《创新设计》2020届高考数学人教A版(理)一轮复习:第八篇 第6讲 空间向量及其运算
- 格式:doc
- 大小:224.00 KB
- 文档页数:7
第8讲曲线与方程A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.动点P(x,y)满足5(x-1)2+(y-2)2=|3x+4y-11|,则点P的轨迹是().A.椭圆B.双曲线C.抛物线D.直线解析设定点F(1,2),定直线l:3x+4y-11=0,则|PF|=(x-1)2+(y-2)2,点P到直线l的距离d=|3x+4y-11|5.由已知得|PF|d=1,但注意到点F(1,2)恰在直线l上,所以点P的轨迹是直线.选D.答案 D2.(2013·榆林模拟)若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为().A.圆B.椭圆C.双曲线D.抛物线解析依题意,点P到直线x=-2的距离等于它到点(2,0)的距离,故点P的轨迹是抛物线.答案 D3.(2013·临川模拟)设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为().A.4x221-4y225=1 B.4x221+4y225=1C.4x225-4y221=1 D.4x225+4y221=1解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴a =52,c =1,则b 2=a 2-c 2=214, ∴椭圆的标准方程为4x 225+4y 221=1. 答案 D4.(2013·烟台月考)已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ). A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0D .2x -y +5=0解析 由题意知,M 为PQ 中点,设Q (x ,y ),则P 为(-2-x ,4-y ),代入2x -y +3=0,得2x -y +5=0. 答案 D二、填空题(每小题5分,共10分)5.(2013·泰州月考)在△ABC 中,A 为动点,B 、C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是________. 解析 由正弦定理,得|AB |2R -|AC |2R =12×|BC |2R , ∴|AB |-|AC |=12|BC |,且为双曲线右支. 答案 16x 2a 2-16y 23a 2=1(x >0且y ≠0)6. 如图,点F (a,0)(a >0),点P 在y 轴上运动,M 在x 轴上运动,N 为动点,且PM →·PF →=0,PM →+PN →=0,则点N 的轨迹方程为________.解析 由题意,知PM ⊥PF 且P 为线段MN 的中点,连接FN ,延长FP 至点Q 使P 恰为QF 之中点;连接QM ,QN ,则四边形FNQM 为菱形,且点Q 恒在直线l :x =-a 上,故点N 的轨迹是以点F 为焦点,直线l 为准线的抛物线,其方程为:y 2=4ax . 答案 y 2=4ax三、解答题(共25分)7.(12分)已知长为1+2的线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,P 是AB 上一点,且AP→=22PB →,求点P 的轨迹C 的方程.解 设A (x 0,0),B (0,y 0),P (x ,y ),AP→=22PB →,又AP →=(x -x 0,y ),PB →=(-x ,y 0-y ), 所以x -x 0=-22x ,y =22(y 0-y ), 得x 0=⎝⎛⎭⎪⎫1+22x ,y 0=(1+2)y .因为|AB |=1+2,即x 20+y 20=(1+2)2,所以⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+22x 2+[(1+2)y ]2=(1+2)2,化简得x 22+y 2=1.∴点P 的轨迹方程为x 22+y 2=1.8.(13分)设椭圆方程为x 2+y24=1,过点M (0,1)的直线l 交椭圆于A ,B 两点,O为坐标原点,点P 满足OP→=12(OA →+OB →),点N 的坐标为⎝ ⎛⎭⎪⎫12,12,当直线l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)|NP→|的最大值,最小值.解 (1)直线l 过定点M (0,1),当其斜率存在时设为k ,则l 的方程为y =kx +1. 设A (x 1,y 1),B (x 2,y 2),由题意知,A 、B 的坐标满足方程组⎩⎪⎨⎪⎧y =kx +1,x 2+y 24=1.消去y 得(4+k 2)x 2+2kx -3=0. 则Δ=4k 2+12(4+k 2)>0. ∴x 1+x 2=-2k4+k 2,x 1x 2=-34+k 2.P (x ,y )是AB 的中点,则由⎩⎪⎨⎪⎧x =12(x 1+x 2)=-k 4+k 2,y =12(y 1+y 2)=12(kx 1+1+kx 2+1)=44+k 2;消去k 得4x 2+y 2-y =0.当斜率k 不存在时,AB 的中点是坐标原点,也满足这个方程,故P 点的轨迹方程为4x 2+y 2-y =0.(2)由(1)知4x 2+⎝ ⎛⎭⎪⎫y -122=14,∴-14≤x ≤14而|NP |2=⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=⎝ ⎛⎭⎪⎫x -122+1-16x 24=-3⎝ ⎛⎭⎪⎫x +162+712,∴当x =-16时,|NP→|取得最大值216, 当x =14时,|NP →|取得最小值14.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2019·全国)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =37.动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ).A .16B .14C .12D .10解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为AB 的三等分点时,可得结果为6(如图1所示).可以猜想本题碰撞的结果应为2×7=14(如图2所示).故选B.答案 B2.(2013·沈阳二模)在平行四边形ABCD 中,∠BAD =60°,AD =2AB ,若P 是平面ABCD 内一点,且满足:xAB →+yAD →+P A →=0(x ,y ∈R ).则当点P 在以A 为圆心,33|BD →|为半径的圆上时,实数x ,y 应满足关系式为( ).A .4x 2+y 2+2xy =1B .4x 2+y 2-2xy =1C .x 2+4y 2-2xy =1D .x 2+4y 2+2xy =1解析 如图,以A 为原点建立平面直角坐标系,设AD =2.据题意,得AB =1,∠ABD =90°,BD =3.∴B 、D 的坐标分别为(1,0)、(1,3),∴AB →=(1,0),AD →=(1,3).设点P 的坐标为(m ,n ),即AP→=(m ,n ),则由xAB →+yAD →+P A →=0,得:AP →=xAB →+yAD →,∴⎩⎨⎧m =x +y ,n =3y .据题意,m 2+n 2=1,∴x 2+4y 2+2xy =1. 答案 D二、填空题(每小题5分,共10分)3.如图所示,正方体ABCD -A1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13AB ,点P 在平面ABCD 上,且动点P 到直线A 1D 1的距离的平方与P 到点M 的距离的平方差为1,在平面直角坐标系xAy 中,动点P 的轨迹方程是________.解析 过P 作PQ ⊥AD 于Q ,再过Q 作QH ⊥A1D 1于H ,连接PH 、PM ,可证PH ⊥A 1D 1,设P (x ,y ),由|PH |2-|PM |2=1,得x 2+1-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -132+y 2=1,化简得y 2=23x -19.答案 y 2=23x -194.(2013·南京模拟)P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1、F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________.解析 由OQ →=PF 1→+PF 2→,又PF 1→+PF 2→=PM →=2 PO →=-2OP →,设Q (x ,y ),则OP →=-12OQ →=-12(x ,y )=-x 2,-y 2,即P 点坐标为-x 2,-y2.又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b 2=1. 答案 x 24a 2+y 24b 2=1 三、解答题(共25分)5.(12分)(2013·郑州模拟)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >0,b >0)经过点A ⎝ ⎛⎭⎪⎫62,2,且点F (0,-1)为其一个焦点. (1)求椭圆E 的方程;(2)设随圆E 与y 轴的两个交点为A 1,A 2,不在y 轴上的动点P 在直线y =b 2上运动,直线P A 1,P A 2分别与椭圆E 交于点M ,N ,证明:直线MN 通过一个定点,且△FMN 的周长为定值. 解 (1)根据题意可得⎩⎪⎨⎪⎧32a 2+2b2=1,b 2-a 2=1,可解得⎩⎨⎧a =3,b =2,∴椭圆E 的方程为x 23+y 24=1.(2)由(1)知A 1(0,2),A 2(0,-2),P (x 0,4)为直线y =4上一点(x 0≠0),M (x 1,y 1),N (x 2,y 2),直线P A 1方程为y =2x 0x +2,直线P A 2方程为y =6x 0x -2,点M (x 1,y 1),A 1(0,2)的坐标满足方程组⎩⎪⎨⎪⎧ x 23+y 24=1,y =2x 0x +2,可得⎩⎪⎨⎪⎧x 1=-6x 03+x 20,y 1=2x 20-63+x 20.点N (x 2,y 2),A 2(0,-2)的坐标满足方程组⎩⎪⎨⎪⎧x 23+y 24=1,y =6x 0x -2,可得⎩⎪⎨⎪⎧x 2=18x 027+x 20,y 2=-2x 20+5427+x 20.由于椭圆关于y 轴对称,当动点P 在直线y =4上运动时,直线MN 通过的定点必在y 轴上,当x 0=1时,直线MN 的方程为y +1=43⎝ ⎛⎭⎪⎫x +32,令x =0,得y =1可猜测定点的坐标为(0,1),并记这个定点为B .则直线BM 的斜率k BM =y 1-1x 1=2x 20-63+x 20-1-6x 03+x 20=9-x 206x 0,直线BN 的斜率k BN =y 2-1x 2=-2x 20+5427+x 20-118x 027+x 20=9-x 206x 0,∴k BM =k BN ,即M ,B ,N 三点共线,故直线MN 通过一个定点B (0,1),又∵F (0,-1),B (0,1)是椭圆E 的焦点,∴△FMN 周长为|FM |+|MB |+|BN |+|NF |=4b =8,为定值.6.(13分)(2013·玉林模拟)已知向量a =(x ,3y ),b =(1,0),且(a +3b )⊥(a -3b ).(1)求点Q (x ,y )的轨迹C 的方程;(2)设曲线C 与直线y =kx +m 相交于不同的两点M 、N ,又点A (0,-1),当|AM |=|AN |时,求实数m 的取值范围.解 (1)由题意得a +3b =(x +3,3y ),a -3b =(x -3,3y ),∵(a +3b )⊥(a -3b ),∴(a +3b )·(a -3b )=0, 即(x +3)(x -3)+3y ·3y =0.化简得x 23+y 2=1,∴Q 点的轨迹C 的方程为x 23+y 2=1. (2)由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1得(3k 2+1)x 2+6mkx +3(m 2-1)=0,由于直线与椭圆有两个不同的交点, ∴Δ>0,即m 2<3k 2+1.①(i)当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标,则x P =x M +x N 2=-3mk3k 2+1, 从而y P =kx P +m =m3k 2+1,k AP =y P +1x P =-m +3k 2+13mk ,又|AM |=|AN |,∴AP ⊥MN .则-m +3k 2+13mk =-1k ,即2m =3k 2+1,②将②代入①得2m >m 2,解得0<m <2, 由②得k 2=2m -13>0,解得m >12,故所求的m 的取值范围是⎝ ⎛⎭⎪⎫12,2.(ii)当k =0时,|AM |=|AN |,∴AP ⊥MN ,m 2<3k 2+1,解得-1<m <1. 综上,当k ≠0时,m 的取值范围是⎝ ⎛⎭⎪⎫12,2,当k =0时,m 的取值范围是(-1,1).。
第3讲 直线与圆、圆与圆的位置关系A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2012·福建)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( ).A .2 5B .2 3C. 3D .1解析 由题意作出图象如图,由图可知圆心O 到直线AB 的距离d =|-2|1+3=1,故|AB |=2|BC |=222-12=2 3. 答案 B2.(2012·安徽)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ).A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a ≤1. 答案 C3.(2013·潍坊模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围是( ).A .(2+1,+∞)B .(2-1,2+1)C .(0,2-1)D .(0,2+1)解析 计算得圆心到直线l 的距离为22=2>1,得到右边草图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离2+1,故选A. 答案 A4.(2013·银川一模)若圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by -1+b 2=0(b ∈R )恰有三条切线,则a +b 的最大值为( ).A .-3 2B .-3C .3D .3 2解析 易知圆C 1的圆心为C 1(-a,0),半径为r 1=2; 圆C 2的圆心为C 2(0,b ),半径为r 2=1. ∵两圆恰有三条切线,∴两圆外切,∴|C 1C 2|=r 1+r 2,即a 2+b 2=9.∵⎝⎛⎭⎪⎫a +b 22≤a 2+b22, ∴a +b ≤32(当且仅当a =b =32时取“=”), ∴a +b 的最大值为3 2. 答案 D二、填空题(每小题5分,共10分)5.(2012·北京)直线y =x 被圆x 2+(y -2)2=4截得的弦长为________.解析 由题意得,圆x 2+(y -2)2=4的圆心为(0,2),半径为2,圆心到直线x -y =0的距离d =22= 2. 设截得的弦长为l ,则由⎝ ⎛⎭⎪⎫l 22+(2)2=22,得l =2 2.答案 2 26.(2011·江苏)设集合A =(x ,y )⎪⎪⎪m2≤(x -2)2+y 2≤m 2,x ,y ∈R ,B ={(x ,y )|2m ≤x+y ≤2m +1,x ,y ∈R },若A ∩B =∅,则实数m 的取值范围是________. 解析 ∵A ∩B ≠∅,∴A ≠∅,∴m 2≥m 2.∴m ≥12或m ≤0.显然B ≠∅.要使A ∩B ≠∅,只需圆(x -2)2+y 2=m 2(m ≠0)与x +y =2m 或x +y =2m +1有交点,即|2-2m |2≤|m |或|1-2m |2≤|m |,∴2-22≤m ≤2+ 2. 又∵m ≥12或m ≤0,∴12≤m ≤2+ 2. 当m =0时,(2,0)不在0≤x +y ≤1内.综上所述,满足条件的m 的取值范围为⎣⎢⎡⎦⎥⎤12,2+2.答案 ⎣⎢⎡⎦⎥⎤12,2+2三、解答题(共25分)7.(12分)已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程. 解 将圆C 的方程x 2+y 2-8y +12=0化成标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2. (1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.8.(13分)已知圆C 经过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43,半径小于5.(1)求直线PQ 与圆C 的方程;(2)若直线l ∥PQ ,且l 与圆C 交于点A ,B 且以线段AB 为直径的圆经过坐标原点,求直线l 的方程.解 (1)直线PQ 的方程为:x +y -2=0, 设圆心C (a ,b )半径为r ,由于线段PQ 的垂直平分线的方程是y -12=x -32, 即y =x -1,所以b =a -1.①又由在y 轴上截得的线段长为43,知r 2=12+a 2, 可得(a +1)2+(b -3)2=12+a 2,②由①②得:a =1,b =0或a =5,b =4. 当a =1,b =0时,r 2=13满足题意, 当a =5,b =4时,r 2=37不满足题意, 故圆C 的方程为(x -1)2+y 2=13.(2)设直线l 的方程为y =-x +m ,A (x 1,m -x 1),B (x 2,m -x 2), 由题意可知OA ⊥OB ,即OA →·OB →=0,∴x 1x 2+(m -x 1)(m -x 2)=0, 化简得2x 1x 2-m (x 1+x 2)+m 2=0.③由⎩⎨⎧y =-x +m ,(x -1)2+y 2=13得2x 2-2(m +1)x +m 2-12=0, ∴x 1+x 2=m +1,x 1x 2=m 2-122.代入③式,得m 2-m ·(1+m )+m 2-12=0, ∴m =4或m =-3,经检验都满足判别式Δ>0, ∴y =-x +4或y =-x -3.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·南昌模拟)若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( ).A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33C.⎣⎢⎡⎦⎥⎤-33,33D.⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞解析 C1:(x -1)2+y 2=1,C 2:y =0或y =mx +m =m (x +1).当m =0时,C 2:y =0,此时C 1与C 2显然只有两个交点;当m ≠0时,要满足题意,需圆(x -1)2+y 2=1与直线y =m (x +1)有两交点,当圆与直线相切时,m =±33,即直线处于两切线之间时满足题意, 则-33<m <0或0<m <33. 综上知-33<m <0或0<m <33. 答案 B2.(2011·江西)如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是( ).解析 如图,建立直角坐标系,由题意可知,小圆O 1总与大圆O 相内切,且小圆O 1总经过大圆的圆心O .设某时刻两圆相切于点A ,此时动点M所处位置为点M ′,则大圆圆弧的长与小圆圆弧的长之差为0或2π.切点A 在三、四象限的差为0,在一、二象限的差为2π.以切点A 在第三象限为例,记直线OM 与此时小圆O 1的交点为M 1,记∠AOM =θ,则∠OM 1O 1=∠M 1OO 1=θ,故∠M 1O 1A =∠M 1OO 1+∠OM 1O 1=2θ.大圆圆弧的长为l 1=θ×2=2θ,小圆圆弧的长为l 2=2θ×1=2θ,则l 1=l 2,即小圆的两段圆弧与的长相等,故点M 1与点M ′重合.即动点M 在线段MO 上运动,同理可知,此时点N 在线段OB 上运动.点A 在其他象限类似可得,故M ,N 的轨迹为相互垂直的线段.观察各选项知,只有选项A 符合.故选A. 答案 A二、填空题(每小题5分,共10分)3.设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析 ∵l 与圆相交所得弦的长为2,1m 2+n2=4-1, ∴m 2+n 2=13≥2|mn |,∴|mn |≤16.l 与x 轴交点A ⎝ ⎛⎭⎪⎫1m ,0,与y 轴交点B ⎝ ⎛⎭⎪⎫0,1n ,∴S △AOB =12·⎪⎪⎪⎪⎪⎪1m ⎪⎪⎪⎪⎪⎪1n =12·1|mn |≥12×6=3. 答案 34.(2012·浙江)定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =________. 解析 x 2+(y +4)2=2到直线y =x 的距离为42-2=2,所以y =x 2+a 到y =x 的距离为2,而与y =x 平行且距离为2的直线有两条,分别是y =x +2与y =x -2,而抛物线y =x 2+a 开口向上,所以y =x 2+a 与y =x +2相切,可求得a =94. 答案 94三、解答题(共25分)5.(12分)设直线l 的方程为y =kx +b (其中k 的值与b 无关),圆M 的方程为x 2+y 2-2x -4=0.(1)如果不论k 取何值,直线l 与圆M 总有两个不同的交点,求b 的取值范围; (2)b =1时,l 与圆交于A ,B 两点,求|AB |的最大值和最小值. 解 圆M 的标准方程为(x -1)2+y 2=5, ∴圆心M 的坐标为(1,0),半径为r = 5. (1)∵不论k 取何值,直线l 总过点P (0,b ),∴欲使l 与圆M 总有两个不同的交点,必须且只需点P 在圆M 的内部,即|MP |<5,即1+b 2<5,∴-2<b <2,即b 的取值范围是(-2,2).(2)当l 过圆心M 时,|AB |的值最大,最大值为圆的直径长2 5.当l ⊥MP 时,此时|MP |最大,|AB |的值最小,|MP |2=⎝ ⎛⎭⎪⎫k +1k 2+12=k 2+2k +1k 2+1=1+2k +1k≤1+22k ·1k=2,当且仅当k =1时取等.最小值为2r 2-|MP |2=25-2=2 3.6.(13分)已知圆M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程; (2)求四边形QAMB 面积的最小值; (3)若|AB |=423,求直线MQ 的方程.解 (1)设过点Q 的圆M 的切线方程为x =my +1, 则圆心M 到切线的距离为1, ∴|2m +1|m 2+1=1,∴m =-43或0, ∴QA ,QB 的方程分别为3x +4y -3=0和x =1. (2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA |=|MQ |2-|MA |2=|MQ |2-1≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于P ,则MP ⊥AB ,MB ⊥BQ , ∴|MP |=1-⎝⎛⎭⎪⎫2232=13. 在Rt △MBQ 中,|MB |2=|MP ||MQ |, 即1=13|MQ |,∴|MQ |=3,∴x 2+(y -2)2=9. 设Q (x,0),则x 2+22=9,∴x =±5,∴Q (±5,0), ∴MQ 的方程为2x +5y -25=0或2x -5y +25=0.。
高考数学第8讲函数与方程A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.函数f(x)=sin x-x零点的个数是().A.0 B.1 C.2 D.3解析f′(x)=cos x-1≤0,∴f(x)单调递减,又f(0)=0,∴则f(x)=sin x-x 的零点是唯一的.答案 B2.(2013·泰州模拟)设f(x)=e x+x-4,则函数f(x)的零点位于区间().A.(-1,0) B.(0,1)C.(1,2) D.(2,3)解析∵f(x)=e x+x-4,∴f′(x)=e x+1>0,∴函数f(x)在R上单调递增.对于A项,f(-1)=e-1+(-1)-4=-5+e-1<0,f(0)=-3<0,f(-1)f(0)>0,A 不正确,同理可验证B、D不正确.对于C项,∵f(1)=e+1-4=e-3<0,f(2)=e2+2-4=e2-2>0,f(1)f(2)<0,故选C.答案 C3.(2013·石家庄期末)函数f(x)=2x-2x-a的一个零点在区间(1,2)内,则实数a的取值范围是().A.(1,3) B.(1,2)C.(0,3) D.(0,2)解析由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a-3)<0,解之得0<a<3.答案 C4.(2011·山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为().A .6B .7C .8D .9解析 当0≤x <2时,令f (x )=x 3-x =0,得x =0或x =1.根据周期函数的性质,由f (x )的最小正周期为2,可知y =f (x )在[0,6)上有6个零点,又f (6)=f (3×2)=f (0)=0,∴f (x )在[0,6]上与x 轴的交点个数为7. 答案 B二、填空题(每小题5分,共10分)5.已知函数f (x )=⎩⎨⎧x 2,x ≤0,f (x -1),x >0,g (x )=f (x )-x -a ,若函数g (x )有两个零点,则实数a 的取值范围为________.解析 设n 为自然数,则当n <x ≤n +1时,f (x )=(x -n -1)2,则当x >0时,函数f (x )的图象是以1为周期重复出现.而函数y =x +a 是一族平行直线,当它过点(0,1)(此时a =1)时与函数f (x )的图象交于一点,向左移总是一个交点,向右移总是两个交点,故实数a 的取值范围为a <1. 答案 (-∞,1)6.函数f (x )=⎩⎨⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )]+1的所有零点所构成的集合为________.解析 本题即求方程f [f (x )]=-1的所有根的集合,先解方程f (t )=-1,即⎩⎨⎧ t ≤0,t +1=-1或⎩⎨⎧t >0,log 2t =-1,得t =-2或t =12.再解方程f (x )=-2和f (x )=12. 即⎩⎨⎧ x ≤0,x +1=-2或⎩⎨⎧x >0,log 2x =-2和⎩⎪⎨⎪⎧x ≤0,x +1=12或⎩⎪⎨⎪⎧x >0,log 2x =12. 得x =-3或x =14和x =-12或x = 2. 答案 ⎩⎨⎧⎭⎬⎫-3,-12,14,2三、解答题(共25分)7.(12分)设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0). (1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解 (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数, 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,∴1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 8.(13分)已知函数f (x )=x 3+2x 2-ax +1.(1)若函数f (x )在点(1,f (1))处的切线斜率为4,求实数a 的值;(2)若函数g (x )=f ′(x )在区间(-1,1)上存在零点,求实数a 的取值范围. 解 由题意得g (x )=f ′(x )=3x 2+4x -a . (1)f ′(1)=3+4-a =4,∴a =3.(2)法一 ①当g (-1)=-a -1=0,a =-1时,g (x )=f ′(x )的零点x =-13∈(-1,1);②当g (1)=7-a =0,a =7时,f ′(x )的零点x =-73∉(-1,1),不合题意; ③当g (1)g (-1)<0时,-1<a <7;④当⎩⎪⎨⎪⎧Δ=4×(4+3a )≥0,-1<-23<1,g (1)>0,g (-1)>0时,-43≤a <-1.综上所述,a ∈⎣⎢⎡⎭⎪⎫-43,7.法二 g (x )=f ′(x )在区间(-1,1)上存在零点,等价于3x 2+4x =a 在区间(-1,1)上有解,也等价于直线y =a 与曲线y =3x 2+4x 在(-1,1)有公共点.作图可得a ∈⎣⎢⎡⎭⎪⎫-43,7. 或者又等价于当x ∈(-1,1)时,求值域. a =3x 2+4x =3⎝ ⎛⎭⎪⎫x +232-43∈⎣⎢⎡⎭⎪⎫-43,7.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2011·陕西)函数f (x )=x -cos x 在[0,+∞)内( ).A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点 解析 令f (x )=0,得x =cos x ,在同一坐标系内画出两个函数y =x 与y =cos x 的图象如图所示,由图象知,两个函数只有一个交点,从而方程x =cos x 只有一个解. ∴函数f (x )只有一个零点. 答案 B2.(2012·辽宁)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos(πx )|,则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为( ).A .5B .6C .7D .8解析 由题意知函数y =f (x )是周期为2的偶函数且0≤x ≤1时,f (x )=x 3,则当-1≤x ≤0时,f (x )=-x 3,且g (x )=|x cos(πx )|,所以当x =0时,f (x )=g (x ).当x ≠0时,若0<x ≤12,则x 3=x cos(πx ),即x 2=|cos πx |.同理可以得到在区间⎣⎢⎡⎭⎪⎫-12,0,⎝ ⎛⎦⎥⎤12,1,⎝ ⎛⎦⎥⎤1,32上的关系式都是上式,在同一个坐标系中作出所得关系式等号两边函数的图象,如图所示,有5个根.所以总共有6个.答案 B二、填空题(每小题5分,共10分)3.已知函数f (x )满足f (x +1)=-f (x ),且f (x )是偶函数,当x ∈[0,1]时,f (x )=x 2.若在区间[-1,3]内,函数g (x )=f (x )-kx -k 有4个零点,则实数k 的取值范围为________.解析 依题意得f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的函数.g (x )=f (x )-kx -k 在区间[-1,3]内有4个零点,即函数y =f (x )与y =k (x +1)的图象在区间[-1,3]内有4个不同的交点.在坐标平面内画出函数y =f (x )的图象(如图所示),注意到直线y =k (x +1)恒过点(-1,0),由题及图象可知,当k ∈⎝ ⎛⎦⎥⎤0,14时,相应的直线与函数y=f (x )在区间[-1,3]内有4个不同的交点,故实数k 的取值范围是⎝ ⎛⎦⎥⎤0,14.答案 ⎝ ⎛⎦⎥⎤0,144.若直角坐标平面内两点P ,Q 满足条件:①P 、Q 都在函数f (x )的图象上;②P 、Q 关于原点对称,则称点对(P 、Q )是函数f (x )的一个“友好点对”(点对(P 、Q )与点对(Q ,P )看作同一个“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧2x 2+4x +1,x <0,2ex ,x ≥0,则f (x )的“友好点对”的个数是________.解析 设P (x ,y )、Q (-x ,-y )(x >0)为函数f (x )的“友好点对”,则y =2e x ,-y =2(-x )2+4(-x )+1=2x 2-4x +1,∴2e x +2x 2-4x +1=0,在同一坐标系中作函数y 1=2e x 、y 2=-2x 2+4x -1的图象,y 1、y 2的图象有两个交点,所以f (x )有2个“友好点对”,故填2. 答案 2三、解答题(共25分)5.(12分)设函数f (x )=3ax 2-2(a +c )x +c (a >0,a ,c ∈R ). (1)设a >c >0.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,求c 的取值范围;(2)函数f (x )在区间(0,1)内是否有零点,有几个零点?为什么?解 (1)因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴为x =a +c3a ,由条件a >c >0,得2a >a +c ,故a +c 3a <2a 3a =23<1,即二次函数f (x )的对称轴在区间[1,+∞)的左边,且抛物线开口向上,故f (x )在[1,+∞)内是增函数. 若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,则f (x )min =f (1)>c 2-2c +a ,即a -c >c 2-2c +a ,得c 2-c <0, 所以0<c <1.(2)①若f (0)·f (1)=c ·(a -c )<0,则c <0,或a <c ,二次函数f (x )在(0,1)内只有一个零点. ②若f (0)=c >0,f (1)=a -c >0,则a >c >0.因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴是x =a +c 3a .而f ⎝⎛⎭⎪⎫a +c 3a =-a 2+c 2-ac3a<0,所以函数f (x )在区间⎝ ⎛⎭⎪⎫0,a +c 3a 和⎝ ⎛⎭⎪⎫a +c 3a ,1内各有一个零点,故函数f (x )在区间(0,1)内有两个零点.6.(13分)已知二次函数f (x )=x 2-16x +q +3.(1)若函数在区间[-1,1]上存在零点,求实数q 的取值范围;(2)是否存在常数t (t ≥0),当x ∈[t,10]时,f (x )的值域为区间D ,且区间D 的长度为12-t (视区间[a ,b ]的长度为b -a ).解 (1)∵函数f (x )=x 2-16x +q +3的对称轴是x =8,∴f (x )在区间[-1,1]上是减函数.∵函数在区间[-1,1]上存在零点,则必有⎩⎨⎧f (1)≤0,f (-1)≥0,即⎩⎨⎧1-16+q +3≤0,1+16+q +3≥0,∴-20≤q ≤12. (2)∵0≤t <10,f (x )在区间[0,8]上是减函数,在区间[8,10]上是增函数,且对称轴是x =8.①当0≤t ≤6时,在区间[t,10]上,f (t )最大,f (8)最小, ∴f (t )-f (8)=12-t ,即t 2-15t +52=0, 解得t =15±172,∴t =15-172; ②当6<t ≤8时,在区间[t,10]上,f (10)最大,f (8)最小, ∴f (10)-f (8)=12-t ,解得t =8;③当8<t <10时,在区间[t,10]上,f (10)最大,f (t )最小, ∴f (10)-f (t )=12-t ,即t 2-17t +72=0,解得t =8,9, ∴t =9.综上可知,存在常数t =15-172,8,9满足条件.。
第八章 立体几何第一节 空间几何体的结构特征、三视图和直观图一、基础知识1.简单几何体(1)多面体的结构特征①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.二、常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形. (4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.考点一空间几何体的结构特征[典例]下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析]底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D错.[答案] B[题组训练]1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A由五个面围成的多面体也可以是四棱锥,所以A选项错误.B、C、D说法均正确.2.下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析:选C如图所示,可排除A、B选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二空间几何体的直观图[典例]已知等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.[解析]法一:如图,取AB的中点O为坐标原点,建立平面直角坐标系,y轴交DC 于点E,O,E在斜二测画法中的对应点为O′,E′,过E′作E′F′⊥x′轴,垂足为F′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案] 22[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.解析:如图,图①、图②分别表示△ABC 的实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64考点三 空间几何体的三视图考法(一) 由几何体识别三视图[典例] (2019·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )[解析] 正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A. [答案] A考法(二) 由三视图判断几何体特征[典例] (1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案] (1)B (2)12考法(三) 由三视图中的部分视图确定剩余视图[典例] (2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )[解析] 由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.[答案] A[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD 1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B、D;而在三视图中看不见的棱用虚线表示,故排除A.故选C.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16解析:选B由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍为等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定为等腰三角形解析:选C根据“斜二测画法”的定义可得正方形的直观图为平行四边形.2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱解析:选D球、正方体的三视图的形状都相同,大小都相等,首先排除选项A和C.对于三棱锥,考虑特殊情况,如三棱锥C-OAB,当三条棱OA,OB,OC两两垂直,且OA =OB=OC时,正视图方向为AO方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.2 3 B.2 2C.4 3 D.8 2解析:选D由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=90°且OB=4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选B①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A .8B .7C .6D .5解析:选C 画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD -A 1B 1C 1D 1,当选择的4个点是B 1,B ,C ,C 1时,可知①正确;当选择的4个点是B ,A ,B 1,C 时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,若AB =BC=CD =2,则该三棱锥的侧视图(投影线平行于BD )的面积为________.解析:因为AB ⊥平面BCD ,投影线平行于BD ,所以三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形,因为BC ⊥CD ,AB =BC =CD =2, 所以△BCD 中BD 边上的高为2,故该三棱锥的侧视图的面积S =12×2×2= 2.答案: 2第二节空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B. 考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.[解析] (1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π.(2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1-BB 1D 1D =13×(1×2)×22=13. 法二:割补法连接BD1,则四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,所以V A 1-BB 1D 1D =V B -A 1DD 1+V B -A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13. [答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64解析:选A 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π. 考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932 B.916 C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S -ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S -ABCD =13S 四边形ABCD·SD =13,故选C.法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B. 7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π210.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32.答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πr l ,即l =3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2.答案: 212.(2017·全国卷Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S -ABC =V A -SBC =13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO ,即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π. 答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积; (2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1-A 2B 2C +VC -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5, BC =22+(3-2)2=5, AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积63,求该三棱锥E -ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13·12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5. 故三棱锥E-ACD的侧面积为3+2 5.第三节 空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点, 有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线, 经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角)叫做异面直线a 与b 所成 的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l 和平面α相交、直线l 和平面α平行统称为直线l 在平面α外,记作l ⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用[典例]如图所示,在正方体ABCD-AB1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD,A1B.1∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.。
高考数学 第6讲 正弦定理和余弦定理A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A = ( ).A .30°B .60°C .120°D .150°解析 由a 2-b 2=3bc ,sin C =23sin B ,得a 2=3bc +b 2,cb =2 3.由余弦定理,得cos A =b 2+c 2-a 22bc =c 2-3bc 2bc =c 2b -32=3-32=32,所以A =30°,故选A. 答案 A2.(2012·四川)如图,正方形ABCD 的边长为1,延长BA至E ,使AE =1,连结EC 、ED ,则sin ∠CED =( ). A.31010 B.1010 C.510D.515解析 依题意得知,CD =1,CE =CB 2+EB 2=5,DE =EA 2+AD 2=2,cos ∠CED =CE 2+ED 2-CD 22CE ·ED =31010,所以sin ∠CED =1-cos 2∠CED =1010,选B. 答案 B3.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( ).A. 2B. 3C.32D .2解析 ∵A ,B ,C 成等差数列,∴A +C =2B ,∴B =60°.又a =1,b =3,∴a sin A =bsin B , ∴sin A =a sin Bb =32×13=12,∴A =30°,∴C =90°.∴S △ABC =12×1×3=32. 答案 C4.(2012·湖南)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于 ( ). A.32B.332C.3+62D.3+394解析 设AB =c ,BC 边上的高为h .由余弦定理,得AC 2=c 2+BC 2-2BC ·c cos 60°,即7=c 2+4-4c cos 60°,即c 2-2c -3=0,∴c =3(负值舍去). 又h =c ·sin 60°=3×32=332,故选B. 答案 B二、填空题(每小题5分,共10分)5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)·tan B =3ac ,则角B 的值为________.解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得 cos B ·tan B =32,∴sin B =32,∴B =π3或2π3. 答案 π3或2π36.(2012·福建)已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________.解析 依题意得,△ABC 的三边长分别为a ,2a,2a (a >0),则最大边2a 所对的角的余弦值为:a 2+(2a )2-(2a )22a ·2a =-24.答案 -24三、解答题(共25分)7.(12分)(2012·辽宁)在△ABC中,角A,B,C的对边分别为a,b,c.角A,B,C成等差数列.(1)求cos B的值;(2)边a,b,c成等比数列,求sin A sin C的值.解(1)由已知2B=A+C,三角形的内角和定理A+B+C=180°,解得B=60°,所以cos B=cos 60°=1 2.(2)由已知b2=ac,据正弦定理,得sin2B=sin A sin C,即sin A sin C=sin2B=1-cos2B=3 4.8.(13分)(2012·浙江)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解(1)因为0<A<π,cos A=2 3,得sin A=1-cos2A=5 3.又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C.所以tan C= 5.(2)由tan C=5,得sin C=56,cos C=16.于是sin B=5cos C=5 6 .由a=2及正弦定理asin A=csin C,得c= 3.设△ABC的面积为S,则S=12ac sin B=52.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.在△ABC 中,A =60°,且最大边长和最小边长是方程x 2-7x +11=0的两个根,则第三边的长为( ).A .2B .3C .4D .5解析 由A =60°,不妨设△ABC 中最大边和最小边分别为b ,c ,故b +c =7,bc =11.由余弦定理得a 2=b 2+c 2-2bc cos 60°=(b +c )2-3bc =72-3×11=16,∴a =4. 答案 C2.(2013·豫北六校联考)已知△ABC 的面积为32,AC =3,∠ABC =π3,则△ABC 的周长等于( ).A .3+ 3B .3 3C .2+ 3D.332解析 由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2+c 2-ac =3.又△ABC 的面积为12ac sin π3=32,即ac =2,所以a 2+c 2+2ac =9,所以a +c =3,即a +c +b =3+3,故选A. 答案 A二、填空题(每小题5分,共10分)3.在Rt △ABC 中,C =90°,且A ,B ,C 所对的边a ,b ,c 满足a +b =cx ,则实数x 的取值范围是________.解析 x =a +b c =sin A +sin B sin C =sin A +cos A =2sin ⎝ ⎛⎭⎪⎫A +π4.又A ∈⎝ ⎛⎭⎪⎫0,π2,∴π4<A +π4<3π4,∴22<sin ⎝ ⎛⎭⎪⎫A +π4≤1,即x ∈(1,2].答案 (1,2]4.(2012·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,则下列命题正确的是________(写出所有正确命题的编号). ①若ab >c 2,则C <π3 ②若a +b >2c ,则C <π3 ③若a 3+b 3=c 3,则C <π2 ④若(a +b )c <2ab ,则C >π2 ⑤若(a 2+b 2)c 2<2a 2b 2,则C >π3解析 ①由ab >c 2,得-c 2>-ab ,由余弦定理可知cos C =a 2+b 2-c 22ab >2ab -ab2ab=12,因为C ∈(0,π),函数y =cos x 在(0,π)上是减函数,所以C <π3,即①正确.②由余弦定理可知cos C =a 2+b 2-c 22ab >a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab=4(a 2+b 2)-(a +b )28ab =3(a 2+b 2)-2ab 8ab ≥4ab 8ab =12,所以C <π3,即②正确.③若C 是直角或钝角,则a 2+b 2≤c 2,即⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2≤1,而a c ,b c ∈(0,1),而函数y =a x(0<a <1)在R 上是减函数,所以⎝ ⎛⎭⎪⎫a c 3+⎝ ⎛⎭⎪⎫b c 3<⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2≤1与a 3+b 3=c 3矛盾,所以假设不成立,所以C <π2,即③正确.④因为(a +b )c <2ab ,所以c <2aba +b ≤2ab2ab=ab ,即ab >c 2,转化为命题①,故④错误.⑤因为(a 2+b 2)c 2<2a 2b 2,所以c 2<2a 2b 2a 2+b 2≤2a 2b 22ab =ab ,即ab >c 2,转化为命题①,故⑤错误. 答案 ①②③ 三、解答题(共25分)5.(12分)(2012·郑州三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,点(a ,b )在直线x (sin A -sin B )+y sin B =c sin C 上. (1)求角C 的值;(2)若a 2+b 2=6(a +b )-18,求△ABC 的面积.解 (1)由题意得a (sin A -sin B )+b sin B =c sin C , 由正弦定理,得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =12, 结合0<C <π,得C =π3.(2)由a 2+b 2=6(a +b )-18,得(a -3)2+(b -3)2=0, 从而得a =b =3,所以△ABC 的面积S =12×32×sin π3=934.6.(13分)(2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a . (1)求证:B -C =π2;(2)若a = 2,求△ABC 的面积.(1)证明 由b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a 应用正弦定理,得sin B sin ⎝ ⎛⎭⎪⎫π4+C -sinC sin ⎝ ⎛⎭⎪⎫π4+B =sin A ,sin B ⎝ ⎛⎭⎪⎫22sin C +22cos C -sin C ⎝ ⎛⎭⎪⎫22sin B +22cos B =22,整理得sin B cos C -cos B sin C =1,即sin(B -C )=1. 由于0<B ,C <34π,从而B -C =π2.(2)解 B +C =π-A =3π4,因此B =5π8,C =π8. 由a = 2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8, 所以△ABC 的面积S =12bc sin A = 2sin 5π8sin π8 = 2cos π8sin π8=12.。
高考数学第5讲数列的综合应用A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.已知{a n}为等比数列.下面结论中正确的是().A.a1+a3≥2a2B.a21+a23≥2a22C.若a1=a3,则a1=a2D.若a3>a1,则a4>a2解析设公比为q,对于选项A,当a1<0,q≠1时不正确;选项C,当q=-1时不正确;选项D,当a1=1,q=-2时不正确;选项B正确,因为a21+a23≥2a1a3=2a22.答案 B2.满足a1=1,log2a n+1=log2a n+1(n∈N*),它的前n项和为S n,则满足S n>1 025的最小n值是().A.9 B.10 C.11 D.12解析因为a1=1,log2a n+1=log2a n+1(n∈N*),所以a n+1=2a n,a n=2n-1,S n =2n-1,则满足S n>1 025的最小n值是11.答案 C3.(2013·威海期中)某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f(n)=12n(n+1)(2n+1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是().A.5年B.6年C.7年D.8年解析由已知可得第n年的产量a n=f(n)-f(n-1)=3n2.当n=1时也适合,据题意令a n≥150⇒n≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.答案 C4.(2013·福州模拟)在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =( ).A .7B .8C .9D .10解析 设公差为d ,由题设3(a 1+3d )=7(a 1+6d ), 所以d =-433a 1<0.解不等式a n >0,即a 1+(n -1)⎝ ⎛⎭⎪⎫-433a 1>0,所以n <374,则n ≤9,当n ≤9时,a n >0,同理可得n ≥10时,a n <0. 故当n =9时,S n 取得最大值. 答案 C二、填空题(每小题5分,共10分)5.(2012·安庆模拟)设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________. 解析 由x 2-x <2nx (n ∈N *),得0<x <2n +1,因此知a n =2n . ∴S 100=100(2+200)2=10 100.答案 10 1006.(2013·南通模拟)已知a ,b ,c 成等比数列,如果a ,x ,b 和b ,y ,c 都成等差数列,则a x +cy =________.解析 赋值法.如令a ,b ,c 分别为2,4,8,可求出x =a +b 2=3,y =b +c2=6,a x +c y =2. 答案 2三、解答题(共25分)7.(12分)已知等差数列{a n }的前n 项和为S n ,S 5=35,a 5和a 7的等差中项为13. (1)求a n 及S n ; (2)令b n =4a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d , 因为S 5=5a 3=35,a 5+a 7=26,所以⎩⎨⎧a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2,所以a n =3+2(n -1)=2n +1, S n =3n +n (n -1)2×2=n 2+2n . (2)由(1)知a n =2n +1,所以b n =4a 2n -1=1n (n +1)=1n -1n +1,所以T n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.8.(13分)(2012·广东)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列. (1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n<32.(1)解 当n =1时,2a 1=a 2-4+1=a 2-3, ① 当n =2时,2(a 1+a 2)=a 3-8+1=a 3-7,② 又a 1,a 2+5,a 3成等差数列,所以a 1+a 3=2(a 2+5),③由①②③解得a 1=1.(2)解 ∵2S n =a n +1-2n +1+1, ∴当n ≥2时,有2S n -1=a n -2n +1,两式相减整理得a n +1-3a n =2n ,则a n +12n -32·a n2n -1=1,即a n +12n +2=32⎝ ⎛⎭⎪⎫a n 2n -1+2.又a 120+2=3,知⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1+2是首项为3,公比为32的等比数列,∴a n 2n -1+2=3⎝ ⎛⎭⎪⎫32n -1,即a n =3n -2n ,n =1时也适合此式,∴a n =3n -2n . (3)证明 由(2)得1a n=13n-2n. 当n ≥2时,⎝ ⎛⎭⎪⎫32n >2,即3n -2n >2n ,∴1a 1+1a 2+…+1a n<1+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n =1+12⎝ ⎛⎭⎪⎫1-12n -1<32.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2012·济南质检)设y =f (x )是一次函数,若f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )等于( ).A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)解析 由题意可设f (x )=kx +1(k ≠0), 则(4k +1)2=(k +1)×(13k +1),解得k =2,f (2)+f (4)+…+f (2n )=(2×2+1)+(2×4+1)+…+(2×2n +1)=2n 2+3n . 答案 A2.(2012·四川)设函数f (x )=2x -cos x ,{a n }是公差为π8的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则[f (a 3)]2-a 1a 5=( ).A .0B.116π2C.18π2D.1316π2解析 设g (x )=2x +sin x ,由已知等式得g ⎝ ⎛⎭⎪⎫a 1-π2+g ⎝ ⎛⎭⎪⎫a 2-π2+…+g ⎝ ⎛⎭⎪⎫a 5-π2=0,则必有a 3-π2=0,即a 3=π2(否则若a 3-π2>0,则有⎝ ⎛⎭⎪⎫a 1-π2+⎝ ⎛⎭⎪⎫a 5-π2=⎝ ⎛⎭⎪⎫a 2-π2+⎝ ⎛⎭⎪⎫a 4-π2=2⎝ ⎛⎭⎪⎫a 3-π2>0,注意到g (x )是递增的奇函数,g ⎝ ⎛⎭⎪⎫a 3-π2>0,g ⎝ ⎛⎭⎪⎫a 1-π2>g ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫a 5-π2=-g ⎝ ⎛⎭⎪⎫a 5-π2,g ⎝ ⎛⎭⎪⎫a 1-π2+g ⎝ ⎛⎭⎪⎫a 5-π2>0,同理g ⎝ ⎛⎭⎪⎫a 2-π2+g ⎝ ⎛⎭⎪⎫a 4-π2>0,g ⎝ ⎛⎭⎪⎫a 1-π2+g ⎝ ⎛⎭⎪⎫a 2-π2+…+g ⎝ ⎛⎭⎪⎫a 5-π2>0,这与“g ⎝ ⎛⎭⎪⎫a 1-π2+g ⎝ ⎛⎭⎪⎫a 2-π2+…+g ⎝ ⎛⎭⎪⎫a 5-π2=0”相矛盾,因此a 3-π2>0不可能;同理a 3-π2<0也不可能);又{a n }是公差为π8的等差数列,a 1+2×π8=π2,a 1=π4,a 5=3π4,f (a 3)=f ⎝ ⎛⎭⎪⎫π2=π-cos π2=π,[f (a 3)]2-a 1a 5=1316π2,选D. 答案 D二、填空题(每小题5分,共10分)3.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n=lg x n ,则a 1+a 2+a 3+…+a 99的值为________.解析 由y ′=(n +1)x n (x ∈N *),所以在点(1,1)处的切线斜率k =n +1,故切线方程为y =(n +1)(x -1)+1,令y =0得x n =nn +1,所以a 1+a 2+a 3+…+a 99=lg x 1+lg x 2+…+lg x 99=lg(x 1·x 2·…·x 99)=lg 12×23×…×9999+1=lg 199+1=-2. 答案 -24.(2012·沈阳四校联考)数列{a n }的前n 项和为S n ,若数列{a n }的各项按如下规律排列:12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,有如下运算和结论: ①a 24=38;②数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等比数列;③数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…的前n 项和为T n =n 2+n4; ④若存在正整数k ,使S k <10,S k +1≥10,则a k =57.其中正确的结论有________.(将你认为正确的结论序号都填上)解析 依题意,将数列{a n }中的项依次按分母相同的项分成一组,第n 组中的数的规律是:第n 组中的数共有n 个,并且每个数的分母均是n +1,分子由1依次增大到n ,第n 组中的各数和等于1+2+3+…+n n +1=n2.对于①,注意到21=6(6+1)2<24<7(7+1)2=28,因此数列{a n }中的第24项应是第7组中的第3个数,即a 24=38,因此①正确. 对于②、③,设b n 为②、③中的数列的通项,则b n =1+2+3+…+n n +1=n2,显然该数列是等差数列,而不是等比数列,其前n 项和等于12×n (n +1)2=n 2+n4,因此②不正确,③正确.对于④,注意到数列的前6组的所有项的和等于62+64=1012,因此满足条件的a k 应是第6组中的第5个数,即a k =57,因此④正确. 综上所述,其中正确的结论有①③④. 答案 ①③④ 三、解答题(共25分)5.(12分)已知各项均不相等的等差数列{a n }的前四项和为14,且a 1,a 3,a 7恰为等比数列{b n }的前三项.(1)分别求数列{a n },{b n }的前n 项和S n ,T n ;(2)记数列{a n b n }的前n 项和为K n ,设c n =S n T nK n ,求证:c n +1>c n (n ∈N *).(1)解 设公差为d ,则⎩⎨⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ), 解得d =1或d =0(舍去),a 1=2, 所以a n =n +1,S n =n (n +3)2.又a 1=2,d =1,所以a 3=4,即b 2=4. 所以数列{b n }的首项为b 1=2,公比q =b 2b 1=2,所以b n =2n ,T n =2n +1-2.(2)证明 因为K n =2·21+3·22+…+(n +1)·2n , ① 故2K n =2·22+3·23+…+n ·2n +(n +1)·2n +1,②①-②得-K n =2·21+22+23+…+2n -(n +1)·2n +1, ∴K n =n ·2n +1,则c n =S n T n K n=(n +3)(2n-1)2n +1.c n +1-c n =(n +4)(2n +1-1)2n +2-(n +3)(2n -1)2n +1=2n +1+n +22n +2>0,所以c n +1>c n (n ∈N *).6.(13分)(2012·重庆)设数列{a n }的前n 项和S n 满足S n +1=a 2S n +a 1,其中a 2≠0. (1)求证:{a n }是首项为1的等比数列;(2)若a 2>-1,求证:S n ≤n2(a 1+a n ),并给出等号成立的充要条件. 证明 (1)由S 2=a 2S 1+a 1,得a 1+a 2=a 2a 1+a 1, 即a 2=a 2a 1.因a 2≠0,故a 1=1,得a 2a 1=a 2,又由题设条件知S n +2=a 2S n +1+a 1,S n +1=a 2S n +a 1, 两式相减得S n +2-S n +1=a 2(S n +1-S n ),即a n +2=a 2a n +1,由a 2≠0,知a n +1≠0,因此a n +2a n +1=a 2.综上,a n +1a n =a 2对所有n ∈N *成立.从而{a n }是首项为1,公比为a 2的等比数列.(2)当n =1或2时,显然S n =n2(a 1+a n ),等号成立.设n ≥3,a 2>-1且a 2≠0,由(1)知,a 1=1,a n =a n -12,所以要证的不等式化为:1+a 2+a 22+…+a n -12≤n 2(1+a n -12)(n ≥3), 即证:1+a 2+a 22+…+a n 2≤n +12(1+a n 2)(n ≥2),当a 2=1时,上面不等式的等号成立.当-1<a 2<1时,a r 2-1与a n -r2-1,(r =1,2,…,n -1)同为负; 当a 2>1时,a r 2-1与a n -r 2-1,(r =1,2,…,n -1)同为正;因此当a 2>-1且a 2≠1时,总有(a r 2-1)(a n -r 2-1)>0,即a r 2+a n -r 2<1+a n 2,(r=1,2,…,n -1).上面不等式对r 从1到n -1求和得2(a 2+a 22+…+a n -12)<(n -1)(1+a n 2). 由此得1+a 2+a 22+…+a n 2<n +12(1+a n 2). 综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.。
高考数学第6讲空间向量及其运算A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.在下列命题中:①若向量a,b共线,则向量a,b所在的直线平行;②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;③若三个向量a,b,c两两共面,则向量a,b,c,共面;④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=x a+y b+z c.其中正确命题的个数是().A.0 B.1 C.2 D.3解析a与b共线,a,b所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任两向量a,b都共面,故②错误;三个向量a,b,c中任两个一定共面,但它们三个却不一定共面,故③不正确;只有当a,b,c不共面时,空间任意一向量p才能表示为p=x a+y b+z c,故④不正确,综上可知四个命题中正确的个数为0,故选A.答案 A2.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x =().A.-4 B.-2 C.4 D.2解析∵a=(1,1,x),b=(1,2,1),c=(1,1,1),∴c-a=(0,0,1-x),2b=(2,4,2).∴(c-a)·(2b)=2(1-x)=-2,∴x=2.答案 D3.若{a ,b ,c }为空间的一组基底,则下列各项中,能构成基底的一组向量是( ). A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b }D .{a +b ,a -b ,a +2b }解析 若c 、a +b 、a -b 共面,则c =λ(a +b )+m (a -b )=(λ+m )a +(λ-m )b ,则a 、b 、c 为共面向量,此与{a ,b ,c }为空间向量的一组基底矛盾,故c ,a +b ,a -b 可构成空间向量的一组基底. 答案 C4.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为 ( ). A .0 B.12 C.32D.22解析 设OA →=a ,OB →=b ,OC →=c ,由已知条件〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA →·BC →=a ·(c -b )=a·c -a·b =12|a||c |-12|a||b|=0,∴cos 〈OA →,BC →〉=0. 答案 A二、填空题(每小题5分,共10分)5.在下列条件中,使M 与A 、B 、C 一定共面的是________. ①OM →=2OA →-OB →-OC →;②OM →=15OA →+13OB →+12OC →; ③MA →+MB →+MC →=0;④OM →+OA →+OB →+OC →=0;解析 ∵MA →+MB →+MC →=0,∴MA →=-MB →-MC →,则MA →、MB →、MC →为共面向量,即M 、A 、B 、C 四点共面. 答案 ③6.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=________.解析 如图,设AB →=a ,AC →=b ,AD →=c ,AB →·CD →+AC →·DB →+AD →·BC →=a ·(c -b )+b·(a -c )+c·(b -a )=0. 答案 0三、解答题(共25分)7.(12分)已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →、MB →、MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由已知OA →+OB →+OC →=3 OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知,MA →,MB →,MC →共面且基线过同一点M , ∴四点M ,A ,B ,C 共面,从而点M 在平面ABC 内. 8.(13分)如右图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,G 为△BC 1D 的重心, (1)试证:A 1、G 、C 三点共线; (2)试证:A 1C ⊥平面BC 1D ; (3)求点C 到平面BC 1D 的距离.(1)证明 CA 1→=CB →+BA →+AA 1→=CB →+CD →+CC 1→, 可以证明:CG →=13(CB →+CD →+CC 1→)=13CA 1→, ∴CG →∥CA 1→,即A 1、G 、C 三点共线.(2)证明 设CB →=a ,CD →=b ,CC 1→=c ,则|a |=|b |=|c |=a , 且a·b =b·c =c·a =0,∵CA 1→=a +b +c ,BC 1→=c -a ,∴CA 1→·BC 1→=(a +b +c )·(c -a )=c 2-a 2=0,∴CA 1→⊥BC 1→,即CA 1⊥BC 1,同理可证:CA 1⊥BD ,因此A 1C ⊥平面BC 1D .(3)解 ∵CA 1→=a +b +c ,∴CA 1→2=a 2+b 2+c 2=3a 2, 即|CA 1→|=3a ,因此|CG →|=33a . 即C 到平面BC 1D 的距离为33a .B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分) 1.(2013·海淀月考)以下四个命题中正确的是( ).A .空间的任何一个向量都可用其他三个向量表示B .若{a ,b ,c }为空间向量的一组基底,则{a +b ,b +c ,c +a }构成空间向 量的另一组基底C .△ABC 为直角三角形的充要条件是AB →·AC →=0D .任何三个不共线的向量都可构成空间向量的一组基底解析 若a +b 、b +c 、c +a 为共面向量,则a +b =λ(b +c )+μ(c +a ),(1-μ)a =(λ-1)b +(λ+μ)c ,λ,μ不可能同时为1,设μ≠1,则a =λ-11-μb +λ+μ1-μc ,则a 、b 、c 为共面向量,此与{a ,b ,c }为空间向量基底矛盾. 答案 B2.如图所示,在长方体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是 ( ).A .-12a +12b +c B.12a +12b +c C .-12a -12b +cD.12a -12b +c解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →) =c +12(b -a )=-12a +12b +c . 答案 A二、填空题(每小题5分,共10分)3.已知在一个60°的二面角的棱上,如图有两个点A ,B ,AC ,BD 分别是在这个二面角的两个半平面内垂直于AB 的线段,且AB =4 cm ,AC =6 cm ,BD =8 cm ,则CD 的长为________. 解析 设BD →=a ,AB →=b ,AC →=c , 由已知条件|a |=8,|b |=4,|c |=6,〈a ,b 〉=90°,〈b ,c 〉=90°,〈a ,c 〉=60° |CD →|2=|CA →+AB →+BD →|2=|-c +b +a |2 =a 2+b 2+c 2+2a·b -2a·c -2b·c =68, 则|CD →|=217. 答案 217 cm4.如图,空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值等于________. 解析 设OA →=a ,OB →=b ,OC →=c . OA 与BC 所成的角为θ,OA →·BC →=a (c -b )=a ·c -a ·b =a ·(a +AC →)-a ·(a +AB →)=a 2+a ·AC →-a 2-a ·AB →=24-16 2.∴cos θ=|OA →·BC →||OA →|·|BC →|=24-1628×5=3-225.答案3-225三、解答题(共25分)5.(12分)如图,已知M 、N 分别为四面体ABCD 的面BCD 与面ACD 的重心,且G 为AM 上一点,且GM ∶GA =1∶3.求证:B 、G 、N 三点共线. 证明 设AB →=a ,AC →=b ,AD →=c ,则BG →=BA →+AG →=BA →+34AM →=-a +14(a +b +c )=-34a +14b +14c , BN →=BA →+AN →=BA →+13(AC →+AD →) =-a +13b +13c =43BG →.∴BN →∥BG →,即B 、G 、N 三点共线.6.(13分)如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB 、AD 、CD 的中点,计算:(1)EF →·BA →;(2)EF →·DC →;(3)EG 的长; (4)异面直线AG 与CE 所成角的余弦值. 解 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,DC →=b -c ,EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a·c =14,(2)EF →·DC →=12(c -a )·(b -c ) =12(b·c -a·b -c 2+a·c )=-14;(3)EG →=EB →+BC →+CG →=12a +b -a +12c -12b =-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a·b +12b·c -12c·a =12,则|EG →|=22. (4)AG →=12b +12c ,CE →=CA →+AE →=-b +12a , cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23,由于异面直线所成角的范围是(0°,90°],所以异面直线AG与CE所成角的余弦值为2 3.。