牛吃草问题【图示法解析】
- 格式:doc
- 大小:14.00 KB
- 文档页数:2
牛吃草问题的详细解法一、牛吃草问题基础概念。
1. 问题描述。
- 牛吃草问题又称为消长问题或牛顿问题。
典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
2. 基本公式。
- 设每头牛每天的吃草量为1份。
- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。
- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。
二、牛吃草问题示例及解析。
1. 题目1。
- 有一片牧场,草每天都在匀速生长。
如果放养24头牛,6天可以把草吃完;如果放养21头牛,8天可以把草吃完。
问:- 要使草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 设每头牛每天吃草量为1份。
- 首先求草的生长速度:(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。
要使草永远吃不完,那么牛每天的吃草量不能超过草的生长速度,所以最多放养12头牛。
- 由知草的生长速度为12份/天,先求原有草量:24×6 - 12×6 = 144 - 72 = 72(份)。
- 当放养36头牛时,设可以吃x天,根据原有草量 = 牛头数×吃的天数- 草的生长速度×吃的天数,可得72 = 36x-12x,24x = 72,解得x = 3天。
2. 题目2。
- 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。
那么这片草地可供21头牛吃几周?- 解析:- 设每头牛每周吃草量为1份。
- 草的生长速度(23×9 - 27×6)÷(9 - 6)=(207 - 162)÷3 = 15(份/周)。
牛吃草问题解法牛吃草问题又称为消长问题或牛顿问题,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
基本解法解决牛吃草问题常用到4个基本的公式,分别是︰(1)求草的生长速度=(对应的牛头数×吃的较多天数-对应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)求原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)假设有一些牛专吃刚生长的草,剩下的牛吃原有的草。
(4)原有草量/剩下的牛数量=天数这4个公式是解决牛吃草问题的基础。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
正是由于这个不变量,才能够导出上面的四个基本公式。
牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。
由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
例如;一片草地,每周都匀速生长.这片草地可以供12头牛吃9周,或者共15头牛吃6周.那么,这片草地可供9头牛吃几周?12头×9周=原有草+9周新生草15头×6周=原有草+6周新生草草原有草:15×6-6×6=54六头牛吃新生草,其余3头牛吃原有草,9-6=3(头)54÷3=18(周)解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
这类问题的基本数量关系是:1.吃的天数=原有草量÷(牛头数-草的生长速度)2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。
牛吃草问题经典例题集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗原有草量);4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。
----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
小学数学牛吃草问题知识点总结牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
小升初冲刺第2讲牛吃草问题基本公式:1)设定一头牛一天吃草量为“ 1”2)草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少天数)十(吃的较多天数一吃的较少天数);3)原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'4)吃的天数=原有草量十(牛头数—草的生长速度);5)牛头数=原有草量十吃的天数+草的生长速度。
例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)-(20-10)=5 份10X 20=200份……原草量+20天的生长量原草量:200-20 X 5=100 或150-10 X 5=100份15X 10=150份……原草量+10天的生长量100 -(25-5 )=5天[自主训练]牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)-(20-10)=3 份9X 20=180份……原草量+20天的生长量原草量:180-20 X 3=120份或150-10 X 3=120 份15X 10=150份……原草量+10天的生长量120 -(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
行程问题常见考点之牛吃草问题在行测考试中,行程问题一直是难点,也一直是考生直接放弃的类型题,很多考生认为其难度大,不可能学会,但是在行程问题中还是一些题型是可以让我们快速做出来并且做对得分的,其中最典型的题型就是牛吃草问题。
一、问题描述牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛吃草问题的基础。
一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
核心公式:草场草量=(牛数-每天长草量)×天数基本不变量:单位面积牧场上原有草量不变,一般用来列方程。
每头牛每天吃草量不变,一般设为“1”单位面积牧场上每天新增草量不变,一般设为“x”。
三、解题方法转化为行程问题考虑。
两船在水中的相遇问题与两车在陆地上的相遇问题一样,与水速没有关系。
同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关。
【例1】:一片牧草,可供16头牛吃20天,也可以供20头牛吃12天,那么25头牛几天可以吃完?解法1:草的生长速度=(16×20-20×12)÷(20-12)=10牛/天原有草量=16×20-10×20=120牛吃的天数=120÷(25-10)=8天解法2:设该牧场每天长草量恰可供x头牛吃一天,这片草场可供25头牛吃n天。
根据核心公式:(16-x)×20=(20-x)×12=(25-x)×n(16-x)×20=(20-x)×12,得x=10,代入得n=8【例2】:有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35答案:C解析:设该牧场每天长草量恰可供x头牛吃一天,这片草场可供n头牛吃4天根据核心公式:(10-x)×20=(15-x)×10=(n-x)×4(10-x)×20=(15-x)×10,得x=5,代入得n=30【例3】:由于天气逐渐冷起来,牧场上的草除了不长,反而以固定速度减少。
牛吃草问题计算公式一、牛吃草问题基本公式。
1. 假设每头牛每天的吃草量为1份。
- 草的生长速度=(对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量=牛头数×吃的天数 - 草的生长速度×吃的天数。
- 吃的天数=原有草量÷(牛头数 - 草的生长速度)- 牛头数=原有草量÷吃的天数+草的生长速度。
二、牛吃草问题示例及解析。
(一)题目1。
一片草地,可供15头牛吃10天,10头牛吃20天,那么25头牛可以吃多少天?1. 解析。
- 首先求草的生长速度。
设每头牛每天吃草量为1份。
- 根据公式,草的生长速度=(10×20 - 15×10)÷(20 - 10)=(200 - 150)÷10 = 5份/天。
- 然后求原有草量。
- 原有草量=15×10 - 5×10 = 150 - 50 = 100份。
- 最后求25头牛可以吃的天数。
- 吃的天数=100÷(25 - 5)=100÷20 = 5天。
(二)题目2。
有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?1. 解析。
- 先求草的生长速度。
- 草的生长速度=(10×20 - 15×10)÷(20 - 10)=(200 - 150)÷10 = 5份/天。
- 再求原有草量。
- 原有草量 = 10×20 - 5×20 = 200 - 100 = 100份。
- 最后求牛头数。
- 牛头数=100÷4+5 = 25 + 5 = 30头。
(三)题目3。
由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。
经计算,牧场上的草可供20头牛吃5天,或供16头牛吃6天。
那么可供11头牛吃几天?1. 解析。
「牛吃草」問題︰從圖解到牛頓解陳麗萍東華三院港九電器商聯會小學下午校馮振業香港教育學院數社科技學系引子香港數學教育學會十週年會慶發行了一套以名題欣賞為主題的書籤,其中一題就是著名的「牛吃草」問題:3頭牛在二星期裡,吃完了2畝地上所有的草;而2頭牛在四星期裡能吃完2畝地上所有的草。
要多少頭牛,能在六星期中吃完6畝地上所有的草?(香港數學教育學會,2005)如果沒考慮到地上會長出新草,單以3頭牛吃二星期的草量和2頭牛吃四星期的草量比較,很容易會認為不可能同由2畝地供給,因前者等同1頭牛吃六星期的草量,而後者卻等同1頭牛吃八星期的草量,兩者不可能相等!表面看來,問題涉及牛數、土地面積和時間三個變量。
然而,如果忽略了草量這個關鍵變量,以及它與土地面積和時間的關係,將不可能成功求解。
由於要處理的關係較多,一般會認為此題較適合中學生以代數方法計算(見附錄一)。
事實上,原題出自英國數學家牛頓(Isaac Newton)的《廣義算術》(Arithmetica Universalis),數值也比較複雜些。
學會書籤列出的一題,換上了較簡單的數值,有利於高小學生以畫圖方法求解。
本文旨在介紹以畫圖方法求解「牛吃草」問題,讓讀者拿來和牛頓的原解對照參考。
兩個解法要解「牛吃草」問題,必須作出下列假設:假設1 開始時(即牛還未開始吃草時),土地上的草量與面積成正比例;假設2 在相同面積的土地上,長出新草的數量,與時間成正比例;假設3 在同一時間內,長出新草的數量,與土地面積成正比例;假設4 每頭牛在任何一單位時間內吃的草量都相等。
直接考慮土地面積和牛數,或利用上面這些假設,可以推得(見附錄二):命題5 如果在同一時間內吃完地上的所有草,土地面積與牛數成正比例。
問題的已知條件和所求,可以表列如下:牛數(頭)土地面積(畝)時間(星期)3 2 22 2 4? 6 6為了在方便解說,和顯示高小學生可能用上的非正規表達的需要之間取得平衡,以下展示的畫圖推算過程,刻意採用水平劃分表達牛數,鉛垂劃分表達吃草時間。
「牛吃草」問題︰從圖解到牛頓解陳麗萍東華三院港九電器商聯會小學下午校馮振業香港教育學院數社科技學系引子香港數學教育學會十週年會慶發行了一套以名題欣賞為主題的書籤,其中一題就是著名的「牛吃草」問題:3頭牛在二星期裡,吃完了2畝地上所有的草;而2頭牛在四星期裡能吃完2畝地上所有的草。
要多少頭牛,能在六星期中吃完6畝地上所有的草?(香港數學教育學會,2005)如果沒考慮到地上會長出新草,單以3頭牛吃二星期的草量和2頭牛吃四星期的草量比較,很容易會認為不可能同由2畝地供給,因前者等同1頭牛吃六星期的草量,而後者卻等同1頭牛吃八星期的草量,兩者不可能相等!表面看來,問題涉及牛數、土地面積和時間三個變量。
然而,如果忽略了草量這個關鍵變量,以及它與土地面積和時間的關係,將不可能成功求解。
由於要處理的關係較多,一般會認為此題較適合中學生以代數方法計算(見附錄一)。
事實上,原題出自英國數學家牛頓(Isaac Newton)的《廣義算術》(Arithmetica Universalis),數值也比較複雜些。
學會書籤列出的一題,換上了較簡單的數值,有利於高小學生以畫圖方法求解。
本文旨在介紹以畫圖方法求解「牛吃草」問題,讓讀者拿來和牛頓的原解對照參考。
兩個解法要解「牛吃草」問題,必須作出下列假設:假設1 開始時(即牛還未開始吃草時),土地上的草量與面積成正比例;假設2 在相同面積的土地上,長出新草的數量,與時間成正比例;假設3 在同一時間內,長出新草的數量,與土地面積成正比例;假設4 每頭牛在任何一單位時間內吃的草量都相等。
直接考慮土地面積和牛數,或利用上面這些假設,可以推得(見附錄二):命題5 如果在同一時間內吃完地上的所有草,土地面積與牛數成正比例。
問題的已知條件和所求,可以表列如下:牛數(頭)土地面積(畝)時間(星期)3 2 22 2 4? 6 6為了在方便解說,和顯示高小學生可能用上的非正規表達的需要之間取得平衡,以下展示的畫圖推算過程,刻意採用水平劃分表達牛數,鉛垂劃分表達吃草時間。
图示法解析牛吃草问题
图示法解题:图示法在解很多题目时非常直观、简洁,如在牛吃草、行程等问题中得到广泛的应用,以牛吃草为例说明如下:
【例1】一片草场的青草每天都匀速生长,这片青草可供27头牛吃6天,或供23头牛吃9天,那么可供21头牛吃几天?
解题思路总结:解决牛吃草问题的关键是:
(1)设1头牛1天吃1份草;
(2)要求出每天(或每周等)新生长的草量;
(3)要求出原有的草量;注意:原有的草量不变。
然后代入计算就可以了。
解:作线段图如下图:
设1头牛1天吃1份草,
则27头牛6天共吃草:27×6=162份;23头牛9天共吃23×9=207份,
多了207-162=45份,相当于(9-6)天生长的草量,
所以每天生长的草量为:=15份/天;
则原有的草量为:162-6×15=72份;
21头牛中有15头吃生长的草,那么剩下的21-15=6头吃原有的草,
所以可以吃:天,因此可供21头牛吃12天。
练习题:
1.有一个水池,池底有一个打开的出水口。
用5台抽水机20时可将水抽完,用8台抽水机15时可将水抽完。
如果仅靠出水口出水,那么多长时间能把水漏完?
2.哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了100级。
在相同的时间内,妹妹沿着自动扶梯从底向上走到顶,共走了50级。
如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有多少级?
3.两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。
问:该扶梯共有多少级梯级?
4.仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。
用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。
仓库里原有的存货若用1辆汽车运则需要多少天运完?
5.画展9点开门,但早就有人排队等候入场了。
从第一个观众来到时起,每分钟来的观众人数一样多。
如果开3个入场口,则9点9分就不再有人排队,如果开5个入场口,则9点5分就没有人排队。
那么第一个观众到达的时间是8点几分?
6.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。
从开始检票到等候检票的队伍消失,若同时开5个检票口则需30分钟,若同时开6个检票口则需20分钟。
如果要使队伍10分钟消失,那么需同时开几个检票口?
7.假设地球上新生成的资源的增长速度是一定的,照此测算,地球上的资源可供110
亿人生活90年,或可供90亿人生活210年。
为使人类能够不断繁衍,那么地球最多能养活多少亿人?
8.有一牧场,17头牛30天可将草吃完.19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?
9.有三块草地,面积分别为5公顷、15公顷和24公顷。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。
问:第三块草地可供多少头牛吃80天?
10.有一水池,池底有泉水不断涌出。
要想把水池的水抽干,10台抽水机需抽8时,8
台抽水机需抽12时。
如果用6台抽水机,那么需抽多少小时?。