值算法研究
5.一种铷原子钟频率稳定度估计方法研究
因版权原因,仅展示原文概要,查看原文内容请购买。
铷检测标准全文共四篇示例,供读者参考第一篇示例:铷检测标准是指用于确定样品中铷含量的方法和标准。
铷是一种常见的金属元素,在工业生产和科研领域都有着重要的应用价值。
铷检测标准的建立对于保证产品质量、保障人体健康、推动科学研究都具有重要意义。
铷的检测标准主要涉及到检测方法、检测仪器、样品准备、实验操作、质量控制等方面。
在实际的检测过程中,必须严格按照相应的标准要求进行操作,以确保检测结果的准确性和可靠性。
以下将从不同方面对铷检测标准进行详细介绍。
一、检测方法铷的检测方法包括原子吸收光谱法、电感耦合等离子体质谱法、电感耦合等离子体发射光谱法、X射线荧光光谱法等多种方法。
这些方法各有特点,适用于不同的样品类型和检测目的。
选择适合的检测方法是确保检测结果准确性的前提。
在进行铷检测时,还需注意样品的制备方法。
通常需要将样品溶解或分解后进行检测,要求操作规范,避免干扰物质的干扰影响检测结果。
还需控制样品的环境条件,如温湿度等参数,以确保检测过程的稳定性。
二、检测仪器进行铷检测所需的仪器通常包括原子吸收光谱仪、质谱仪、荧光光谱仪等。
这些仪器在检测铷含量时都有各自的优势和适用范围。
在选择仪器时,需要考虑到样品类型、检测要求、质量控制等因素,以确保检测结果的准确性。
仪器的维护和保养也是保证检测准确性的重要环节。
定期检查、校准仪器,保持仪器的稳定性和精准度,对于铷检测的准确性至关重要。
三、质量控制在铷检测中,质量控制是确保检测结果准确性和可靠性的重要手段。
质量控制包括日常质量管理、仪器校准、实验重复性验证、标准品校准等环节。
通过质量控制,可以及时发现和纠正检测过程中存在的问题,确保最终结果的准确性。
还需要建立合理的数据处理和记录体系。
对于每一次检测结果都应该进行详细记录,并进行数据分析和比对。
通过数据的追踪和分析,可以及时发现异常情况,确保检测结果的可靠性。
铷检测标准是确保铷检测结果准确性和可靠性的重要依据。
在进行铷检测时,需要选择合适的检测方法和仪器,严格遵守标准要求,进行质量控制和数据记录,以确保最终的检测结果符合实际需求。
Saturated Absorption SpectroscopyandFrequency Modulation Spectroscopyof Rubidium Atoms铷原子的饱和吸收光谱和频率调变光谱Dan LeeGrade 98, School of Physics, Department of Technical Physics摘要在这个实验中,我们测量了85Rb和87Rb原子的饱和吸收光谱和频率调变光谱.在饱和吸收光谱中,87Rb原子的|F=1〉→|F'=0,1,2〉和|F=2〉→|F'=1,2,3〉,85Rb原子的|F=2〉→ |F'=1,2,3〉和|F=3〉→|F'=2,3,4〉以及它们的交错信号都被完全的捕捉住.这里,F表示的是5S1/2基态的超精细能级,而F'则表示的是5P3/2激发态的超精细能级. 87Rb 原子的|F=2〉→|F'=1,2,3〉的谱线则被用于调频技术.AbstractWe have measured Dtransitions of 85Rb and 87Rb atoms with saturated2absorption spectroscopy and frequency modulation spectroscopy. These saturated absorption spectra, |F=1〉→ |F’=0,1,2〉and |F=2〉→ |F’=1,2,3〉of 87Rb atoms, |F=2〉→ |F’=1,2,3〉and |F=3〉→ |F’=2,3,4〉of 85Rb atoms, and their crossover lines are completely resolved, where F indicates the hyperfine level of the 5S1/2 ground state and F’ indicates that of the 5P3/2 excited state. The derivatives of the |F=2〉→|F’=1,2,3〉 spectra of 87Rb atoms are obtained with the technique of frequency modulation.As we know, the Rubidium atom is one kind of boson. It obeys the Bose-Einstein statistics. In 1995, Rubidium atom was successfully used to realize the Bose-Einstein condensation.In the nature, there are two types of isotopes of Rubidium: 87Rb and 85Rb. If we consider the hyperfine structure of the isotopes of 87Rb and 85Rb, we can get the figures for their energy levels. The hyperfine structure is resulted from the spin of the nucleus, which is called Zeeman effect that can lead to the separation of the energy levels in magnetic field.Fig. 1 below shows us the hyperfine structure of the 87Rb.Fig. 1. The hyperfine structure of the energy levels of87RbFig. 2 below shows us the hyperfine structure of theRb.Fig. 2. The hyperfine structure of the energy levels of 85RbThe two figures are similar to each other. The small differencebetween them is that the separation of energy levels of 85Rb is less thanthose of 87Rb. Another difference between the two isotopes is that the spin of the nucleus of 87Rb is 3/2 and that of 85Rb is 5/2.I did such a following experiment to study the main energy level and the spectrum at first. The experimental setup is shown schematically in Fig. 3.Fig. 3. Experimental setup for the absorption spectrum of the RubidiumThe diode laser is driven by the current from the laser diode driver and is controlled by the temperature controller.We choose the diode laser as the laser resource here because it has too many advantages: the inexpensive price, the small line width that is less than 100 kHz , the high output power which can reach more than 10 mW, the large tunable range of wavelength which is more than 20 nm , the high stability and the high sensitivity. All above, the most important merit is that it can provide the laser whose frequency is just what we need in such experiments.In this experiment, we also use a function generator to output a triangular wave with appropriate frequency and amplitude. We input this wave into the laser diode driver and then make the laser current changein a proper range. The amplitude of the triangular wave decides the range. So the wavelength (or frequency) of the laser changes with the triangular wave. The Rubidium atom will absorb some photons from the laser when their frequency is proper. The spectrum is shown in Fig. 4, where the amplitude of the triangular wave is 200 mV and its frequency is 80 MHz.Fig. 4. The absorption spectrum of the RubidiumOne thing that we must emphasize is why we do not choose the square wave or serrated wave but triangular wave. The current from the laser diode driver that drive the laser cannot be changed too drastically. Otherwise the diode laser would be damaged. From the Fig. 4, we can see the four apparent spectra lines. From right to left, we mark them as a, b, c, d.In fact, each line of a, b, c, d contains fine spectra. The a-line contains the spectra lines from 87Rb |5S 1/2,F=2> to |5P 3/2,F’=1,2,3>. Theb-line contains the spectra lines from 85Rb |5S 1/2,F=3> to |5P 3/2,F’=2,3,4>. The c-line contains the spectra lines from 85Rb |5S 1/2,F=2> to |5P 3/2,F’=1,2,3>. The d -line contains the spectra lines from 87Rb |5S 1/2,F=1> to |5P 3/2,F’=0,1,2>.But because of the Doppler broadening effect, we cannot distinguish the fine spectra lines. The reason is interesting. We know that only theatoms can absorb a certain kind of photons whose energy (or frequency) exactly matches the separation of the energy level of the static atom. In fact, all the atoms move in all directions. Due to Doppler effect, the atom can be excited by those photons whose frequency is slightly away from the exact ones; meanwhile the separation among the energy levels of the hyperfine structure of Rubidium is tiny, too. All of above lead to the result that we are not able to distinguish the fine spectra.If we want to distinguish these fine spectra, we can use the method to get the saturated absorption spectrum. The experimental setup is also displayed as a brief outline in Fig. 5.Fig. 5. Experimental setup for the saturated absorption spectrumWhen the laser comes to the BK7, most of it will penetrate the BK7, which is called saturation beam, and only a small part of it will be reflected, which is called probe beam.The saturation beam and the probe beam nearly overlap each other in the opposite directions. As the chopper rotates, it will chop the saturation beam at a certain frequency. If it always covers the saturation beam, we will get the same spectra as the Fig. 4 shows. But that thesaturation beam works or not at a certain frequency will provide a reference signal (one kind of TTL signal) and the lock-in amplifier will deal with the TTL signal and the signal from the probe beam that has passed the Rubidium vapor cell.The detailed spectrum will be shown as following:Fig. 6. The spectrum of a-line in the saturated absorption spectrum experimentThe parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 25 mVFrequency: 100 MHzFig. 6 shows us 6 spectrum lines obviously. From right to left,we mark them as a1, a2, a3, a4, a5 and a6. The a1-line, a3-line, a6-line representthe spectrum lines from 87Rb |5S1/2,F=2> to |5P3/2,F’=1>, from 87Rb |5S1/2,F=2>to |5P3/2,F’=2> and from 87Rb |5S1/2,F=2> to |5P3/2,F’=3>, respectively. Thethree other lines stand for crossover lines, which appear due to the Doppler effect. So there is a crossover line between each two lines of a1, a3 and a6.The parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 20 mVFrequency: 80 MHzFig. 7 also shows us 6 spectrum lines obviously. We mark them as b1, b2, b3, b4, b5 and b6 in the same way. The b1-line, b3-line, b6-linerepresent the spectrum lines from 85Rb |5S1/2,F=3> to |5P3/2,F’=2>, from 85Rb|5S1/2,F=3> to |5P3/2,F’=3> and from 85Rb |5S1/2,F=3> to |5P3/2,F’=4>,respectively. The three other lines stand for crossover lines.Fig.8. The spectrum of d-line in the saturated absorption spectrum experimentThe parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 20 mVFrequency: 50 MHzFig.8 shows us 5 spectrum lines but not obviously. D1, d2, d3, d4 and d5 are marked in the same way. The d1-line, d2-line, d5-line representthe spectrum lines from 87Rb |5S1/2,F=1> to |5P3/2,F’=0>, from 87Rb |5S1/2,F=1>to |5P3/2,F’=1> and from 87Rb |5S1/2,F=0> to |5P3/2,F’=2>, respectively. Thetwo other lines stand for crossover lines. In my opinion, another crossover line exists but we are just not able to measure it.It is the most difficult to get the saturated absorption spectrum for c-line. Fig.9 shows the experimental result and its appearance is far below that for a-line or b-line.The parameters of this experiment are listed below:Lock-in amplifier: Time Constant: 10 msSensitivity: 1 mVTriangular wave: Amplitude: 20 mVFrequency: 20 MHzSuch a figure is frustrating. I have tried to find the reason leading to such a bad result. There is no problem with the experimental setup because we can get good spectrum lines for a-line etc. Maybe the reason is that the instruments are not stable as the time goes on. But we can get as the same wonderful figure for a-line as before. Strictly speaking, I do not get success in the saturated absorption spectrum experiment for c-line. But I have to do the further experiment and I am told that only spectrum lines we need to apply to the further experiment are those for a-lines. So I give up making it clear before the fifth week.To make the figure more clearly, we design the experiment below. The experimental setup is given briefly in Fig.10. The left function generator produces sin-wave with high frequency and small amplitude as a referencesignal. The right function generator outputs a triangular wave with relatively low frequency and high amplitude. The former and the later are input into the adder at the scale of 1/10:1. How do they modulate the laser diode driver? We know that the frequency of the laser will oscillate as the current from the driver oscillates and the current is controlled by the input-signal. t f f f t I I I m L L m ωωcos cos 00+=⇒+= Because m f is far less than L f 0, the signal S (m f )that the photo detector receives can be in the form of Tailor expansion as the following:......!2)())((cos ))(()()cos ()(222_+++−−−−−→−+=t Cos f f S df d t f f S df df S t f f S f S m oL L m oL LoL ExpansionTaylor m oL L ωωω Generally speaking, Hz f oL 14108.3⨯≈Hz f m 610≈Hz 4102⨯≈πω1<<oL m f fFig.10. Experimental setup of the differential saturated absorption spectrum of RubidiumSo we can ignore the third item and later ones. The)(oL Lf S df din the second item is just the differential signal that we need. After the lock-in amplifier deal with the S(f L ) signal and the reference signal, we can get the differential signal.Fig. 10 does not show us where the neutral-density filters are. In my opinion, their quantities and their locations are not important because they are just used to adjust the power of the saturation beam and the probe beam in order to get an ideal result revealed in Fig. 11.To summarize, we have demonstrated three kinds of experiments to get the spectrum of Rubidium. All above these help us study the energy level and the structure of the Rubidium better. A5, the most distinguished spectrum line in all, is what we just need to use to lock in the frequency in the experiment of low-temperature-atom spectrum, which is another interesting experiment.AcknowledgementsIn the past four weeks, I spent an ordered and instructive time on such a special subject. It is the first time for me to come to the department of physics, NTHU. Such an experience will be remembered forever.I am grateful to Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment (CURE), the Peking University, Beijing and the National Tsing Hua University, Hsinchu, which provide me such an opportunity to have a so precious experience.I am grateful to my instructor, Prof. Yu, an erudite and vigorous man. He is always not only enthusiastic to me but also strict with me. Under his wise guidance, I have such a chance to shoot a glance at the research field of the laser cooling.I also appreciate my elder school-sister Hsin-Ying Chiu and my elder school-brothers: Ying-Cheng Chen, Yean-An Liao, Hsih-Kuang Tung, Yun-Fan Chen, Guan-Qi Pan, Hong-Wen Zhuo, Jun-Jie Liao. They are warm-hearted to help me. They give me many good suggestions on study. I hope they would not mind that my bothering them during the last month.De-Hong Chen is another lab-mate that I must thank to. He provides me with much facility. It is he who makes my life here more convenient.I always hold the view that I can finish my report without a hitch due to the help of all others.Thanks all.References[1] Li-fu Mao, “Development and Study of Dark Magneto-Optical Trap”, the master’s thesis of Tsing Hua University, Hsinchu, Taiwan ,1998.[2] 施宙聪,陈皙墩,《稳频半导体雷射》,科技新知14卷5期, 第30页.[3] M. J. Snadden, R. B. M. Clarke, and E. Riis, “Injection-locking technique for heterodyne optical phase locking of a diode laser”, Opt. Lett. 22, 892 (1997).The Introduction to My Advisor:Ite Albert. Yu(余饴德)Name: Ite Albert, YuResearch Interests: Optics, Atomic & Molecular Physics, Laser (Exp.) E-mail addressAddress: 101 Section 2 Kuang Fu Road, Hsinchu, TaiwanDepartment of Physics, National Tsing Hua University, Hsinchu, Taiwan Telephone: (03)5742539 Fax: (03)5723052Education:1987-1993 Ph.D..1980-1984 B.S. in Physics, National Tsing Hua University,Hsinchu, Taiwan.Employment:1995-present, Associate Professor of Physics, Tsing Hua University, Hsinchu, Taiwan1993-1995, Postdoctral Researcher of Harvard-Smithsonian Center for Astrophysics,Research Interests:Experimental Atomic and Molecular PhysicsLaser Trapping and CoolingBose-Einstein CondensationNonlinear SpectroscopyQuantum OpticsSelected Publications:Selected Papers:Y. C. Chen, C. W. Lin, and I. A. Yu, "Role of degenerate Zeeman levels in electromagnetically induced transparency", Phys. Rev. A 61, 053805 (2000).Y. C. Chen, Y. W. Chen, J. J. Su, C. Y. Huang, and I. A. Yu, "Pump-probe spectroscopy of cold 87Rb atoms for various laser-polarization configurations", Phys. Rev. A 63, 043808 (2001).Other Publications:雷射冷却与低温原子的非线形光谱物理双月刊廿二卷五期 2000年10月 443页443-451 (2000).。
铷和水反应铷和水反应方程式是:2Rb+2H2O=H2↑+2RbOH。
铷的简介(Rubidium),元素符号为Rb,原子序数为37,是一种碱金属元素,单质是银白色轻金属,质软而呈蜡状,其化学性质比较活泼。
在光的作用下易放出电子。
铷在遇水起剧烈作用,生成氢气和氢氧化铷。
易与氧化作用生成复杂的氧化物。
由于遇水反应放出大量热,所以可使氢气立即燃烧。
纯金属铷通常存储于密封的玻璃安瓿瓶中。
铷广泛应用于能源、电子、特种玻璃、医学等领域。
应用领域长期以来,由于金属铷化学性质比钾还要活泼,在空气中能自燃,其生产、贮存及运输都必须严密隔绝空气保存在液体石蜡、惰性气体或真空中,因而制约了其在一般工业应用领域的开发研究和大量使用。
然而,随着人类科学技术的发展和对铷应用开发研究的不断深入,近15年来,除在一些传统的应用领域,如电子器件、催化剂及特种玻璃等,有了一定发展的同时,许多新的应用领域也不断出现,特别是在一些高科技领域,显示了广阔的应用前景。
以下综述了利用铷及其化合物的一些特性,在一些传统和高科技领域内的应用现状频率、时间标准、人造地球卫星的发射系统、导航、运载火箭导航、导弹系统、无线通信、电视转播、收发分置雷达、全球定位系统(GPS)等空间技术的发展对所采用频率与时间基准的长、短期准确度和稳定性要求越来越高。
由于铷辐射频率具有长时间的稳定性,87Rb原子的共振频率被频率标准确定为基准频率。
用作频率标准和时间标准的铷原子频标具有低漂移、高稳定性、抗辐射、体积小、重量轻、功耗低等特点。
准确度极高的铷原子钟,在370万年中的走时误差不超过1s。
能源利用铷易于离子化的特点,多年来国内外在离子推进火箭、磁流体发电、热离子转换发电等方面的应用做了大量研究工作,并有了一些重要的发展。
磁流体发电是把热能直接转换成电能的一种新型发电方式。
用含铷及其化合物作磁流体发电机的发电材料(导电体),可获得较高热效率。
如一般核电站的总热效率为29%~32%,而结合磁流体发电可使核电站总热效率提高到55%~66%热离子发电是利用二极真空管的原理,把热能直接变为电能。
铷/铯及其化合物概况1.1 铷/铯的基本概况1.1.1 铷的基本概况铷英文名称:Rubidium。
性质:第1族(IA)(碱金属)元素。
原子序数37。
铷在1861年由德国Bunsen R W和Kirchhoff G R共同发现。
有稳定的85Rb 和放射性的87Rb两种天然同位素;24种人工合成同位素。
铷是一种银白色稀有碱金属,CAS No.:7440-17-7。
熔点很低(38.8℃),沸点为688℃,密度为1.53克/厘米3。
铷质软,有延展性,化学性质极活泼,在空气中能自燃与水利用强烈在常温下能引起燃烧和爆炸,甚至同-100℃的冰亦能猛烈反应。
在光的作用下,铷易放出电子,由于铷的活性大,生产、使用、贮存和运输中,必须将其放在严密隔绝空气的装置中。
铷在自然界分布很广,但至今尚未发现单纯的铷矿物,而常在锂云母、黑云母、光卤石等矿物中存在。
盐湖卤水和海水中也含有较多的铷。
目前,锂云母、盐湖卤水是提取铷的主要资源。
铷的用途铷是制造光电管的主要感光材料,使用光波范围广、灵敏度高(稍逊于铯)、稳定。
铷原子钟的特点是需要的功率小、体积小、重量轻,准确度可达万亿分之一。
铷极易电离,可用作固体电池的电介质。
目前正在大力开展铷在离子发动机、磁流发电机及热电前正在大力开展铷在离子发动机、磁流发电机及热电换能器等方面的研究工作。
1.1.2 铯的基本概况铯是碱金属族的一种银白色、质软、易展性的金属元素,铯的熔点( 28.55 ℃) ;沸点(679℃) ;蒸气压最高,密度最大,正电性最强,电离势和电子逸出功最小。
金属铯的活性很强,在空气中燃烧会喷溅,产生浓密的碱性烟雾,伤害眼睛、呼吸系统和皮肤。
因此在生产、贮存及运输时必须严格防止金属铯同空气或水接触。
铯的主要化工产品是硫酸铯、硝酸铯、碳酸铯、氯化铯、碘化铯、铬酸铯等盐类及金属铯。
铯特性与铷相似,铯的用途与铷相同外。
铯的氧化物亦可作高能固体燃料,铯可制造人工铯离子云、铯离子加速器,以及反作用系统材料与烟火制造材料。
秒表检定仪校准操作作业指导书一、标准设备1.设备名称:铷原子频标型号:910R测量范围: 5MHz,10MHz编号:sm849727精度等级:5.0×10-112.设备名称:频标比对器型号:P07C,测量范围:1MHz,2MHz,2.5MHz,5 MHz,10 MHz编号:040,精度等级: 1X10-113.设备名称:可程控通用计数器,型号:EE3364测量范围:0~10 MHz编号:130精度等级:同外频标二、环境条件要求温度(23±2)℃温度波动不大于1℃,湿度75%RH。
三、依据的方法1.JJG601-2003《时间检定仪》检定规程。
2.JJG180-2002《电子测量仪器内石英晶体振荡器》检定规程。
四、操作步骤1.外观及工作正常性检查被检时间检定仪不应有影响正常工作的机械损伤,通电后正常工作,有晶振频率输出的电子测量仪器,输出信号插座应牢固,接通电源后,晶振输出端应有相应频率的信号输出。
2.将GPS信号天线连接至910R铷原子频标。
将参考频标的输出端接入频标比对器的确良参考输入端和通用计数器的外标输入端,再将被检晶振的输出端接入频标比对器的被测输入端,将频标比对器的信增输出端接入通用计数器输入端,将通用计数器的时标置外接。
3.连接电源,开机预热1小时,使设备性能稳定。
4.依据JJG180-2002开展对时间检定仪机内晶振的检定或校准工作。
5.依据JJG601-2003开展对时间检定仪输出时间间隔的检定或校准工作。
五、注意事项1.设备必须由计量专业人员操作,确保设备及人员安全和测量示值的准确。
2.操作时设必须严格按照操作规程和检定规程进行操作。
3.注意设备的定期保养。
六、校准结果处理1.经校准后,校准人员出具准确的校准证书。
2.校准证书应包含客户要求的、说明校准结果所必须的和所用方法要求的全部信息。
七、期间核查按四操作步骤检测出被检仪器某点的值,连续测10次,算出平均值,用公式En =k∆-12XX求得En,E n≤0.7为合格,每三个月做一次,每年做4次期间核查。
铷检测标准全文共四篇示例,供读者参考第一篇示例:铷是一种常见的金属元素,其化学符号为Rb,原子序数为37。
铷具有良好的导电性和导热性,在工业领域有广泛的应用,特别是在电子产品制造、化工工业和核能领域。
铷具有一定的毒性和危害性,因此需要对铷进行检测,以确保其安全使用。
铷的检测标准是指在实验室或生产现场进行铷含量检测时应遵循的技术规范和方法。
铷检测标准的制定旨在确保检测结果准确可靠,以保障人类健康和生态环境的安全。
目前,国际上通用的铷检测标准主要包括以下几个方面:1. 样品采集:在进行铷含量检测之前,首先需要采集样品。
样品可以是空气、水、土壤或工业产品等。
在采集样品时,应注意样品的来源、保护和保存,以避免外部污染对检测结果的影响。
2. 样品前处理:对样品进行前处理是保证检测结果准确性的关键步骤。
前处理工作包括样品的分离、溶解、提取等过程,以便将样品中的铷分离出来,使其易于检测。
3. 检测方法:目前常用的铷检测方法包括原子吸收光谱法(AAS)、原子荧光光谱法(AFS)、电感耦合等离子体发射光谱法(ICP-OES)等。
这些方法在检测灵敏度、准确性和可操作性上有所不同,因此需要根据具体情况选择合适的方法。
4. 质量控制:在进行铷检测过程中,应建立合适的质量控制体系,包括标准溶液的配制、仪器校准、平行样品分析等。
通过质量控制措施,可以提高检测结果的可靠性和准确性。
5. 数据分析和报告:进行铷检测的数据需要进行科学分析,并编制检测报告。
报告应包括检测结果、方法、仪器校准情况、样品前处理过程等信息,以供相关部门或机构参考。
铷检测标准的制定和遵守是保障人类健康和环境安全的重要措施。
通过严格执行检测标准,可以及时发现和解决铷污染问题,保护人类健康和生态环境的可持续发展。
希望未来能够进一步完善铷检测标准,提高检测技术水平,为社会的可持续发展贡献力量。
【铷检测标准】文章结束。
第二篇示例:铷是一种金属元素,化学符号为Rb,原子序数为37。
WR-1011铷原子频率标准技术说明书目 录1、概述2、技术指标3、结构特征4、连接端口及通信协议5、/A抗振加固型说明1、概述1.1 主要特性☆ 宽温度范围☆ 短期稳定度好☆ 低漂移率☆ 低功耗☆ 快速启动☆ 小体积☆ 长使用寿命☆ 标准接口输出☆ RS232通讯接口☆ 抗振动(/A选项)1.2 主要应用☆ 同步光网络☆ 移动通信、有线数字通信☆ 供电网运行监测系统、广播电视系统☆ 舰载、车载、机载及其他振动环境(/A选项)2、技术指标指标项技术要求/T、/D选项电气特征输出频率10MHz(5MHz、20 MHz可选)输出路数1路(**2路可选)频率稳定度3×10-11/1s(**1.5×10-11/1s)1×10-11/10s(**5×10-12/10s)3×10-12/100s(**1.5×10-12/100s)相位噪声(10MHz)-70dBc/Hz at 1Hz(**-80dBc/Hz at 1Hz)-80dBc/Hz at 10Hz(**-100dBc/Hz at 10Hz)-115dBc/Hz at 100Hz(**-130dBc/Hz at 100Hz)-135dBc/Hz at 1KHz(**-140dBc/Hz at 1KHz)-140dBc/Hz at10KHz(**-145dBc/Hz at 10KHz)频率漂移率(无秒脉冲同步)±1.2×10-11/天(通电1天后)±5×10-11/月(通电1月后)±5×10-10/年(通电1年后)频率数字调节范围细调1.27×10-9(±10%)粗调1.27×10-7(±10%)频率数字调节精度细调1×10-11(±10%)粗调1×10-9(±10%)精细调节6.8×10-13(±10%)频率模拟调节范围>±1×10-9(依客户要求有此功能)/频率同步精度/ <5×10-12(秒脉冲同步12小时后)1PPS同步精度/ ±50ns(秒脉冲同步8小时后)1PPS波形/ 正极性脉冲,宽度:10ms±20ns 1PPS上升沿宽度/ ≤10ns1PPS输出方式/ 3.3V TTL输入PPS电平/ 3.3V TTL输入PPS占空比/ ≤0.6时间保持能力(无秒脉冲同步时)/ <1 us/天(通电1天后)频率复现性±5×10-11锁定/预热特性<10分钟锁定(常温)15分钟<5×10-10(常温)出厂准确度±1×10-10输出波形正弦波输出幅度>+5dBm|50Ω谐波抑制>40dBc杂波抑制(f0±100k)>100dBc锁定指示信号 3.3V TTL——Lo:未锁Hi:锁定(电平提升方法见4.3)供电电源单直流+24V(±5%) 可选单直流+12V(11~17V)启动功率≤36W稳态功率≤12W(常温)环境特性地磁场敏感度±2×10-11(X、Y、Z三个方向)储存温度[1]-40~+80℃(**-55~+85℃[2]可选)工作温度[1]-25~+60℃(**-45~+70℃[2]可选)频率温度特性<5×10-10|工作温度范围力学环境符合GJB367A-2001有关条款物理特征主体尺寸77×75.5×36.5mm3(±0.5)重量<350g体积0.212L(±5%)对外接口DB9(9针)+SMA可选**DB9(9针)+2×SMA可靠性MTB F:100,000小时注:[1]环境温度,空气对流;[2]特殊订制;**项目为优选或特制型,将产生额外费用。
铷原子钟知识一、概述(一)用途铷气泡型原子频标是使用数量最多的原子频标,随着电路技术及工艺水平的发展,其造价越来越低、体积越来越小,有望在许多场合下代替高温精度的晶体振荡器,以获得更高的精度,主要为导航定位卫星时间系统提供频率基准,广泛应用于守时、授时、导航定位、电力、铁路、测速、测距、时间同步和通信等军用和商用领域,还可以在晶振生产中用作频率基准。
(二)特点铷频率标准不需要真空系统、致偏磁铁和原子束,因而体积小、质量小、预热时间短、价格便宜,但准确度差、频率漂移比较大,仅能用作二级标准。
铷频率标准可通过GPS进行快速驯服和外秒同步,克服铷振荡器本身的漂移,可被看作是一个基本的同步时钟单元。
通过设计和工艺的改进,产品的可靠性和批量生产也得到保证,现已具备产业化的条件。
可以预计,这种带外秒驯服的高性能小型化铷钟将应用于无人值守等苛刻环境,将大大拓展铷钟的应用领域。
铷原子频率标准常常被分为普通型、军用型、航天型。
(三)产品国内外现状目前在我国研制生产铷原子钟的单位有:石家庄数英仪器、北京大华无线电仪器厂、四川星华时频技术公司等单位。
目前美国研制的GPS 上Block IIA、IIR/IIRM 铷钟处于世界领先水平,美国Perking Elmer公司已经研制出天稳指标达到10-15世界最高水平铷钟。
(四)技术发展趋势●更低的相噪特性和功耗是铷原子频率标准追求的技术目标;●秒极频率稳定度高、天频率漂移小是铷钟的追求目标;●发展与恒温晶体振荡器大小接近的小体积铷原子频率标准。
二、基本工作原理图 2 铷钟电路系统原理框铷原子钟主要由单片机电路、伺服电路、微波倍频电路、频率调制、倍频综合电路几个模块组成,系统原理框如图2所示。
铷频标是一种被动型原子频率,利用的是基态超精细能级之间的跃迁,相应的跃迁频率为6834.682614MHz。
原子迁跃对微波信号起鉴频作用而产生误差信号,通过锁相环路伺服晶振的频率,使激励信号频率锁定到原子跃迁频率,实现晶振输出频率的高度稳定和准确。
铷原子频标物理部分改进陈溶波;崔敬忠;梁耀廷;张金海;涂建辉;杨炜【摘要】本文对星载铷原子频标物理部分进行技术改进。
改善磁控管微波腔的结构,使信噪比得到了提高;优化了物理部分光路系统,使光电探测信号强度提高了25%。
此外,通过Ansoft HFSS仿真软件建立了微波腔的模型,对腔内场型分布和谐振频率进行了仿真,数字仿真和性能测试显示这种微波腔的谐振模式为TE011模式,且拥有较大的质量因子。
最后,对改进后的铷原子频标系统进行了初步测试,发现短期稳定度达到了6畅0×10-13τ-1/2(τ为取样时间)。
研究结果表明,改进后的物理部分满足铷原子频标的研制需求,适合应用于高性能的星载铷原子频标。
%Some technological improvements were carried out in physics package for rubidium atomic frequency standard . The structure optimization of magnetron micro‐wave cavity improved the signal to noise ratio .The optical path was optimized ,and the signal intensity on the photo detector increased by 25% .Besides ,a model of magnetron microwave cavity was established using Ansoft HFSS software .The field distribution and resonance frequency were simulated .The numerical simulation and performance test indicate that the modified magnetron cavity operates at TE011 mode and has a high quali‐ty factor .A preliminary test on the modified rubidium atomic frequency standard was carried out ,and the high performance of physics package was validated by achieved an excellent short‐term stability as low as 6.0 × 10-13 τ-1/2 (τis sampling time ) . T he achieved experimental results show that the modified magnetron microwave cavity can meet the requirement for rubidiumatomic frequency standard ,and is suitable for appli‐cation in high performance space rubidium atomic frequency standard .【期刊名称】《原子能科学技术》【年(卷),期】2016(050)002【总页数】5页(P380-384)【关键词】铷原子频标;物理部分;磁控管微波腔;谐振频率;T E011【作者】陈溶波;崔敬忠;梁耀廷;张金海;涂建辉;杨炜【作者单位】中国空间技术研究院兰州空间技术物理研究所,甘肃兰州 730000;中国空间技术研究院兰州空间技术物理研究所,甘肃兰州 730000;中国空间技术研究院兰州空间技术物理研究所,甘肃兰州 730000;中国空间技术研究院兰州空间技术物理研究所,甘肃兰州 730000;中国空间技术研究院兰州空间技术物理研究所,甘肃兰州 730000;中国空间技术研究院兰州空间技术物理研究所,甘肃兰州 730000【正文语种】中文【中图分类】TM935.11频率稳定度是原子频标最重要的性能指标之一,提高铷原子频标性能指标关键是提高频率稳定度。
时间频率产品的定义及简介频率是与时间密切相关的一个量,通常称为时间的倒数,这反应了频率的含义来自于对周期时间的测量的这个事实。
频率和时间的显著特征是基本定义的高度准确和测量的高度精密,他们的准确度和测量的精确度在过去的二十多年中提高极快,远远超过了所有其他物理量。
一、时间专业术语世界时:是以地球自转为记仇的一种时标,全年内每日平均长短的1/86400,定义为1s。
由于地球自转存在长期减慢和不规则起伏现象,以世界时的“秒”的实现准确度不高,只能达10的-8~10的-9量级。
原子时:是以铯原子内部超精细能级间跃迁辐射震荡9192631770周所持续的时间,定义为1s、铯原子的能级跃迁频率有极高的稳定性,其运行的周期就非常准确和稳定。
因此1967年10月起,国际计量会议通过了以原子时来定义秒。
协调世界时:由于地球转动的不均匀性,每天并非都是精确的86400原子秒,就导致世界时与实际时间约每18个月产生1s的误差,为了纠正误差国际上决定采用协调世界时报时。
作为再用的时间标准。
即以原子时的秒来计时,而当发现用天象观测来测定的时间时与原子时相差超过0.9秒时,便在年中或年底的最后一秒加上一个闰秒来协调,对协调世界时做一整秒的调整。
授时:利用无线电波发播标准时间信号的工作称为授时,国外称为时间服务,根据授时手段的不同分为短波授时、长波授时、卫星授时、互联网授时和电话授时等。
短波授时的基本方法是由无线电台发播时间信号,用户用无线电接收机接受信号,然后进行本地对时。
长波授时利用长波的无线信号进行时间频率传递与校准,覆盖面要比短波宽的很多,校准的准确度更高的授时方法。
卫星授时可以实现发播信号大面积的覆盖,而且比起前两种授时方法,他的精度更高、根据卫星在授时中所起的作用卫星授时分为主动式和中转式,主动式卫星有精密时钟,可发播标准时间信号,中转式仅转发由地面时间基准通过卫星地面站送来的标准时间信号,网络授时和电话授时,采用用户询问方式向用户提供标准的时间信息。
铷原子频率标准TR2005C技术指标在现代科技发展日新月异的今天,高精度的时间频率标准已经成为各个领域不可或缺的重要工具。
铷原子频率标准TR2005C作为当前世界上最先进的原子钟之一,其技术指标和性能优势备受关注。
本文将从深度和广度两方面对铷原子频率标准TR2005C进行全面评估,并剖析其在现代科技中的重要地位。
一、铷原子频率标准TR2005C技术指标概述1.频率稳定度铷原子频率标准TR2005C的频率稳定度极高,达到了每秒10的负14次方的水平,这意味着其频率误差仅为每秒几个万亿分之一,可以满足各种高精度时间测量的需求。
2.频率准确度TR2005C的频率准确度非常高,可以稳定地输出特定的频率信号,通常误差在每秒几个十亿分之一以内。
这样的准确度使得其在卫星导航、通信网络以及科学研究领域有着广泛的应用。
3.短期稳定度TR2005C在短时间内的频率稳定度也很突出,可以在毫秒甚至微秒的时间尺度上保持高稳定的频率输出,这对于需要高速数据传输或者实时信号处理的应用至关重要。
4.长期稳定度除了短期稳定度外,TR2005C在长时间尺度上也能够保持出色的频率稳定性,这对于天文观测、卫星定位和导航系统的精准定位以及地震监测等方面具有重要意义。
二、铷原子频率标准TR2005C的应用领域1.卫星导航高精度的时间频率标准是卫星导航系统的核心,而TR2005C凭借其卓越的频率稳定度和准确度,成为了众多卫星导航系统的首选时钟设备,为全球定位系统(GPS)、北斗导航系统等提供了可靠的时间基准。
2.通信网络在高速通信网络中,精准的时间同步对于数据传输和网络安全至关重要。
TR2005C作为高稳定频率标准的代表,被广泛应用于各种通信基站的时间同步系统,保障了通信网络的高效运行。
3.科学研究在科学实验和研究中,时间频率的精准度直接影响着实验数据的准确性和科学结论的可靠性。
TR2005C在科学研究领域有着广泛的应用,为实验数据的采集和分析提供了可靠的时间基准。
铷原子频标基于铷原子能级跃迁结合光抽运技术形成铷原子振荡器。
由晶体振荡器(VCO)输出信号经过倍频综合后得到铷原子谐振器相关微波激励信号。
谐振器将该信号相关处理(铷原子跃迁判定)后产生误差信号, 再经伺服电路反馈给压控晶体振荡器, 使压控晶振频率锁定在铷谐振器中心频率, 从而实现以铷原子跃迁为参考晶体振荡器。
铷原子钟溯源同时到GPS卫星铯原子钟上, 输出频率几乎没有漂移, 所以不需送上级计量部门进行周期校准, 性能靠近铯钟, 但却远远低于铯钟价格, 而且
不存在铯钟那样铯束管寿命短需要高成本更换问题。
铷原子钟非常适合应用于SDH数字同时网1, 2级节点时钟, 为电力、电信、广电、时统、计量校准、雷达设备等提供高精度时间和频率基准。
关键特点
1内置铷振荡器
2.日平均频率正确度<2×10P-12P
3.时间实时显示
4.驯服、保持自动切换
5.GPS失锁后依靠铷钟高精度守时
6.低相噪频率信号输出
7.测频精度<2×10P-12P/天
8.含有TRAIM算法GPS接收机
铷频率标准不需要真空系统、致偏磁铁和原子束, 所以体积小、质量小、预热时间短、价格廉价, 但正确度差、频率漂移比较大, 仅能用作二级标准。
铷频率标准可经过GPS进行快速驯服和外秒同时, 克服铷振荡器本身漂移, 可被看作是一个基础同时时钟单元。
经过设计和工艺改善, 产品可靠性和批量生产也得到确保, 现已含有产业化条件。
能够估计, 这种带外秒驯服高性能小型化铷钟将应用于无人值守等苛刻环境, 将大大拓展铷钟应用领域。
铷原子频率标准常常被分为一般型、军用型、航天型。
SYN3102型铷原子频率标准
产品概述
SYN3102型铷原子频率标准是是西安同时电子科技有限企业研发生产一款高性能铷原子频率标准源, 选择国外进口高精度铷原子振荡器, 提供正确频率(量值)信号, 能够为计量、通信、国防等部门提供高精度频率标准信号。
产品功效
1)提供一路标准10MHz正弦信号;
产品特点
a)锁定快;
b)低相噪;
c)高可靠性;
d)可长久连续稳定工作。
经典应用
1)时频计量标准器具;
2)航空航天、飞行器跟踪与测控、通信、天文、气象;
3)同时广播、数字电视、单频网系统、同时采集系统。
技术指标
输出信号10MHz 路数1路
波形正弦
频率正确度±5E-11(出厂时设置)物理接口BNC
频率稳定度
≤3E-11/1s
≤1E-11/10s
≤3E-12/100s
相位噪声
≤-72dBc/Hz(1Hz)
≤-90dBc/Hz(10Hz)
≤-125dBc/Hz(100Hz)
≤-135dBc/Hz(1kHz)。