动态平衡专题
- 格式:pdf
- 大小:2.76 MB
- 文档页数:22
第三章相互作用——力专题05:动态平衡问题题组一矢量三角形法解决三力动态平衡问题1.(2022江苏如皋期末)如图所示,小球在力F的作用下静止,细线与竖直方向的夹角为θ。
将F由图示位置逆时针缓慢转至竖直方向的过程中,小球始终静止在图中位置,则()A.F一直变小B.F先变小后变大C.细线的拉力一直变大D.细线的拉力先变小后变大2.(2023湖南岳阳一中期中)如图所示,OA、OB、OC都为轻绳,OA绳水平,OC绳下悬挂有一小物体(可视为质点)。
现施加一水平力F于小物体上,使小物体缓慢被拉高,在此过程中,OA、OB两绳位置不变,则()A.拉力F增大B.绳AO的拉力不变C.绳BO的拉力减小D.绳CO的拉力先减小后增大题组二解析法解决三力动态平衡问题3.(2023江苏南通大学附属中学期中)如图所示,水平地面上有一个曲面光滑、截面为半圆的柱体,用细线拉住的小球静止靠在接近半圆底端的M点。
通过细线将小球从M点缓慢向上拉至半圆最高点的过程中,细线方向始终与半圆相切,柱体保持不动。
下列说法正确的是()A.细线对小球的拉力先增大后减小B.小球对柱体的压力先减小后增大C.柱体受到水平地面的支持力逐渐减小D.柱体对地面的摩擦力先增大后减小4.(2022江苏常州礼嘉中学期中)如图所示,小球用细绳系住置于斜面体上,绳的另一端固定于O点。
现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于伸直状态。
当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是()A.F N保持不变,F T不断增大B.F N不断增大,F T不断减小C.F N保持不变,F T先增大后减小D.F N不断增大,F T先减小后增大题组三相似三角形法解决三力动态平衡问题5.(2022北京西城第四中学月考,改编)一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过竖直轻杆顶端A处的光滑小滑轮,用力F拉住,如图所示。
专题三 动态平衡分析方法一:三角形图解法。
特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法二:相似三角形法。
特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题:方法三:正交分解法。
特点:受力分析,所受力多于三个力时。
例题1.如图所示,小球用细绳系住放在倾角为 的光滑斜面上,当 细绳由水平方向逐渐向上偏移时,细绳上的拉力将: A .逐渐变大 B .逐渐变小 C .先增大后减小 D .先减小后增大 例题2.光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示。
现缓慢的拉绳,在小球沿球面由A到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是:A.N 变大,T 变小B.N 变小,T 变大C.N 变小,T 先变大后变小D.N 不变,T 变小例题3.如图所示,当人向左跨了一步后人与物体保持静止,跨后与垮前相比较,下列说法错误的是:A .地面对人的摩擦力减小B .地面对人的摩擦力增加C .人对地面压力增大D .绳对人的拉力变小O AB C Dθ警示易错试题警示1::注意“死节”和“活节”问题。
总结:对于结受力问题,首先应明确是结否固定,若不固定,则绳两端受力相等,沿绳子方向,若结固定,则绳两端受力不一定相等,也沿绳子方向,应根据实际情况(如受力平衡等)加以分析。
1、如图33所示,长为5m 的细绳的两端分别系于竖立在地面上相距为4m 的两杆的顶端A 、B ,绳上挂一个光滑的轻质挂钩,其下连着一个重为12N的物体,平衡时,问: ①绳中的张力T 为多少?②A 点向上移动少许,重新平衡后,绳与水平面夹角,绳中张力如何变化?2、如图34所示,AO 、BO 和CO 三根绳子能承受的最大拉力相等,O 为结点,OB 与竖直方向夹角为θ,悬挂物质量为m 。
动态平衡问题解析版一、单选题1.如图所示,把一质量分布均匀的光滑小球放在竖直墙ab 与板d (c 处为固定转轴)之间静止,板cd 与墙ab 间的夹角为α,若把板的d 端缓慢向右转动,使α角增大,下列说法正确的是()A .墙ab 受到的压力增大B .墙ab 受到的压力不变C .板cd 受到的压力减小D .若把板的d 端缓慢向左转动,减小α角,小球受到的合力增大【答案】C 【详解】ABC.以光滑的圆柱体为研究对象,作出重力的分解图如图:根据几何知识得:12tan sin mgG mg G αα==当夹角α增大时,sin α、tan α增大,则G 1变小,G 2变小。
选项AB 错误,C 正确;D .若把板的d 端缓慢向左转动,小球处在动态平衡状态,受到的合力不变,选项D 错误。
故选C 。
2.如图所示,木板P 下端通过光滑铰链固定于水平地面上的O 点,物体A 、B 叠放在木板上且处于静止状态,此时物体B 的上表面水平。
现使木板P 绕O 点缓慢逆时针旋转到虚线位置,A 、B 、P 之间均保持相对静止,则在此过程中()A .B 对A 的支持力减小B .B 对A 的作用力减小C .P 对B 的作用力增大D .P 对B 的摩擦力增大【答案】A 【详解】AB.以A为研究对象,A原来只受到重力和支持力而处于平衡状态,所以B对A的作用力与A的重力大小相等,方向相反;当将P绕O点缓慢旋转到虚线所示位置,B的上表面不再水平,A受力情况如图1,A受到重力和B的支持力、摩擦力三个力的作用,其中B对A的支持力、摩擦力的和仍然与A的重力大小相等,方向相反,则B对A的作用力保持不变。
开始时物体A不受B对A的摩擦力,B对A的支持力大小与重力相等;后来时设B的上表面与水平方向之间的夹角是β,B对A的支持力、摩擦力的和仍然与A的重力大小相等,方向相反,又因为B对A 的作用力保持不变,由于支持力与摩擦力相互垂直1A cosN Gβ=⋅所以A受到的支持力一定减小了。
共点力的动态平衡一.动态平衡的概念“动态平衡”是指物体所受的力一部分是变力,是动态力,力的大小和方向均要发生变化,但变化过程中的每一个状态均可视为平衡状态,所以叫动态平衡二.平衡中的“四看”与“四想”(1)看到“缓慢”,想到“物体处于动态平衡状态”。
(2)看到“轻绳、轻环”,想到“绳、环的质量可忽略不计”。
(3)看到“光滑”,想到“摩擦力为零”。
(4)看到“恰好”想到“题述的过程存在临界点”。
三、解决动态平衡常用方法1.解析法如果物体受到多个力的作用,可进行正交分解,利用解析法,建立平衡方程,找函数关系,根据自变量的变化确定因变量的变化.还可由数学知识求极值或者根据物理临界条件求极值 2.图解法物体受三个力平衡:一个力恒定、另一个力的方向恒定时可用此法.由三角形中边长的变化知力的大小的变化,还可判断出极值.例:挡板P 由竖直位置绕O 点逆时针向水平位置缓慢旋转时小球受力的变化.(如图)2.相似三角形法物体受三个力平衡:一个力恒定、另外两个力的方向同时变化,当所作“力的矢量三角形”与空间的某个“几何三角形”总相似时用此法(如图)受力分析F N GFF NGFA OF NGF力的矢量三角形和边的三角形相似比例lFdFhGN==lFRFhGN==lFRFRGN==【例1】如图所示,A是一均匀小球,B是一14圆弧形滑块,最初A、B相切于圆弧形滑块的最低点,一切摩擦均不计,开始B与A均处于静止状态,用一水平推力F将滑块B向右缓慢推过一段较小的距离,在此过程中()A.墙壁对球的弹力不变B.滑块对球的弹力增大C.地面对滑块的弹力增大D.推力F减小【答案】B【例2】如图所示,物体甲放置在水平地面上,通过跨过定滑轮的轻绳与小球乙相连,整个系统处于静止状态.现对小球乙施加一个水平力F,使小球乙缓慢上升一小段距离,整个过程中物体甲保持静止,甲受到地面的摩擦力为F f,则该过程中()A.F f变小,F变大B.F f变小,F变小C.F f变大,F变小D.F f变大,F变大【答案】D【例3】如图所示,粗糙的水平面上放有一个截面为半圆的柱状物体A,A与竖直挡板间放有一光滑圆球,整个装置处于静止状态。
动态平衡专题1. 细线A0和BO 下端系一个物体 P,细线长AO>BO A, B 两个端点在同一水平线上。
开始时两线刚好绷直,B0线处于竖直方向,如图所示,细线 AO B0的拉力设为F A 和F B ,保持端点 A ,B 在同一水平线上, A 点不动,B 点向右移动,使 A, B 逐渐远离的过程中,物体P 静止不动,关于细线的拉力 F A 和F B 的大小随AB 间距离变化的情况是()A. F A 随距离增大而一直增大B. F A 随距离增大而一直减小C. F B 随距离增大而一直增大D. F B 随距离增大而一直减小2. 如图所示,用绳 OA 0B 和0C 吊着重物P 处于静止状态,其中绳 0A 水平,绳0B 与水平方向成 0角•现用水平向右的力 F 缓慢地将重物 P 拉起,用FA 和FB 分别表示绳 0A 和绳0B 的张力,则() A. FA ,FB, F 均增大B. FA 增大,FB 不变,F 增大C. FA 不变,FB 减小,F 增大D. FA 增大,FB 减小,F 减小 3. 如图所示,保持 不变,将B 点向上移,贝U B0绳的拉力将:B. 先减小,后增大 D.先增大,后减小A. 逐渐减小C. 先减小后增大 B. 逐渐增大D. 先增大后减小4. 如图所示,两根等长的绳子 AB 和BC 吊一重物静止,两根绳子与水平方向夹角均为 水平方向的夹角不变,将绳子 BC 逐渐缓慢地变化到沿水平方向,在这一过程中,绳子 60° .现保持绳子 AB 与 BC 的拉力变化情况是A. 增大C.减小5. 如图所示竖直绝缘墙壁上的 Q 处有一固定的质点 A, Q 正上方的P点用丝线悬挂另一质点 B; A , B 两质点 因为带电而相互排斥,致使悬线与竖直方向成完之前悬线对悬点 P 的拉力大小:绳,重物悬挂于滑轮下,处于静止状态•若按照以下的方式缓慢移动细绳的端点,则下列判断正确的是7.如图所示,两段等长细线串接着两个质量相等的小球a 、b ,悬挂于0点•现在两个小球上分别加上水平方 向的外力,其中作用在 b 球上的力大小为 F 、作用在a 球上的力大小为 2F ,则此装置平衡时的位置可能是下列哪幅图( )e 角,由于漏电使 A , B 两质点的带电量逐渐减小。
1分析动态平衡问题共点力平衡的几种解法1. 力的合成、分解法:力的合成、分解法:2. 矢量三角形法:矢量三角形法:3. 相似三角形法:通常寻找的是一个矢量三角形与三个结构(几何)三角形相似相似三角形法:通常寻找的是一个矢量三角形与三个结构(几何)三角形相似4. 正弦定理法:正弦定理法:5. 三力汇交原理:如果一个物体受到三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必为共点力。
的作用线必在同一平面上,而且必为共点力。
6. 正交分解法:正交分解法:7. 动态作图:如果一个物体受到三个不平行外力的作用而处于平衡,其中一个力为恒力,第二个力的方向一定,讨论第二个力的大小和第三个力的大小和方向。
力为恒力,第二个力的方向一定,讨论第二个力的大小和第三个力的大小和方向。
针对训练一:针对训练一: 【典型例题】例2.2.重重G 的均匀绳两端悬于水平天花板上的A 、B 两点。
静止时绳两端的切线方向与天花板成α角.求绳的A 端所受拉力F 1和绳中点C 处的张力F 2.解:以AC 段绳为研究对象,根据判定定理,虽然AC 所受的三个力分别作用在不同的点(如图中的A 、C 、P 点),但它们必为共点力. 设它们延长线的交点为O ,用平行四边形定则 作图可得:12,2sin 2tan G G F F aa==例3.3.用与竖直方向成用与竖直方向成α=30=30°斜向右上方,°斜向右上方,大小为F 的推力把一个重量为G 的木块压在粗糙竖直墙上保持静止保持静止..求墙对木块的正压力大小N 和墙对木块的摩擦力大小f.解:从分析木块受力知,重力为G ,竖直向下,推力F 与竖直成30°斜向右上方,墙对木块的弹力大小跟F 的水平分力平衡,所以N=F/2,墙对木块的摩擦力是静摩擦力,其大小和方向由F 的竖直分力和重力大小的关系而决定:当23F G =时,f=0;当23F G >时,32f F G =-,方向竖直向下;当23F G<时,32f G F =-,方向竖直向上. 例4.4.如图所示,将重力为如图所示,将重力为G 的物体A 放在倾角θ的斜面上,物体与斜面间的动摩擦因数为μ,那么对A 施加一个多大的水平力F ,可使物体沿斜,可使物体沿斜面匀速上滑?面匀速上滑?A B G /2F 1 F 2α C P O F 2αF 1G /2O F αG θAF例5.5.如图所示,在水平面上放有一质量为如图所示,在水平面上放有一质量为m 、与地面的动动摩擦因数为μ的物体,现用力F 拉物体,使其沿地面匀速运动,求F 的最小值及方向的最小值及方向. .(min 21mg F m m =+,与水平方向的夹角为θ=arctan μ)例6.6.有一个直角支架有一个直角支架AOB AOB,,AO 水平放置水平放置,,表面粗糙表面粗糙, , OB 竖直向下竖直向下,,表面光滑表面光滑.AO .AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图所示)伸长的细绳相连,并在某一位置平衡(如图所示)..现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO AO 杆对P 环的支持力F N 和摩擦力f 的变化情况是的变化情况是A.F N 不变,不变,f f 变大变大B.F B.F N 不变,不变,ff 变小变小 C.F N 变大,变大,f f 变大变大 D.F D.F N 变大,变大,f f 变小变小解:以两环和细绳整体为对象求F N ,可知竖直方向上始终二力平衡,F N =2mg 不变;以Q 环为对象,在重力、细绳拉力F 和OB 压力N 作用下平衡,设细绳和竖直方向的夹角为α,则P 环向左移的过程中α将减小,N=mgtan α也将减小。
解析法1、“引体向上”是体育运动中的一种常见项目,图3-5-15所示为某中学生的预备动作,其身体处于悬挂静止状态,则( )A.两臂间张角变小,每只胳膊对身体的拉力变小B.两臂间张角变小,每只胳膊对身体的拉力变大C.两臂间张角变大,单杠对每只手的摩擦力变小D.两臂间张角变大,单杠对每只手的摩擦力不变2、(多选)如图所示,与水平方向成θ角的推力F作用在物块上,θ角逐渐减小直到为零的过程中,物块始终沿水平面做匀速直线运动。
关于物块受到的外力,下列判断正确的是( ) A.推力F先增大后减小 B.推力F一直减小C.物块受到的摩擦力一直减小D.物块受到的摩擦力一直不变3、如图所示,所受重力大小为G的物体在外力F的牵引下沿粗糙水平面做匀速直线运动,已知物体与水平面间的动摩擦因数为μ,若F与水平面间的夹角0从0到90°逐渐增大,下列说法错误的是()A.力F逐渐增大B.力F先减小后增大C.物体所受合外力保持不变D.支持力与摩擦力的方向不变相似三角形法4、(多选)如图所示,一质量为m、半径为r的光滑球A用细绳悬挂于0点,另一质量为半为R的半球形物体B被夹在竖直墙壁和A球之间,B的球心到0点之间的距离为h,A、B 的球心在同一水平线上,A、B处于静止状态。
重力加速度为g 。
则下列说法正确的是( )mgA.B对A的支持力大小为R+rℎB.竖直墙壁对B的摩擦力可能为零C.轻轻把B向下移动一点距离,若A、B再次保持静止,则B对A的支持力大小保持不变,细绳拉力增大D.轻轻把B向下移动一点距离,若A、B再次保持静止,则B对A的支持力减小,细绳拉力减小5、一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示。
现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减小,则在此过程中,拉力F及杆BO所受压力的大小F N变化情况是( ) A.F N先减小,后增大 B.F N始终不变 C.F先减小,后增大 D.F始终不变矢量三角形法6、质量为m的物体用轻绳AB悬挂于天花板上。
高中物理力的动态平衡专题摘要:一、动态平衡的概念与特点二、动态平衡问题的分析方法1.解析法2.图解法三、高中物理动态平衡问题的应用实例四、如何提高动态平衡问题的解题能力正文:一、动态平衡的概念与特点动态平衡是指在物体受到多个力作用时,物体在运动过程中保持匀速运动或静止状态。
它有以下特点:1.受力分析:物体在动态平衡状态下,受到的力之间存在一定的关系,需要进行受力分析。
2.变化过程:物体的状态会随着时间的推移而发生缓慢变化,如力的变化、运动方向的变化等。
3.平衡条件:物体在动态平衡状态下,满足力的平衡条件,即合力为零。
二、动态平衡问题的分析方法1.解析法:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变参量与自变参量的一般函数式,然后根据自变参量的变化确定应变参量的变化。
2.图解法:对研究对象进行受力分析,再根据平行四边形定则或三角形定则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度,变化判断各个力的大小和变化关系。
三、高中物理动态平衡问题的应用实例例如,一个物体在三个不平行的共点力作用下平衡,这三个力必组成一首尾相接的三角形。
用这个三角形来分析力的变化和大小关系的方法叫矢量三角形法。
在处理变动中的三力问题时,矢量三角形法能直观地反映出力的变化过程。
四、如何提高动态平衡问题的解题能力1.加强对物理基本概念的理解:理解动态平衡的概念,掌握平衡条件的应用。
2.熟练掌握分析方法:解析法和图解法,灵活运用这两种方法解决实际问题。
3.注重受力分析:对物体进行详细的受力分析,找出各个力之间的关系。
4.加强练习:通过大量的练习,提高自己对动态平衡问题的解题能力和应变能力。
专题5 动态平衡问题分析考点1 图解法求动态平衡问题1.如图所示,一小球用轻绳悬于O点,用力F拉住小球,使悬线保持偏离竖直方向75°角,且小球始终处于平衡状态.为了使F有最小值,F与竖直方向的夹角θ应该是()A.90°B.45°C.15°D.0°【答案】C【解析】对小球进行受力分析,作出小球平衡状态下动态的受力情况变化图如图所示.小球重力不变,与O 点相连的绳子上的拉力方向不变,在力F变化的过程中,当力F与细绳的方向垂直时,力F取得最小值,此时,F与竖直方向的夹角θ满足θ+75°=90°,则θ=15°,选项C正确.2.如图所示,电灯悬挂于两墙之间,更换水平绳OA使连接点A向上移动而保持O点的位置不变,则A点向上移动时()A.绳OA的拉力逐渐增大B.绳OA的拉力逐渐减小C.绳OA的拉力先增大后减小D.绳OA的拉力先减小后增大【答案】D【解析】对O点受力分析,如图所示,利用图解法可知绳OA的拉力先变小后变大,故A、B、C错误,D 正确.3.如图,运动员的双手握紧竖直放置的圆形器械,在手臂OA沿由水平方向缓慢移到A′位置过程中,若手臂OA、OB的拉力分别为F A和FB,下列表述正确的是()A.F A一定小于运动员的重力GB.F A与FB的合力始终大小不变C.F A的大小保持不变D.F B的大小保持不变【答案】B【解析】以人为研究对象,分析受力情况如图:由图看出,F A不一定小于重力G,故A错误.人保持静止状态,则知F A与FB的合力与重力G大小相等、方向相反,保持不变,故B正确.由图看出F A的大小在减小,FB的大小也在减小,故C、D均错误.故选B.4.如图所示,小球放在光滑的墙与装有铰链的光滑薄板之间,当墙与薄板之间的夹角θ缓慢地增大到90°的过程中()①小球对薄板的正压力增大②小球对墙的正压力减小③小球对墙的压力先减小,后增大④小球对木板的压力不可能小于球的重力A.①②B.②④C.①③D.③④【答案】B【解析】根据小球重力的作用效果,可以将重力G分解为使球压板的力F1和使球压墙的力F2,作出平行四边形如右图所示,当θ增大时如图中虚线所示,F1、F2均变小,而且在θ=90°时,F1变为最小值,等于G,所以②、④均正确.5.如图所示,用绳索将重球挂在墙上,不考虑墙的摩擦.如果把绳的长度增加一些,则球对绳的拉力F1和球对墙的压力F2的变化情况是()A.F1增大,F2减小B.F1减小,F2增大C.F1和F2都减小D.F1和F2都增大【答案】C【解析】把球的重力往两个方向上分解如图所示,由图知两个力均减小,故选C.6.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1,半球面对小球的支持力F2的变化情况正确的是()A.F1增大,F2减小B.F1减小,F2减小C.F1增大,F2增大D.F1减小,F2增大【答案】C【解析】据题意,当小球在竖直挡板作用下缓慢向右移动,受力变化情况如图所示,所以移动过程中挡板对小球作用力增加;球面对小球作用力也增大,故选项C正确.7.如图所示,用一根细线系住重力为G、半径为R的球,其与倾角为α的光滑斜面接触,处于静止状态,球与斜面的接触面非常小,当细线悬点O固定不动,斜面缓慢水平向左移动直至绳子与斜面平行的过程中,下述正确的是()A.细绳对球的拉力先减小后增大B.细绳对球的拉力先增大后减小C.细绳对球的拉力一直减小D.细绳对球的拉力最小值等于G【答案】C【解析】以小球为研究对象,其受力分析如图所示:因题中“缓慢”移动,故小球处于动态平衡,由图知在题设的过程中,F一直减小,当绳子与斜面平行时,F 与F N垂直,F有最小值,且F min=G sinα,故选项C正确.8.如图所示,有一质量不计的杆AO,长为R,可绕A自由转动.用绳在O点悬挂一个重为G的物体,另一根绳一端系在O点,另一端系在以O点为圆心的圆弧形墙壁上的C点.当点C由图示位置逐渐向上沿圆弧CB移动过程中(保持OA与地面夹角θ不变),OC绳所受拉力的大小变化情况是()A.逐渐减小B.逐渐增大C.先减小后增大D.先增大后减小【答案】C【解析】据题意,当细绳OC的C段向B点移动过程中,系统处于平衡状态,由图知拉力的大小也是先减小后增加,故选项C正确.9.如图所示,小球C用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于绷紧状态,当小球上升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是()A.F N保持不变,F T不断增大B.F N不断增大,F T不断减小C.F N保持不变,F T先增大后减小D.F N不断增大,F T先减小后增大【答案】D【解析】据题意,当斜面体向左缓慢运动时,小球将逐渐上升,此过程对小球受力分析,受到重力G、支持力F N和拉力F T,据上图,在此过程中OC绳以O点为圆心逆时针转动,在力的平行四边形定则中力F T 的对应边先减小后增大,而F N的对应边一直变大,而力的大小变化与对应边长度变化一致,则D选项正确.10.(多选)如下图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙壁之间放一光滑球B,整个装置处于静止状态.若把A向右移动少许后,它们仍处于静止状态,则()A.A对B的支持力减小B.A对B的支持力增大C.墙对B的弹力减小D.墙对B的弹力增大【答案】AC【解析】设物体A对球B的支持力为F1,竖直墙对球B的弹力为F2,按力的效果可以把球的重力分解为水平方向的压紧墙壁的力和斜向下的压紧A的力,如图所示,故两个力均减小,故选A、C.11.(多选)如图所示.在倾角为θ的光滑斜面和档板之间放一个光滑均匀球体,档板与斜面夹角为α.初始时α+θ<90°.在档板绕顶端逆时针缓慢旋转至水平位置的过程,下列说法正确的是()A.斜面对球的支持力变大B.档板对球的弹力变大C.斜面对球的支持力变小D.档板对球的弹力先变小后变大【答案】CD【解析】小球受到自身重力,斜面支持力和挡板弹力三力平衡,其中重力大小方向不变,斜面弹力垂直斜面向上方向不变,二者的合力与挡板弹力等大反向,挡板弹力垂直挡板,方向从斜向下逐渐变为水平向右最后变为斜向上,如下图所示.挡板弹力变化时,重力和斜面支持力从斜向上逐渐变为斜向下,观察上面的示意图可见,斜面对球的支持力逐渐变小,挡板对球的弹力先减小后增大,选项C、D正确.考点2 相似三角形求动态平衡问题12.半径为R的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B的距离为h,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示,现缓慢地拉绳,在使小球由A到B的过程中,半球对小球的支持力F N和绳对小球的拉力F T的大小变化的情况是()A.F N不变,F T变小B.F N不变,F T先变大后变小C.F N变小,F T先变小后变大D.F N变大,F T变小【答案】A【解析】以小球为研究对象,分析小球受力情况:重力G,细线的拉力F T和半球面的支持力F N,作出F N、F T的合力F,由平衡条件得知F=G.由相似三角形得==得:F N=GF T=G缓慢地将小球从A点拉到B点过程中,O1O、AO不变,O1A变小,得F T变小、F N不变,A正确.13.如图所示,不计重力的轻杆OP能以O为轴在竖直平面内自由转动,P端挂一重物,另用一根轻绳通过滑轮系住P端,当OP和竖直方向的夹角α缓慢增大时(0<α<π),OP杆所受作用力的大小()A.恒定不变B.逐渐增大C.逐渐减小D.先增大后减小【答案】A【解析】在OP杆和竖直方向夹角α缓慢增大时(0<α<π),结点P在一系列不同位置处于静态平衡,以结点P为研究对象,如图甲所示,结点P受向下的拉力G,QP绳的拉力F T,OP杆的支持力F N,三力中,向下的拉力恒定(大小、方向均不变),绳、杆作用力大小均变,绳PQ的拉力F T总沿绳PQ收缩的方向,杆OP支持力方向总是沿杆而指向杆恢复形变的方向(方向变化有依据),做出处于某一可能位置时对应的力三角形图,如图乙所示,则表示这两个力的有向线段组成的三角形与几何线段组成的三角形相似,根据相似三角形知识即可求得,==,即F N不变.14.如图所示,轻杆BC的一端用铰链接于C,另一端悬挂重物G,并用细绳绕过定滑轮用力拉住,开始时,∠BCA>90°,现用拉力F使∠BCA缓慢减小,直线BC接近竖直位置的过程中,杆BC所受的压力()A.保持不变B.逐渐增大C.逐渐减小D.先增大后减小【答案】A【解析】以B点为研究对象,受到三个力分别为重物拉B点的拉力F T1=G,AB绳子的拉力F T2=F,及杆CB对B的弹力F N,三力合成如图所示,从图中可以看出△ABC∽△BFE,则有==,得F N=F T1=G,则A正确.15.如图所示,绳与杆均不计重力,承受力的最大值一定.A端用绞链固定,滑轮O在A点正上方(滑轮大小及摩擦均可忽略),B端吊一重物P,现施加拉力F T将B缓慢上拉(均未断),在杆达到竖直前()A.绳子越来越容易断B.绳子越来越不容易断C.杆越来越容易断D.杆越来越不容易断【答案】B【解析】以B点为研究对象,它受三个力的作用而处于动态平衡状态,其中一个是轻杆的弹力F N,一个是绳子斜向上的拉力F T,一个是绳子竖直向下的拉力,大小等于物体的重力mg,根据相似三角形法,可得==,由于OA和AB不变,OB逐渐减小,因此轻杆上的弹力大小不变,而绳子上的拉力越来越小,选项B正确,其余选项均错误.16.如图所示,小圆环A吊着一个质量为m2的物块并套在另一个竖直放置的大圆环上,有一细线,一端拴在小圆环A上,另一端跨过固定在大圆环最高点B的一个小滑轮后吊着一个质量为m1的物块.如果小圆环、滑轮、细线的大小和质量以及相互之间的摩擦都可以忽略不计,细线又不可伸长,若平衡时弦AB所对应的圆心角为α,则两物块的质量之比应为()A.cosB.sinC.2sinD.2sinα【答案】C【解析】因小圆环A受拉力m2g,细线BA的拉力F T及大圆环的弹力F N作用而处于平衡状态,则此三个力一定可以组成一封闭的矢量三角形,此力的三角形一定与几何三角形OAB相似,即有=,而F T=m1g,AB=2R sin,所以==2sin.17.某欧式建筑物屋顶为半球形,一警卫人员为执行特殊任务,必须冒险半球形屋顶上向上缓慢爬行(如图),他在向上爬过程中()A.屋顶对他的支持力变大B.屋顶对他的支持力变小C.屋顶对他的摩擦力变大D.屋顶对他的摩擦力不变【答案】A【解析】以人为研究对象分析受力可知,人受到重力、摩擦力、屋顶的支持力,其中屋顶支持力和摩擦力的方向都在变化,所以可以采用相似三角形的方法把物理问题转化为数学问题求解,如下图所示:==,故可知屋顶对人的支持力在变大,摩擦力在变小,所以只有选项A正确.18.(多选)如图所示,不计重力的带有光滑滑轮的细杆OB可绕O点在竖直平面内自由转动,绳的一端跨过滑轮挂一重物P,另一端拴在墙壁上的A点,杆处于平衡状态.绳的拉力为T,杆受到的压力为N,杆与竖直方向夹角为θ,若A点沿墙面上移,当杆重新平衡时,有()A.T变大B.θ变大C.N变小D.T变小【答案】BC【解析】对杆的B端进行受力分析,如图所示.由图可知,细线拉力T=mg,所以T不变.而OB杆受到的压力N等于竖直绳和斜绳拉力的合力,沿杆的方向.由于A点上移,所以两个分力夹角增大,因此合力N变小.又轻杆和墙的夹角等于两个分力夹角的一半,当A点上移时,两分力夹角增大,所以θ也增大.故选项B、C正确.。
受力分析中的动态平衡问题一、动态矢量三角形法【题型特点】:1、三个力中,有一个力为恒力(大小方向均不变)2、另一个力方向不变,大小可变,3、第三个力大小方向均可变1. 如图,一粗糙的固定斜杆与水平方向成θ角,一定质量的滑环A 静止悬挂在杆上某位置。
现用一根轻质细绳AB 一端与滑环A 相连,另一端与小球B 相连,且轻绳AB 与斜杆垂直。
另一轻质细绳BC 沿水平方向拉小球B ,使小球B 保持静止。
将水平细绳BC 的C 端沿圆弧缓慢移动到竖直位置,B 的位置始终不变,则在此过程中( )A .轻绳AB 上的拉力先减小后增大 B .轻绳BC 上的拉力先增大后减小C .斜杆对A 的支持力一直在减小D .斜杆对A 的摩擦力一直在减小2. 如图所示,光滑小球静止放置在光滑半球面的底端,小球所受重力为G ,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力1F 、半球面对小球的支持力2F 的变化情况正确的是( )A .1F 增大,2F 减小B .1F 增大,2F 增大C .1F 减小,2F 减小D .1F 减小,2F 增大3. 如图所示,A 是一均匀小球,B 是一14圆弧形滑块,最初A 、B 相切于圆弧形滑块的最低点,一切摩擦均不计,开始B 与A 均处于静止状态,用一水平推力F 将滑块B 向右缓慢推过一段较小的距离,在此过程中( )A .墙壁对球的弹力不变B .滑块对球的弹力增大C .地面对滑块的弹力增大D .推力F 减小4. (多选)如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球和斜面及挡板间均无摩擦,当挡板绕O 点逆时针缓慢地转向水平位置的过程中( )A .斜面对球的支持力逐渐增大B .斜面对球的支持力逐渐减小C .挡板对小球的弹力先减小后增大D .挡板对小球的弹力先增大后减小5.光滑斜面上固定着一根刚性圆弧形细杆,小球通过轻绳与细杆相连,此时轻绳处于水平方向,球心恰位于圆弧形细杆的圆心处,如图所示.将悬点A缓慢沿杆向上移动,直到轻绳处于竖直方向,在这个过程中,轻绳的拉力()A.逐渐增大B.大小不变C.先减小后增大D.先增大后减小6. 质量为M的凹槽静止在水平地面上,内壁为半圆柱面,截面如图所示,A为半圆的最低点,B为半圆水平直径的端点。