高考数学(理)大一轮讲义:第三章 导数及其应用(17份,苏教版)第3章 学案13
- 格式:doc
- 大小:317.53 KB
- 文档页数:9
(江苏专用)2018版高考数学大一轮复习第三章导数及其应用3.2 导数的应用第1课时导数与函数的单调性教师用书理苏教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018版高考数学大一轮复习第三章导数及其应用3.2 导数的应用第1课时导数与函数的单调性教师用书理苏教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018版高考数学大一轮复习第三章导数及其应用3.2 导数的应用第1课时导数与函数的单调性教师用书理苏教版的全部内容。
第三章导数及其应用 3.2 导数的应用第1课时导数与函数的单调性教师用书理苏教版1。
函数的单调性在某个区间(a,b)内,如果f′(x)〉0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)〈0,那么函数y=f(x)在这个区间内单调递减。
2。
函数的极值(1)求函数y=f(x)的极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)〈0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤:①求f′(x);②求方程f′(x)=0的根;③考察f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。
3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:第一步求f(x)在区间(a,b)上的极值;第二步将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。
专题二 高考中的导数应用问题1.函数f (x )=(x -3)e x 的单调递增区间是________. 答案 (2,+∞)解析 函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)·e x ]′=1·e x +(x -3)·e x =(x -2)e x .由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2.2.已知函数f (x )=a sin 2x -13sin 3x (a 为常数)在x =π3处取得极值,则a 的值为________.答案 1解析 ∵f ′(x )=2a cos 2x -cos 3x , ∴f ′⎝⎛⎭⎫π3=2a cos 23π-cos π=0, ∴a =1,经验证适合题意.3.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是________. 答案 20解析 因为f ′(x )=3x 2-3=3(x -1)(x +1),令f ′(x )=0,得x =±1,可知-1,1为函数的极值点. 又f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,所以在区间[-3,2]上f (x )max =1,f (x )min =-19. 由题设知在区间[-3,2]上f (x )max -f (x )min ≤t ,从而t ≥20, 所以t 的最小值是20.4.已知函数f (x )=ln a +ln x x 在[1,+∞)上为减函数,则实数a 的取值范围为__________.答案 [e ,+∞)解析 f ′(x )=1x ·x -(ln a +ln x )x 2=1-(ln a +ln x )x 2,因为f (x )在[1,+∞)上为减函数,故f ′(x )≤0在[1,+∞)上恒成立,即ln a ≥1-ln x 在[1,+∞)上恒成立.设φ(x )=1-ln x ,φ(x )max =1,故ln a ≥1,a ≥e.5.已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是__________. 答案 [-2,-1]解析 由题意知,点(-1,2)在函数f (x )的图象上, 故-m +n =2.①又f ′(x )=3mx 2+2nx ,则f ′(-1)=-3,故3m -2n =-3. ②联立①②解得:m =1,n =3,即f (x )=x 3+3x 2, 令f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0, 则[t ,t +1]⊆[-2,0],故t ≥-2且t +1≤0, 所以t ∈[-2,-1].题型一 利用导数研究函数的单调性 例1 设函数f (x )=x (e x -1)-ax 2. (1)若a =12,求f (x )的单调区间;(2)若当x ≥0时,f (x )≥0,求a 的取值范围.思维启迪 (1)解不等式f ′(x )>0和f ′(x )<0即可判断; (2)注意依据参数a 进行分类讨论. 解 (1)a =12时,f (x )=x (e x -1)-12x 2,f ′(x )=e x -1+x e x -x =(e x -1)(x +1).当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 故f (x )的单调递增区间为(-∞,-1),(0,+∞),单调递减区间为(-1,0).(2)f (x )=x (e x -1-ax ),令g (x )=e x -1-ax ,g ′(x )=e x -a .若a ≤1,则当x ∈(0,+∞)时,g ′(x )>0,g (x )为增函数,而g (0)=0,从而当x ≥0时,g (x )≥0,即f (x )≥0. 若a >1,则当x ∈(0,ln a )时,g ′(x )<0,g (x )为减函数, 而g (0)=0,从而当x ∈(0,ln a )时,g (x )<0,即f (x )<0. 综合得a 的取值范围为(-∞,1].思维升华 利用导数研究函数单调性的一般步骤: (1)确定函数的定义域; (2)求导数f ′(x );(3)①若求单调区间(或证明单调性),只需在函数f (x )的定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②两个单调增区间或两个单调减区间之间用逗号隔开,不能用∪连结.③若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解. 已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23. (1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.解 (1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×23-1, 解之,得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c .则f ′(x )=3x 2-2x -1=3⎝⎛⎭⎫x +13(x -1),列表如下: ↗↗所以f (x )的单调递增区间是(-∞,-13)和(1,+∞);f (x )的单调递减区间是⎝⎛⎭⎫-13,1. (3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x , 有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立. 只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞). 题型二 利用导数研究与不等式有关的问题 例2 已知f (x )=x ln x ,g (x )=-x 2+ax -3. (1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (3)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.思维启迪 (1)求f ′(x ),讨论参数t 求最小值; (2)分离a ,利用求最值得a 的范围;(3)寻求所证不等式和题中函数f (x )的联系,充分利用(1)中所求最值. 解 (1)由f (x )=x ln x ,x >0,得f ′(x )=ln x +1, 令f ′(x )=0,得x =1e.当x ∈(0,1e )时,f ′(x )<0,f (x )单调递减;当x ∈(1e ,+∞)时,f ′(x )>0,f (x )单调递增.①当0<t <1e <t +2,即0<t <1e时,f (x )min =f (1e )=-1e;②当1e ≤t <t +2,即t ≥1e时,f (x )在[t ,t +2]上单调递增,f (x )min =f (t )=t ln t .所以f (x )min=⎩⎨⎧-1e ,0<t <1et ln t ,t ≥1e.(2)2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x ,设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2,①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减, ②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4.(3)问题等价于证明x ln x >x e x -2e (x ∈(0,+∞)).由(1)可知f (x )=x ln x (x ∈(0,+∞))的最小值是-1e,当且仅当x =1e 时取到,设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-x e x ,易知m (x )max =m (1)=-1e ,当且仅当x =1时取到.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.思维升华 (1)恒成立问题可以转化为我们较为熟悉的求最值的问题进行求解,若不能分离参数,可以将参数看成常数直接求解.(2)证明不等式,可以转化为求函数的最值问题. (2012·浙江)已知a ∈R ,函数f (x )=4x 3-2ax +a . (1)求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0. (1)解 由题意得f ′(x )=12x 2-2a . 当a ≤0时,f ′(x )≥0恒成立, 此时f (x )的单调递增区间为(-∞,+∞). 当a >0时,f ′(x )=12⎝⎛⎭⎫x -a 6⎝⎛⎭⎫x +a 6, 此时函数f (x )的单调递增区间为⎝⎛⎦⎤-∞,-a 6和⎣⎡⎭⎫a 6,+∞, 单调递减区间为⎣⎡⎦⎤-a6, a 6. (2)证明 由于0≤x ≤1,故当a ≤2时,f (x )+|2-a |=4x 3-2ax +2≥4x 3-4x +2. 当a >2时,f (x )+|2-a |=4x 3+2a (1-x )-2≥4x 3+4(1-x )-2 =4x 3-4x +2.设g (x )=2x 3-2x +1,0≤x ≤1, 则g ′(x )=6x 2-2=6⎝⎛⎭⎫x -33⎝⎛⎭⎫x +33, 于是g ′(x ),g (x )随x 的变化情况如下表:所以,g (所以,当0≤x ≤1,2x 3-2x +1>0. 故f (x )+|2-a |≥4x 3-4x +2>0.题型三 利用导数研究方程解或图象交点问题 例3 已知f (x )=ax 2 (a ∈R ),g (x )=2ln x . (1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若方程f (x )=g (x )在区间[2,e]上有两个不等解,求a 的取值范围. 思维启迪 (1)通过讨论a 确定F (x )的符号;(2)将方程f (x )=g (x )变形为a =2ln x x 2,研究φ(x )=2ln xx 2图象的大致形状.解 (1)F (x )=ax 2-2ln x ,其定义域为(0,+∞),∴F ′(x )=2ax -2x =2(ax 2-1)x(x >0).①当a >0时,由ax 2-1>0,得x >1a. 由ax 2-1<0,得0<x <1a. 故当a >0时,F (x )在区间⎝⎛⎭⎫1a ,+∞上单调递增, 在区间⎝⎛⎭⎫0,1a 上单调递减. ②当a ≤0时,F ′(x )<0 (x >0)恒成立. 故当a ≤0时,F (x )在(0,+∞)上单调递减.(2)原式等价于方程a =2ln xx2=φ(x )在区间[2,e]上有两个不等解.∵φ′(x )=2x (1-2ln x )x 4在(2,e)上为增函数,在(e ,e)上为减函数,则φ(x )max =φ(e)=1e ,而φ(e)=2e 2<φ(2)=2ln 24=ln 22=φ(2).∴φ(x )min =φ(e), 如图当f (x )=g (x )在[2,e]上有两个不等解时有 φ(x )min =ln 22, 故a 的取值范围为ln 22≤a <1e.思维升华 对于可转化为a =f (x )解的个数确定参数a 的范围问题,都可以通过f (x )的单调性、极值确定f (x )的大致形状,进而求a 的范围.(2012·江苏)若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点. (1)求a 和b 的值;(2)设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点; (3)设h (x )=f (f (x ))-c ,其中c ∈[-2,2],求函数y =h (x )的零点个数. 解 (1)由题设知f ′(x )=3x 2+2ax +b ,且f ′(-1)=3-2a +b =0,f ′(1)=3+2a +b =0, 解得a =0,b =-3. (2)由(1)知f (x )=x 3-3x . 因为f (x )+2=(x -1)2(x +2),所以g ′(x )=0的根为x 1=x 2=1,x 3=-2, 于是函数g (x )的极值点只可能是1或-2. 当x <-2时,g ′(x )<0;当-2<x <1时, g ′(x )>0,故-2是g (x )的极值点. 当-2<x <1或x >1时,g ′(x )>0, 故1不是g (x )的极值点. 所以g (x )的极值点为-2. (3)令f (x )=t ,则h (x )=f (t )-c .先讨论关于x 的方程f (x )=d 根的情况,d ∈[-2,2]. 当|d |=2时,由(2)可知,f (x )=-2的两个不同的根为1和-2, 注意到f (x )是奇函数,所以f (x )=2的两个不同的根为-1和2.当|d|<2时,因为f(-1)-d=f(2)-d=2-d>0,f(1)-d=f(-2)-d=-2-d<0,所以-2,-1,1,2都不是f(x)=d的根.由(1)知f′(x)=3(x+1)(x-1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2,此时f(x)=d无实根.同理,f(x)=d在(-∞,-2)上无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又f(1)-d<0,f(2)-d>0,y=f(x)-d的图象不间断,所以f(x)=d在(1,2)内有唯一实根.同理,f(x)=d在(-2,-1)内有唯一实根.③当x∈(-1,1)时,f′(x)<0,故f(x)是单调减函数.又f(-1)-d>0,f(1)-d<0,y=f(x)-d的图象不间断,所以f(x)=d在(-1,1)内有唯一实根.由上可知:当|d|=2时,f(x)=d有两个不同的根x1,x2满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d有三个不同的根x3,x4,x5满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点.(i)当|c|=2时,f(t)=c有两个根t1,t2满足|t1|=1,|t2|=2,而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5个零点.(ii)当|c|<2时,f(t)=c有三个不同的根t3,t4,t5满足|t i|<2,i=3,4,5,而f(x)=t i(i=3,4,5)有三个不同的根,故y=h(x)有9个零点.综上可知,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9个零点.(时间:80分钟)1.已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值与最小值.解(1)由题意得f′(x)=3ax2+2x+b,因此g(x)=f(x)+f′(x)=ax3+(3a+1)x2+(b+2)x+b.因为函数g(x)是奇函数,所以g(-x)=-g(x),即对任意实数x,有a(-x)3+(3a+1)(-x)2+(b+2)(-x)+b=-[ax3+(3a+1)x2+(b+2)x+b],从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2.令g ′(x )=0,解得x 1=-2,x 2=2, 则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,- 2 ),(2,+∞)上是减函数; 当-2<x <2时,g ′(x )>0,从而g (x )在区间(-2,2)上是增函数.由上述讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得, 而g (1)=53,g (2)=423,g (2)=43,因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值g (2)=43.2.如图,已知曲线C 1:y =x 3(x ≥0)与曲线C 2:y =-2x 3+3x (x ≥0)交于点O 、A ,直线x =t (0<t <1)与曲线C 1、C 2分别相交于点B 、D . (1)写出四边形ABOD 的面积S 与t 的函数关系S =f (t ); (2)讨论f (t )的单调性,并求f (t )的最大值.解 (1)由⎩⎪⎨⎪⎧y =x 3y =-2x 3+3x, 得交点O 、A 的坐标分别为(0,0),(1,1). f (t )=S △ABD +S △OBD =12BD ·|1-0|=12BD=12(-3t 3+3t ), 即f (t )=-32(t 3-t ) (0<t <1).(2)f ′(t )=-92t 2+32.令f ′(t )=0,解得t =33.当0<t <33时,f ′(t )>0,从而f (t )在区间⎝⎛⎭⎫0,33上是增函数, 当33<t <1时,f ′(t )<0,从而f (t )在区间⎝⎛⎭⎫33,1上是减函数. 所以当t =33时,f (t )有最大值为f ⎝⎛⎭⎫33=33. 3.已知a ,b 是实数,函数f (x )=x 3+ax ,g (x )=x 2+bx ,f ′(x )和g ′(x )分别是f (x )和g (x )的导函数.若f ′(x )g ′(x )≥0在区间I 上恒成立,则称f (x )和g (x )在区间I 上单调性一致. (1)设a >0,若f (x )和g (x )在区间[-1,+∞)上单调性一致,求b 的取值范围;(2)设a <0且a ≠b ,若f (x )和g (x )在以a ,b 为端点的开区间上单调性一致,求|a -b |的最大值. 解 f ′(x )=3x 2+a ,g ′(x )=2x +b .(1)由题意知f ′(x )g ′(x )≥0在[-1,+∞)上恒成立.因为a >0,故3x 2+a >0,进而2x +b ≥0,即b ≥-2x 在区间[-1,+∞)上恒成立,所以b ≥2. 因此b 的取值范围是[2,+∞). (2)令f ′(x )=0,解得x =± -a3. 若b >0,由a <0得0∈(a ,b ).又因为f ′(0)g ′(0)=ab <0,所以函数f (x )和g (x )在(a ,b )上的单调性是不一致的,因此b ≤0. 由此得,当x ∈(-∞,0)时,g ′(x )<0, 当x ∈⎝⎛⎭⎫-∞,--a 3时,f ′(x )>0, 因此,当x ∈⎝⎛⎭⎫-∞,--a 3时,f ′(x )g ′(x )<0,故由题设得a ≥--a3且b ≥- -a 3,从而-13≤a <0,于是-13≤b ≤0.因此|a -b |≤13,且当a =-13,b =0时等号成立.又当a =-13,b =0时,f ′(x )g ′(x )=6x ⎝⎛⎭⎫x 2-19, 从而当x ∈⎝⎛⎭⎫-13,0时,f ′(x )g ′(x )>0, 故函数f (x )和g (x )在⎝⎛⎭⎫-13,0上单调性一致. 因此|a -b |的最大值为13.4.已知f (x )=x 2+3x +1,g (x )=a -1x -1+x .(1)a =2时,求y =f (x )和y =g (x )的公共点个数; (2)a 为何值时,y =f (x )和y =g (x )的公共点个数恰为两个.解 (1)由⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=1x -1+x ,整理得x 3+x 2-x -2=0(x ≠1). 令y =x 3+x 2-x -2, 求导得y ′=3x 2+2x -1, 令y ′=0,得x 1=-1,x 2=13,故得极值点分别在-1和13处取得,且极大值、极小值都是负值.故公共点只有一个.(2)由⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=a -1x -1+x ,整理得a =x 3+x 2-x (x ≠1),令h (x )=x 3+x 2-x ,联立⎩⎪⎨⎪⎧y =a ,y =h (x )=x 3+x 2-x (x ≠1),点分别在-1和13处,画出草图, 如图,求导h (x )可以得到极值h (-1)=1,h (13)=-527, 当a =h (-1)=1时,y =a 与y =h (x )仅有一个公共点(因为(1,1) 点不在y =h (x )曲线上), 故a =-527时恰有两个公共点.5.定义在R 上的函数f (x )=ax 3+bx 2+cx +3同时满足以下条件:①f (x )在(0,1)上是减函数,在(1,+∞)上是增函数;②f ′(x )是偶函数;③f (x )的图象在x =0处的切线与直线y =x +2垂直.(1)求函数y =f (x )的解析式;(2)设g (x )=4ln x -m ,若存在x ∈[1,e],使g (x )<f ′(x ),求实数m 的取值范围. 解 (1)f ′(x )=3ax 2+2bx +c .∵f (x )在(0,1)上是减函数,在(1,+∞)上是增函数,∴f ′(1)=3a +2b +c =0, (*) 由f ′(x )是偶函数得b =0, ① 又f (x )的图象在x =0处的切线与直线y =x +2垂直,∴f ′(0)=c =-1,② 将①②代入(*)得a =13,∴f (x )=13x 3-x +3.(2)由已知得,若存在x ∈[1,e],使4ln x -m <x 2-1,即存在x ∈[1,e],使m >(4ln x -x 2+1)min .设M (x )=4ln x -x 2+1,x ∈[1,e],则M ′(x )=4x -2x =4-2x 2x ,令M ′(x )=0,∵x ∈[1,e],∴x = 2. 当2<x ≤e 时,M ′(x )<0,∴M (x )在(2,e)上为减函数;当1≤x ≤2时,M ′(x )>0,∴M (x )在[1,2]上为增函数,∴M (x )在[1,e]上有最大值且在x =2处取到.又M (1)=0,M (e)=5-e 2<0,∴M (x )的最小值为5-e 2.∴m >5-e 2.6.已知函数f (x )=(ax 2+x )e x ,其中e 是自然对数的底数,a ∈R .(1)当a <0时,解不等式f (x )>0;(2)若f (x )在[-1,1]上是单调函数,求a 的取值范围;(3)当a =0时,求整数k 的所有值,使方程f (x )=x +2在[k ,k +1]上有解. 解 (1)因为e x >0,所以不等式f (x )>0即为ax 2+x >0.又a <0,所以-1a>0. 不等式可化为x (x +1a)<0, 所以不等式f (x )>0的解集为(0,-1a). (2)f ′(x )=(2ax +1)e x +(ax 2+x )e x =[ax 2+(2a +1)x +1]e x ,①当a =0时,f ′(x )=(x +1)e x ,f ′(x )≥0在[-1,1]上恒成立,当且仅当x =-1时取等号,故a =0符合要求;②当a ≠0时,令g (x )=ax 2+(2a +1)x +1,因为Δ=(2a +1)2-4a =4a 2+1>0,所以g (x )=0有两个不相等的实数根x 1,x 2不妨设x 1>x 2,因此f (x )既有极大值又有极小值.若a >0,因为g (-1)·g (0)=-a <0,所以f (x )在(-1,1)内有极值点,故f (x )在[-1,1]上不单调.若a <0,可知x 1>0>x 2,因为g (x )的图象开口向下,要使f (x )在[-1,1]上单调,因为g (0)=1>0,必须满足⎩⎪⎨⎪⎧ g (1)≥0,g (-1)≥0,即⎩⎪⎨⎪⎧3a +2≥0,-a ≥0,所以-23≤a <0. 综上可知,a 的取值范围是[-23,0]. (3)当a =0时,方程即为x e x =x +2,显然x =0不是方程的解,所以原方程等价于e x -2x -1=0.令h (x )=e x -2x-1, 因为h ′(x )=e x +2x 2>0对于x ∈(-∞,0)和(0,+∞)恒成立, 所以h (x )在(-∞,0)和(0,+∞)内是单调增函数.又h (1)=e -3<0,h (2)=e 2-2>0,h (-3)=e -3-13<0,h (-2)=e -2>0, 所以方程f (x )=x +2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上, 所以整数k 的所有值为{-3,1}.。
江苏专版高考数学一轮复习第三章导数及其应用第一节导数的概念及导数的运算教案文含解析苏教版第一节 导数的概念及导数的运算1.导数的概念 (1)平均变化率一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f x 2-f x 1x 2-x 1.(2)函数y =f (x )在x =x 0处的导数 ①定义:设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,此值ΔyΔx =f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A为函数f (x )在x =x 0处的导数,记作f ′(x 0).②几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(3)函数f (x )的导函数若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数.2.基本初等函数的导数公式原函数导函数f (x )=x α f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln_a f (x )=e xf ′(x )=e xf (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[Cf (x )]′=Cf ′(x )(C 为常数);(3)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (4)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x g 2x (g (x )≠0).[小题体验]1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为________. 解析:由f (x )=x ln x 得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. 答案:e2.曲线y =x 3-x +3在点(1,3)处的切线方程为________. 答案:2x -y +1=03.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=_____.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,所以f ′(3)=-13,因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),所以g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.答案:01.利用公式求导时要特别注意不要将幂函数的求导公式(x α)′=αx α-1与指数函数的求导公式(a x)′=a xln a 混淆.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.[小题纠偏]1.函数y =x cos x -sin x 的导数为________.解析:y ′=(x cos x )′-(sin x )′=x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x .答案:-x sin x2.已知直线y =-x +1是函数f (x )=-1a·e x图象的切线,则实数a =________.解析:设切点为(x 0,y 0),则f ′(x 0)=-1a·e 0x=-1,所以ex =a ,又-1a·e 0x=-x 0+1,所以x 0=2,a =e 2.答案:e 23.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a =________.解析:因为y =x 3,所以y ′=3x 2,设过(1,0)的直线与y =x 3相切于点(x 0,x 30),则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x -9相切,可得a =-2564,当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.答案:-1或-2564考点一 导数的运算基础送分型考点——自主练透[题组练透]求下列函数的导数. (1)f (x )=x 3+x ; (2)f (x )=sin x +x ; (3)f (x )=e x cos x ; (4)f (x )=x -1x-ln x . 解:(1)f ′(x )=(x 3+x )′=(x 3)′+(x )′=3x 2+1. (2)f ′(x )=cos x +1.(3)f ′(x )=e xcos x -e xsin x =e x(cos x -sin x ). (4)f ′(x )=1x 2-1x =1-xx2.[谨记通法]求函数导数的3种原则考点二 导数的几何意义题点多变型考点——多角探明[锁定考向]导数的几何意义是把函数的导数与曲线的切线联系在一起,一般不单独考查,在填空题中会出现,有时也体现在解答题中,难度偏小.常见的命题角度有: (1)求切线方程; (2)求切点坐标;(3)求参数的值(范围).[题点全练]角度一:求切线方程1.(2019·泰州检测)若函数f (x )=2x 在点(a ,f (a ))处的切线与直线2x +y -4=0垂直,则该切线方程为________.解析:∵切线与直线2x +y -4=0垂直, ∴切线的斜率是12.∵f (x )=2x ,∴f ′(x )=x12-,∴f ′(a )=a12-=12. 解得a =4,则f (4)=4,故函数f (x )在点(4,4)处的切线方程为x -2y +4=0. 答案:x -2y +4=02.已知曲线y =x 与y =8x的交点为C ,两曲线在点C 处的切线分别为l 1,l 2,则切线l 1,l 2与y 轴所围成的三角形的面积为________.解析:由⎩⎪⎨⎪⎧y =x ,y =8x,解得⎩⎪⎨⎪⎧x =4,y =2,即C (4,2),由y =x ,得y ′=(x )′=12x ,则直线l 1的斜率k 1=14,∴l 1:y =14x +1.同理可得l 2:y =-12x +4,如图,易知S △ABC =12×3×4=6,即所求的面积为6.答案:6角度二:求切点坐标3.(2019·扬州模拟)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为________.解析:f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,符合题意.答案:(1,3)和(-1,3) 角度三:求参数的值(范围)4.(2018·常州高三期末)已知函数f (x )=bx +ln x ,其中b ∈R.若过原点且斜率为k 的直线与曲线y =f (x )相切,则k -b 的值为________.解析:设切点为(x 0,bx 0+ln x 0),f ′(x )=b +1x ,则k =b +1x 0,故切线方程为y -(bx 0+ln x 0)=⎝⎛⎭⎪⎫b +1x(x -x 0),将(0,0)代入,可得x 0=e ,则k =b +1e ,∴k -b =1e .答案:1e[通法在握]与切线有关问题的处理策略(1)已知切点A (x 0,y 0)求斜率k ,即求该点处的导数值,k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)求过某点M (x 1,y 1)的切线方程时,需设出切点A (x 0,f (x 0)),则切线方程为y -f (x 0)=f ′(x 0)(x -x 0),再把点M (x 1,y 1)代入切线方程,求x 0.[演练冲关]1.曲线f (x )=2x -e x与y 轴的交点为P ,则曲线在点P 处的切线方程为________. 解析:曲线f (x )=2x -e x 与y 轴的交点为(0,-1). 且f ′(x )=2-e x,所以f ′(0)=1. 所以所求切线方程为y +1=x ,即x -y -1=0. 答案:x -y -1=02.(2018·南京、盐城高三二模)在平面直角坐标系xOy 中,曲线y =mx +1(m >0)在x=1处的切线为l ,则点(2,-1)到直线l 的距离的最大值为________.解析:把x =1代入y =m x +1,得y =m2, 则切线l 过点⎝ ⎛⎭⎪⎫1,m 2.∵y ′=-m x +12,∴切线的斜率k =y ′|x =1=-m4.∴切线l 的方程为y -m 2=-m4(x -1),即mx +4y -3m =0.∴点(2,-1)到直线l 的距离d =|2m -4-3m |m 2+42=|-4-m |m 2+16=m +4m 2+16=m +42m 2+16=m 2+8m +16m 2+16=1+8mm 2+16= 1+8m +16m≤ 1+82m ·16m=2,当且仅当m =16m,即m =4时取“=”,故所求最大值为 2. 答案: 23.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f 0=b =0,f ′0=-aa +2=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0,所以a ≠-12.所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞.一抓基础,多练小题做到眼疾手快1.(2019·常州调研)函数f (x )=e x +x 2+sin x 的导函数f ′(x )=________. 答案:e x+2x +cos x2.(2018·镇江调研)函数f (x )=(x +1)2(x -1)在x =1处的导数等于________. 解析:由f (x )=(x +1)2(x -1)=x 3+x 2-x -1,得f ′(x )=3x 2+2x -1, 所以f ′(1)=3+2-1=4. 答案:43.(2018·苏州暑假测试)曲线y =e x在x =0处的切线方程为____________. 解析:因为y ′=e x,所以y =e x在x =0处的切线斜率k =e 0=1, 因此切线方程为y -1=1×(x -0),即x -y +1=0. 答案:x -y +1=04.已知函数f (x )=1x cos x ,则f (π)+f ′⎝ ⎛⎭⎪⎫π2=________.解析:因为f ′(x )=-1x 2cos x +1x(-sin x ),所以f (π)+f ′⎝ ⎛⎭⎪⎫π2=-1π+2π·(-1)=-3π. 答案:-3π5.(2019·苏州调研)已知函数f (x )=-x 3+ax 2+b (a ,b ∈R)图象上任意一点处的切线的斜率都小于1,则实数a 的取值范围是________.解析:∵f ′(x )=-3x 2+2ax =-3⎝ ⎛⎭⎪⎫x -a 32+a23,当x =a 3时,f ′(x )取到最大值a 23.∴a 23<1,解得-3<a < 3. 答案:(-3,3)6.(2018·苏北四市调研)已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于________.解析:因为f (x )=x 3-2x 2+x +6,所以f ′(x )=3x 2-4x +1,所以f ′(-1)=8, 故切线方程为y -2=8(x +1),即8x -y +10=0, 令x =0,得y =10,令y =0,得x =-54,所以所求面积S =12×54×10=254.答案:254二保高考,全练题型做到高考达标1.设函数f (x )的导函数为f ′(x ),且f (x )=x 2+2xf ′(1),则f ′(2)=________. 解析:因为f (x )=x 2+2xf ′(1),所以f ′(x )=2x +2f ′(1),令x =1,得f ′(1)=2+2f ′(1),解得f ′(1)=-2,则f ′(x )=2x -4,所以f ′(2)=2×2-4=0.答案:02.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=________. 解析:因为f ′(x )=4ax 3-b sin x +7. 所以f ′(-x )=4a (-x )3-b sin(-x )+7 =-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14. 又f ′(2 018)=6,所以f ′(-2 018)=14-6=8. 答案:83.(2019·淮安调研)曲线y =1-2x +2在点(-1,-1)处的切线方程为________. 解析:因为y =1-2x +2=x x +2, 所以y ′=x +2-x x +22=2x +22,y ′| x =-1=2,所以曲线在点(-1,-1)处的切线斜率为2, 所以所求切线方程为y +1=2(x +1),即y =2x +1. 答案:y =2x +14.(2018·无锡期末)在曲线y =x -1x(x >0)上一点P (x 0,y 0)处的切线分别与x 轴,y轴交于点A ,B ,O 是坐标原点,若△OAB 的面积为13,则x 0=________.解析:因为y ′=1+1x2,切点P ⎝ ⎛⎭⎪⎫x 0,x 0-1x 0,x 0>0,所以切线斜率k =y ′|x =x 0=1+1x 20,所以切线方程是y -⎝ ⎛⎭⎪⎫x 0-1x 0=⎝ ⎛⎭⎪⎫1+1x 20(x -x 0).令y =0,得x =2x 0x 20+1,即A ⎝ ⎛⎭⎪⎫2x 0x 20+1,0; 令x =0,得y =-2x 0,即B ⎝ ⎛⎭⎪⎫0,-2x 0.所以S △OAB =12·2x 0x 20+1·2x 0=2x 20+1=13,解得x 0= 5.答案: 55.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m =________.解析:因为f ′(x )=1x,所以直线l 的斜率为k =f ′(1)=1, 又f (1)=0,所以切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,解得m =-2. 答案:-26.(2018·淮安高三期中)已知函数f (x )=x 3.设曲线y =f (x )在点P (x 1,f (x 1))处的切线与该曲线交于另一点Q(x 2,f (x 2)),记f ′(x )为函数f (x )的导函数,则f ′x 1f ′x 2的值为________.解析:由f ′(x )=3x 2,得f ′(x 1)=3x 21,所以曲线y =f (x )在点P (x 1,x 31)处的切线方程为y =3x 21x -2x 31,由⎩⎪⎨⎪⎧y =3x 21x -2x 31,y =x 3,解得Q(-2x 1,-8x 31),所以x 2=-2x 1,所以f ′x 1f ′x 2=3x 213x 22=14.答案:147.(2019·南通一调)已知两曲线f (x )=2sin x ,g (x )=a cos x ,x ∈⎝⎛⎭⎪⎫0,π2相交于点P .若两曲线在点P 处的切线互相垂直,则实数a 的值为________.解析:f ′(x )=2cos x ,g ′(x )=-a sin x .设点P 的横坐标为x 0,则f (x 0)=g (x 0),f ′(x 0)·g ′(x 0)=-1,即2sin x 0=a cos x 0,(2cos x 0)·(-a sin x 0)=-1,所以4sin 2x 0=1.即 sin x 0=±12,因为x 0∈⎝⎛⎭⎪⎫0,π2,所以sin x 0=12,cos x 0=32,所以a =233.答案:2338.曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1(x ∈[1,2])上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为________.解析:设P (x 0,x 20+1),x 0∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 2+1)=2x 0(x -x 0),所以y =2x 0(x -x 0)+x 20+1,设g (x )=2x 0(x -x 0)+x 20+1,则g (1)+g (2)=-2x 20+6x 0+2,所以S 普通梯形=g 1+g 22×1=-x 20+3x 0+1=-⎝⎛⎭⎪⎫x 0-322+134,所以P 点坐标为⎝ ⎛⎭⎪⎫32,134时,S 普通梯形最大.答案:⎝ ⎛⎭⎪⎫32,1349.(2019·盐城中学月考)求下列函数的导数: (1)y =x 2(ln x +sin x ); (2)y =cos x -x x2; (3)y =x ln x .解:(1)y ′=2x (ln x +sin x )+x 2⎝ ⎛⎭⎪⎫1x+cos x =2x ln x +2x sin x +x +x 2cos x .(2)y ′=-sin x -1x 2-cos x -x ·2xx 4=x -2cos x -x sin xx 3.(3)y ′=⎝ ⎛⎭⎪⎫12·1x ln x +x ·1x =2+ln x 2x .10.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.解:(1)因为f ′(x )=3x 2-8x +5,所以f ′(2)=1,又f (2)=-2,所以曲线在点(2,f (2))处的切线方程为y +2=x -2,即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),因为f ′(x 0)=3x 20-8x 0+5,所以切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点P (x 0,x 30-4x 20+5x 0-4),所以x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,所以经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.三上台阶,自主选做志在冲刺名校1.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.解析:由f (x )=x 3+ax +14得, f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,所以曲线y =f (x )在x =0处的切线方程为y -14=ax . 设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0), g ′(x )=-1x, 所以⎩⎪⎨⎪⎧ -ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34, 所以x 0=e 34,所以a =-1e34=-e 34-. 答案:-e34-2.(2018·启东中学高三测试)已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线l:y=kx+9,且f′(-1)=0.(1)求a的值;(2)是否存在实数k,使直线l既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.解:(1)由已知得f′(x)=3ax2+6x-6a,因为f′(-1)=0,所以3a-6-6a=0,解得a=-2.(2)存在,理由如下:由已知得,直线l恒过定点(0,9),若直线l是曲线y=g(x)的切线,则设切点为(x0,3x20+6x0+12).因为g′(x0)=6x0+6,所以切线方程为y-(3x20+6x0+12)=(6x0+6)(x-x0),将(0,9)代入切线方程,解得x0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f′(x)=-6x2+6x+12,①由f′(x)=0,得-6x2+6x+12=0,解得x=-1或x=2.当x=-1时,y=f(x)的切线方程为y=-18;当x=2时,y=f(x)的切线方程为y=9,所以y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12,得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10.所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
第三章导数及其应用
【知识网络】
【考情分析】
近几年江苏高考对导数的考查十分重视,难度保持中等以上,考试中有时会涉及一些文字型应用题,在数学思想上也有很强的体现.其考查情况如下:
【备考策略】
1.由上面的考情分析可知,导数的复习重点是理解导数的概念,熟记导数的运算法则和求导公式,熟练掌握导数的几何意义及在实际问题中的应用,会利用导数研究函数的单调性与极(最)值,并且能够将导数知识灵活地运用于求解不等式等相关内容.
2.导数是求解函数的单调性、极(最)值问题及曲线的切线方程等最有力的工具.对导数问题的考查多以三次函数、二次函数为载体,常常伴随不等式的证明一起考查,复习时应加强这方面的训练.
3.导数是高中数学知识的一个重要交汇点,是联系多个章节内容及解决相关问题的重要工具,它常与方程、不等式等内容交叉渗透、自然交汇.这类问题的解决,首先利用导数判断其单调性(对方程而言首先构造函数),然后画出草图,利用数形结合的思想,并根据图象与x 轴的交点情况,建立参数方程组或不等式组进行求解.复习时要求学生领会应用函数和导数解决问题的思想方法,并将知识融会贯通.。
学案14 导数在研究函数中的应用导学目标: 1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次)及最大(最小)值.自主梳理1.导数和函数单调性的关系:(1)对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的________; 如果在某区间上f ′(x )<0,那么f (x )为该区间上的________. (2)若在(a ,b )的任意子区间内f ′(x )都不恒等于0,f ′(x )≥0⇔f (x )在(a ,b )上为____函数,若在(a ,b )上,f ′(x )≤0,⇔f (x )在(a ,b )上为____函数.2.函数的极值(1)判断f (x 0)是极值的方法一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程________的根;③检查f ′(x )在方程________的根左右值的符号.如果左正右负,那么f (x )在这个根处取得________;如果左负右正,那么f (x )在这个根处取得________.3.求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤: (1)求函数y =f (x )在(a ,b )上的________;(2)将函数y =f (x )的各极值与________比较,其中最大的一个是最大值,最小的一个是最小值.自我检测1.(2010·济宁一模)已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则关于y =f (x )下列说法正确的是________(填序号).①在(-∞,0)上为减函数; ②在x =0处取极小值; ③在(4,+∞)上为减函数; ④在x =2处取极大值.2.(2009·广东改编)函数f (x )=(x -3)e x的单调递增区间为______________.3.函数f (x )=x 3+ax -2在区间(1,+∞)上是增函数,则a 的取值范围为______________.4.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥43,则p 是q 的________条件.5.(2010·福州模拟)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取极值10,则f (2)=________.探究点一 函数的单调性例1 已知a ∈R ,函数f (x )=(-x 2+ax )e x(x ∈R ,e 为自然对数的底数). (1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;(3)函数f (x )能否为R 上的单调函数,若能,求出a 的取值范围;若不能,请说明理由.变式迁移1 (2009·浙江)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ). (1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值; (2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围.探究点二 函数的极值例2 若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.变式迁移2 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.探究点三 求闭区间上函数的最值例3 已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y+1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.变式迁移3 已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.分类讨论求函数的单调区间例 (14分)(2009·辽宁)已知函数f (x )=12x 2-ax +(a -1)ln x ,a >1.(1)讨论函数f (x )的单调性;(2)证明:若a <5,则对任意x 1,x 2∈(0,+∞),x 1≠x 2,有f x 1-f x 2x 1-x 2>-1.【答题模板】(1)解 f (x )的定义域为(0,+∞).f ′(x )=x -a +a -1x =x 2-ax +a -1x =x -1x +1-ax.[3分]①若a -1=1,即a =2时,f ′(x )=x -12x.故f (x )在(0,+∞)上单调递增.②若a -1<1,而a >1,故1<a <2时,则当x ∈(a -1,1)时,f ′(x )<0;当x ∈(0,a -1)及x ∈(1,+∞)时,f ′(x )>0,故f (x )在(a -1,1)上单调递减,在(0,a -1),(1,+∞)上单调递增.③若a -1>1,即a >2时,同理可得f (x )在(1,a -1)上单调递减, 在(0,1),(a -1,+∞)上单调递增.[7分](2)证明 考虑函数g (x )=f (x )+x =12x 2-ax +(a -1)ln x +x .则g ′(x )=x -(a -1)+a -1x≥2x ·a -1x-(a -1) =1-(a -1-1)2.由于1<a <5,故g ′(x )>0,即g (x )在(0,+∞)上单调递增, 从而当x 1>x 2>0时,有g (x 1)-g (x 2)>0, 即f (x 1)-f (x 2)+x 1-x 2>0, 故f x 1-f x 2x 1-x 2>-1.[12分]当0<x 1<x 2时,有f x 1-f x 2x 1-x 2=f x 2-f x 1x 2-x 1>-1.综上,若a <5,对任意x 1,x 2∈(0,+∞),x 1≠x 2有f x 1-f x 2x 1-x 2>-1.[14分]【突破思维障碍】(1)讨论函数的单调区间的关键是讨论导数大于0或小于0的不等式的解集,一般就是归结为一个一元二次不等式的解集的讨论,在能够通过因式分解得到导数等于0的根的情况下,根的大小是分类的标准;(2)利用导数解决不等式问题的主要方法就是构造函数,通过函数研究函数的性质进而解决不等式问题.1.求可导函数单调区间的一般步骤和方法: (1)确定函数f (x )的定义域;(2)求f ′(x ),令f ′(x )=0,求出它在定义域内的一切实根;(3)把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间;(4)确定f ′(x )在各个开区间内的符号,根据f ′(x )的符号判定函数f (x )在每个相应小开区间内的增减性.2.可导函数极值存在的条件:(1)可导函数的极值点x 0一定满足f ′(x 0)=0,但当f ′(x 1)=0时,x 1不一定是极值点.如f (x )=x 3,f ′(0)=0,但x =0不是极值点.(2)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.3.函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的.函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值.4.求函数的最值以导数为工具,先找到极值点,再求极值和区间端点函数值,其中最大的一个是最大值,最小的一个是最小值.(满分:90分)一、填空题(每小题6分,共48分)1.(2011·泰州实验一模)函数f (x )=x -ln x 的单调减区间为________.2.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是______.3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点的个数为________.4.(2011·苏州模拟)若函数y =a (x 3-x )在区间⎝ ⎛⎭⎪⎫-33,33上为减函数,则a 的取值范围为________.5.设a ∈R ,若函数y =e ax+3x ,x ∈R 有大于零的极值点,则a 的取值范围为________.6.(2011·聊城一模)若a >2,则函数f (x )=13x 3-ax 2+1在区间(0,2)上有________个零点.7.已知函数f (x )的导函数f ′(x )的图象如图所示,给出以下结论:①函数f (x )在(-2,-1)和(1,2)上是单调递增函数;②函数f (x )在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数; ③函数f (x )在x =-1处取得极大值,在x =1处取得极小值; ④函数f (x )在x =0处取得极大值f (0).则正确命题的序号是________.(填上所有正确命题的序号).8.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围为________.二、解答题(共42分)9.(12分)求函数f (x )=2x +1x 2+2的极值.10.(14分)(2010·秦皇岛模拟)已知a 为实数,且函数f (x )=(x 2-4)(x -a ). (1)求导函数f ′(x );(2)若f ′(-1)=0,求函数f (x )在[-2,2]上的最大值、最小值.11.(16分)已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g (x )=f ′(x )+6x 的图象关于y 轴对称.(1)求m ,n 的值及函数y =f (x )的单调区间;(2)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值.答案 自主梳理1.(1)增函数 减函数 (2)增 减 2.(1)①f ′(x )>0 f ′(x )<0 ②f ′(x )<0 f ′(x )>0 (2)②f ′(x )=0 ③f ′(x )=0 极大值 极小值 3.(1)极值 (2)f (a ),f (b )自我检测1.③ 2.(2,+∞) 3.[-3,+∞) 4.充要 5.18 课堂活动区例 1 解题导引 (1)一般地,涉及到函数(尤其是一些非常规函数)的单调性问题,往往可以借助导数这一重要工具进行求解.函数在定义域内存在单调区间,就是不等式f ′(x )>0或f ′(x )<0在定义域内有解.这样就可以把问题转化为解不等式问题.(2)已知函数在某个区间上单调求参数问题,通常是解决一个恒成立问题,方法有①分离参数法,②利用二次函数中恒成立问题解决.(3)一般地,可导函数f (x )在(a ,b )上是增(或减)函数的充要条件是:对任意x ∈(a ,b ),都有f ′(x )≥0(或f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒等于零.特别是在已知函数的单调性求参数的取值范围时,要注意“等号”是否可以取到.解 (1)当a =2时,f (x )=(-x 2+2x )e x,∴f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x.令f ′(x )>0,即(-x 2+2)e x>0, ∵e x >0,∴-x 2+2>0, 解得-2<x < 2.∴函数f (x )的单调递增区间是(-2,2). (2)∵函数f (x )在(-1,1)上单调递增, ∴f ′(x )≥0对x ∈(-1,1)都成立.∵f ′(x )=[-x 2+(a -2)x +a ]e x,∴[-x 2+(a -2)x +a ]e x≥0对x ∈(-1,1)都成立. ∵e x>0,∴-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即x 2-(a -2)x -a ≤0对x ∈(-1,1)恒成立.设h (x )=x 2-(a -2)x -a ,只需满足⎩⎪⎨⎪⎧h -1≤0h 1≤0,解得a ≥32.(3)若函数f (x )在R 上单调递减, 则f ′(x )≤0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x≤0对x ∈R 都成立. ∵e x >0,∴x 2-(a -2)x -a ≥0对x ∈R 都成立.∴Δ=(a -2)2+4a ≤0,即a 2+4≤0,这是不可能的. 故函数f (x )不可能在R 上单调递减.若函数f (x )在R 上单调递增,则f ′(x )≥0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x≥0对x ∈R 都成立.∵e x >0,∴x 2-(a -2)x -a ≤0对x ∈R 都成立.而x 2-(a -2)x -a ≤0不可能恒成立, 故函数f (x )不可能在R 上单调递增.综上可知函数f (x )不可能是R 上的单调函数.变式迁移1 解 (1)由题意得f ′(x )=3x 2+2(1-a )x -a (a +2),又⎩⎪⎨⎪⎧f 0=b =0f ′0=-a a +2=-3,解得b =0,a =-3或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎪⎨⎪⎧ -1<a <1,a ≠-a +23或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧-1<a <1,a ≠-12或⎩⎪⎨⎪⎧-5<a <1,a ≠-12.所以a 的取值范围为(-5,-12)∪(-12,1).例2 解题导引 本题研究函数的极值问题.利用待定系数法,由极值点的导数值为0,以及极大值、极小值,建立方程组求解.判断函数极值时要注意导数为0的点不一定是极值点,所以求极值时一定要判断导数为0的点左侧与右侧的单调性,然后根据极值的定义判断是极大值还是极小值.解 (1)由题意可知f ′(x )=3ax 2-b .于是⎩⎪⎨⎪⎧f ′2=12a -b =0f 2=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13,b =4故所求的函数解析式为f (x )=13x 3-4x +4.(2)由(1)可知f ′(x )=x 2-4=(x -2)(x +2). 令f ′(x )=0得x =2或x =-2,x (-∞,-2) -2 (-2,2) 2(2,+∞)f ′(x ) + 0 - 0 + f (x ) 单调递增 极大值 单调递减极小值 单调递增因此,当x =-2时,f (x )有极大值283,当x =2时,f (x )有极小值-43,所以函数的大致图象如图,故实数k 的取值范围为 (-43,283). 变式迁移2 解 (1)f ′(x )=a x+2bx +1,∴⎩⎪⎨⎪⎧f ′1=a +2b +1=0f ′2=a 2+4b +1=0.解得a =-23,b =-16.(2)f ′(x )=-23x +(-x 3)+1=-x -1x -23x.x (0,1) 1 (1,2) 2 (2,+∞) f ′(x ) - 0 + 0 - f (x ) 单调递减 极小值 单调递增 极大值 单调递减 例3 解题导引 设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤:(1)求函数y =f (x )在(a ,b )内的极值.(2)将函数y =f (x )的各极值与端点处的函数值f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.解 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b ,当x =1时,切线l 的斜率为3,可得2a +b =0;①当x =23时,y =f (x )有极值,则f ′⎝ ⎛⎭⎪⎫23=0, 可得4a +3b +4=0.②由①②解得a =2,b =-4,又切点的横坐标为x =1,∴f (1)=4. ∴1+a +b +c =4.∴c =5.(2)由(1),得f (x )=x 3+2x 2-4x +5,∴f ′(x )=3x 2+4x -4.令f ′(x )=0,得x =-2或x =23,∴f ′(x )<0的解集为⎝⎛⎭⎪⎫-2,23,即为f (x )的减区间. [-3,-2)、⎝ ⎛⎦⎥⎤23,1是函数的增区间. 又f (-3)=8,f (-2)=13,f ⎝ ⎛⎭⎪⎫23=9527,f (1)=4,∴y =f (x )在[-3,1]上的最大值为13,最小值为9527.变式迁移3 解 (1)由题意得f ′(x )=3ax 2+2x +b .因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . 因为函数g (x )是奇函数,所以g (-x )=-g (x ),即对任意实数x ,有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b=-[ax 3+(3a +1)x 2+(b +2)x +b ],从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2, 令g ′(x )=0,解得x 1=-2,x 2=2,则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,-2),(2,+∞)上是减函数; 当-2<x <2时,g ′(x )>0,从而g (x )在区间(-2,2)上是增函数.由前面讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得,而g (1)=53,g (2)=423,g (2)=43.因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.课后练习区1.(0,1) 2.-37 3.1 4.(0,+∞) 5.a <-3解析 ∵y ′=a e ax+3,由y ′=0得x =1a ln(-3a),∴-3a>0,即a <0.又∵极值点大于零,即x >0,∴⎩⎪⎨⎪⎧a <00<-3a <1,得a <-3.6.1解析 f ′(x )=x 2-2ax =x (x -2a )=0⇒x 1=0,x 2=2a >4,易知f (x )在(0,2)上为减函数,且f (0)=1>0,f (2)=113-4a <0,由零点判定定理知,在函数f (x )=13x 3-ax 2+1在区间(0,2)上恰好有1个零点.7.②④解析 观察函数f (x )的导函数f ′(x )的图象,由单调性、极值与导数值的关系直接判断.8.(-∞,-3)∪(6,+∞)解析 f ′(x )=3x 2+2mx +m +6=0有两个不等实根,则Δ=4m 2-12×(m +6)>0, ∴m >6或m <-3.9.解 f ′(x )=(2x +1x 2+2)′=-2x +2x -1x 2+22,由f ′(x )=0得x =-2,1.……………(4分)当x ∈(-∞,-2)时f ′(x )<0,当x ∈(-2,1)时f ′(x )>0,故x =-2是函数的极小值点,故f (x )的极小值为f (-2)=-12;………………………………………………………………(8分) 当x ∈(-2,1)时f ′(x )>0,当x ∈(1,+∞)时f ′(x )<0, 故x =1是函数的极大值点,所以f (x )的极大值为f (1)=1.……………………………………………………………(12分)10.解 (1)由f (x )=x 3-ax 2-4x +4a ,得f ′(x )=3x 2-2ax -4.…………………………………………………………………(4分)(2)因为f ′(-1)=0,所以a =12,所以f (x )=x 3-12x 2-4x +2,f ′(x )=3x 2-x -4.又f ′(x )=0,所以x =43或x =-1.又f ⎝ ⎛⎭⎪⎫43=-5027,f (-1)=92, f (-2)=0,f (2)=0,所以f (x )在[-2,2]上的最大值、最小值分别为92、-5027.………………………………(14分)11.解 (1)由函数f (x )图象过点(-1,-6), 得m -n =-3.①由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n ,则g (x )=f ′(x )+6x =3x 2+(2m +6)x +n . 而g (x )的图象关于y 轴对称,所以-2m +62×3=0.所以m =-3,代入①,得n =0.…………………………………………………………(5分)于是f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )>0,得x >2或x <0,故f (x )的单调递增区间是(-∞,0)∪(2,+∞); 由f ′(x )<0,得0<x <2,故f (x )的单调递减区间是(0,2).…………………………………………………………(8分)(2)由(1)得f′(x)=3x(x-2),令f′(x)=0,得x=0或x=2.Z]Z(12分)由此可得:当0<a<1时,f(x)在(a-1,a+1)内有极大值f(0)=-2,无极小值;当a=1时,f(x)在(a-1,a+1)内无极值;当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值;当a≥3时,f(x)在(a-1,a+1)内无极值.……………………………………………(14分)综上得:当0<a<1时,f(x)有极大值-2,无极小值;当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值.………………………………………………………(16分)。
第3章 导数及其应用 学案13 导数的概念及运算导学目标: 1.了解导数概念的实际背景,理解函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.2.能根据导数定义,求函数y =C (C 为常数),y =x ,y=x 2,y =1x,y =x 的导数.熟记基本初等函数的导数公式(c ,x m (m 为有理数),sin x ,cos x ,e x ,a x ,ln x ,log a x 的导数),能利用基本初等函数的导数公式及导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b ))的导数.自主梳理1.函数f (x )在区间[x 1,x 2]上的平均变化率为________________________. 2.函数y =f (x )在x =x 0处的导数 (1)定义设f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值ΔyΔx=____________________无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0).(2)几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0))的____________. (3)导数的物理意义:函数s =s (t )在点t 0处的导数s ′(t 0),是物体的运动方程s =s (t )在t 0时刻的瞬时速度v ,即v =__________;v =v (t )在点t 0处的导数v ′(t 0),是物体的运动方程v =v (t )在t 0时刻的瞬时加速度a ,即a =____________.3.函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内任一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作y ′或f ′(x ).4.基本初等函数的导数公式表原函数 导函数 f (x )=C (C 为常数) f ′(x )=____f (x )=x α(α为常数) f ′(x )=______ (α为常数)f (x )=sin x f ′(x )=________ f (x )=cos x f ′(x )=________ f (x )=a x(a >0,a ≠1) f ′(x )=______(a >0,a ≠1)f (x )=e x f ′(x )=________ f (x )=log a x(a >0,a ≠1,且x >0)f ′(x )=__________f (x )=ln x f ′(x )=________5.(1)[f (x )±g (x )]′=____________; (2)[f (x )g (x )]′=________________;(3)⎣⎡⎦⎤f (x )g (x )′=________________________ [g (x )≠0].6.复合函数的求导法则:若y =f (u ),u =ax +b ,则y ′x =y ′u ·u ′x ,即y ′x =y ′u ·a . 自我检测1.(2011·中山期末统一考试)已知物体的运动方程为s =t 2+3t(t 是时间,s 是位移),则物体在时刻t =2时的速度为________.2.设y =x 2·e x ,则y ′=______________.3.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.4.(2010·临汾二模)若函数f (x )=e x +a e -x 的导函数是奇函数,并且曲线y =f (x )的一条切线的斜率是32,则切点的横坐标是________.5.(2009·湖北)已知函数f (x )=f ′(π4)cos x +sin x ,则f (π4)=________.探究点一 利用导数的定义求函数的导数例1 利用导数的定义求函数的导数:(1)f (x )=1x 在x =1处的导数;(2)f (x )=1x +2.变式迁移1 求函数y =x 2+1在x 0到x 0+Δx 之间的平均变化率,并求出其导函数.探究点二 导数的运算 例2 求下列函数的导数:(1)y =(1-x )⎝⎛⎭⎫1+1x ;(2)y =ln xx ;(3)y =x e x ;(4)y =tan x .变式迁移2 求下列函数的导数:(1)y =x 2sin x ;(2)y =3x e x -2x +e ;(3)y =ln xx 2+1.探究点三 求复合函数的导数 例3 求下列函数的导数: (1)y =(2x -3)5; (2)y =3-x ; (3)y =ln(2x +5).变式迁移3 求下列函数的导数:(1)y =1(1-3x )4;(2)y =sin ⎝⎛⎭⎫2x +π3; (3)y =x 1+x 2.探究点四 导数的几何意义例4 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程;(3)求满足斜率为1的曲线的切线方程.变式迁移4 求曲线f (x )=x 3-3x 2+2x 过原点的切线方程.1.准确理解曲线的切线,需注意的两个方面:(1)直线与曲线公共点的个数不是切线的本质特征,若直线与曲线只有一个公共点,则直线不一定是曲线的切线,同样,若直线是曲线的切线,则直线也可能与曲线有两个或两个以上的公共点.(2)曲线未必在其切线的“同侧”,如曲线y =x 3在其过(0,0)点的切线y =0的两侧. 2.曲线的切线的求法:若已知曲线过点P (x 0,y 0),求曲线过点P 的切线则需分点P (x 0,y 0)是切点和不是切点两种情况求解.(1)点P (x 0,y 0)是切点的切线方程为y -y 0=f ′(x 0)(x -x 0). (2)当点P (x 0,y 0)不是切点时可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程.3.求函数的导数要准确地把函数分割为基本初等函数的和、差、积、商及其复合运算,再利用运算法则求导数.在求导过程中,要仔细分析函数解析式的结构特征,紧扣法则,联系基本初等函数求导公式,对于不具备求导法则结构形式的要适当变形.(满分:90分)一、填空题(每小题6分,共48分)1.(2010·南通模拟)已知函数f (x )=13x 3-12x 2+6x ,当Δx →0时,f (1+Δx )-f (1)2Δx→常数A ,则A =________.2.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是__________.3.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为______________.4.(2010·辽宁改编)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是____________.5.(2009·福建)若曲线f (x )=ax 2+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.6.(2009·安徽改编)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎡⎦⎤0,5π12,则导数f ′(1)的取值范围为______________.7.已知函数y =f (x ),y =g (x )的导函数的图象如图所示,那么y =f (x ),y =g (x )的图象可能是________(填上正确的序号).8.(2011·南京模拟)若点P 是曲线f (x )=x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.二、解答题(共42分)9.(12分)求下列函数在x =x 0处的导数.(1)f (x )=e x 1-x +e x1+x ,x 0=2;(2)f (x )=x -x 3+x 2ln xx 2,x 0=1.10.(14分)求经过点P (2,0)的曲线y =1x的切线方程.11.(16分)设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f (x )的解析式;(2)证明:函数y =f (x )的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y =f (x )上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.答案 自主梳理 1.f (x 2)-f (x 1)x 2-x 12.(1)f (x 0+Δx )-f (x 0)Δx (2)切线的斜率 (3)s ′(t 0) v ′(t 0) 4.0 αx α-1 cos x -sin x a x ln a e x 1x ln a 1x5.(1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x )(3)f ′(x )g (x )-f (x )g ′(x )[g (x )]2自我检测1.1342.(2x +x 2)e x3.34.ln 25.1 课堂活动区例1 解题导引 (1)用导数定义求函数导数必须把分式ΔyΔx中的分母Δx 这一因式约掉才可能求出极限,所以目标就是分子中出现Δx ,从而分子分母相约分.(2)第(1)小题中用到的技巧是“分子有理化”.“有理化”是处理根式问题常用的方法,有时用“分母有理化”,有时用“分子有理化”.(3)用导数的定义求导的步骤为:①求函数的增量Δy ;②求平均变化率ΔyΔx ;③化简取极限.解 (1)Δy Δx =f (1+Δx )-f (1)Δx =11+Δx -1Δx=1-1+Δx Δx 1+Δx =1-(1+Δx )Δx 1+Δx (1+1+Δx )=-Δx Δx (1+Δx +1+Δx )=-11+Δx +1+Δx, 从而,当Δx →0时,Δy Δx →-12,∴f ′(1)=-12.(2)Δy Δx =f (x +Δx )-f (x )Δx =1x +2+Δx -1x +2Δx =(x +2)-(x +2+Δx )Δx (x +2)(x +2+Δx )=-1(x +2)(x +2+Δx ), 从而,当Δx →0时,Δy Δx →-1(x +2)2,∴f ′(x )=-1(x +2)2.变式迁移1 解 ∵Δy =(x 0+Δx )2+1-x 20+1=(x 0+Δx )2+1-x 20-1(x 0+Δx )2+1+x 20+1=2x 0Δx +(Δx )2(x 0+Δx )2+1+x 2+1, ∴ΔyΔx =2x 0+Δx (x 0+Δx )2+1+x 20+1. ∴Δx →0时,Δy Δx →x x 2+1.∴y ′=xx 2+1.例2 解题导引 求函数的导数要准确地把函数分割为基本函数的和、差、积、商及其复合运算,再利用运算法则求导数.在求导过程中,要仔细分析函数解析式的结构特征,紧扣求导法则,联系基本函数求导公式.对于不具备求导法则结构形式的要适当恒等变形.解 (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =, ∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln xx 2=1x ·x -ln x x 2=1-ln x x 2. (3)y ′=x ′e x +x (e x )′=e x +x e x =e x (x +1).(4)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x.变式迁移2 解 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(3x e x )′-(2x )′+(e)′=(3x )′e x +3x (e x )′-(2x )′ =3x ln 3·e x +3x e x -2x ln 2=(ln 3+1)(3e)x -2x ln 2.(3)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-ln x ·2x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.例3 解题导引 (1)求复合函数导数的思路流程为: 选定中间变量→分解复合关系→分层求导(2)由复合函数的定义可知,中间变量的选择应是基本函数的结构,解这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外向内,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程.解 (1)设u =2x -3,则y =(2x -3)5由y =u 5与u =2x -3复合而成. ∴y ′=y ′u ·u ′x =5u 4·2=10u 4=10(2x -3)4.(2)设u =3-x ,则y =3-x 由y =u 12与u =3-x 复合而成.∴y ′=y ′u ·u ′x =12u -12(-1)=-12u -12=-123-x.(3)设u =2x +5,则y =ln(2x +5) 由y =ln u 与u =2x +5复合而成.∴y ′=y ′u ·u ′x =1u ·2=2u =22x +5.变式迁移3 解 (1)设u =1-3x ,y =u -4.则y ′=y u ′·u x ′=-4u -5·(-3)=12(1-3x )5.(2)设u =2x +π3,则y =sin u ,∴y ′=y ′u ·u ′x =cos u ·2=2cos(2x +π3).(3)y ′=(x 1+x 2)′=x ′·1+x 2+x (1+x 2)′=1+x 2+x 21+x 2=1+2x 21+x 2.例4 解题导引 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异;过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)求函数对应曲线在某一点处的切线的斜率,只要求函数在该点处的导数即可. (3)解决“过某点的切线”问题,一般是设出切点坐标来解决. 解 (1)∵y ′=x 2,∴在点P (2,4)处的切线的斜率k =4. ∴曲线在点P (2,4)处的切线方程为 y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率k =x 20. ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20x -23x 30+43.∵点P (2,4)在切线上, ∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 0,y 0),则 切线的斜率为k =x 20=1,解得x 0=±1, 故切点为⎝⎛⎭⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1,即3x -3y +2=0和x -y +2=0.变式迁移4 解 f ′(x )=3x 2-6x +2.设切线的斜率为k .(1)当切点是原点时k =f ′(0)=2,所以所求曲线的切线方程为y =2x .(2)当切点不是原点时,设切点是(x 0,y 0),则有y 0=x 30-3x 20+2x 0,k =f ′(x 0)=3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②由①②得x 0=32,k =-14.∴所求曲线的切线方程为y =-14x .综上,曲线f (x )=x 3-3x 2+2x 过原点的切线方程为y =2x 或y =-14x .课后练习区1.3 2.1秒或2秒末 3.4x -y -3=0 4.⎣⎡⎭⎫3π4,π 5.a <0解析 由题意可知该函数的定义域为{x |x >0},且f ′(x )=2ax +1x .因为曲线存在垂直于y 轴的切线,故此时斜率为0,问题转化为x >0范围内导函数f ′(x )=2ax +1x 存在零点.令2ax +1x=0,即2ax 2+1=0,即x 2=-12a,显然只有a <0,方程2ax 2+1=0才有正实数根,故实数a 的取值范围是a <0.6.[2,2]解析 ∵f ′(x )=sin θ·x 2+3cos θ·x ,∴f ′(1)=sin θ+3cos θ=2sin ⎝⎛⎭⎫θ+π3, 又θ∈⎣⎡⎦⎤0,5π12.∴π3≤θ+π3≤3π4, ∴22≤sin ⎝⎛⎭⎫θ+π3≤1,∴2≤f ′(1)≤2. 7.④解析 由导函数y =f ′(x )的图象可知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的图象上任意一点切线的斜率为单调递减,故可排除①、③.又由图象知y =f ′(x )与y =g ′(x )在点x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线斜率相同,故可排除②.8. 2解析 过点P 作y =x -2的平行直线,且与曲线f (x )=x 2-ln x 相切.设P (x 0,x 20-ln x 0),则有k =f ′(x 0)=2x 0-1x 0. ∴2x 0-1x 0=1,∴x 0=1或x 0=-12(舍去),∴P 点坐标为(1,1),∴d =|1-1-2|1+1=2,即最小距离为 2.9.解 (1)∵f ′(x )=⎝⎛⎭⎫2e x1-x ′=(2e x)′(1-x )-2e x(1-x )′(1-x )2=2(2-x )e x(1-x )2,∴f ′(2)=0.…………………………………………………………………(6分)(2)∵f ′(x )=(x -32)′-x ′+(ln x )′=-32x -52-1+1x ,∴f ′(1)=-32.………………………………………………………(12分)10.解 设切点为M (x 0,y 0)(x 0≠0),则y 0=1x 0.∵切线过P (2,0),∴切线斜率为y 0-0x 0-2=1x 0(x 0-2).…………………………………………………………(4分)又y ′=(1x )′=-1x 2,∴k =-1x 20.…………………………………………………………(6分)由导数的几何意义知-1x 20=1x 0(x 0-2).解得x 0=1.………………………………………………………………………………(10分)∴y 0=1x 0=1,∴M (1,1).∴切线斜率为k =-1,故切线方程为y -1=-(x -1),即x +y -2=0.………………………………………(14分)11.(1)解 f ′(x )=a -1(x +b )2,…………………………………………………………(2分)于是⎩⎨⎧2a +12+b =3,a -1(2+b )2=0.解得⎩⎪⎨⎪⎧a =1,b =-1,或⎩⎨⎧a =94,b =-83.因为a ,b ∈Z ,故f (x )=x +1x -1.…………………………………………………………(6分) (2)证明 已知函数y 1=x ,y 2=1x都是奇函数,所以函数g (x )=x +1x 也是奇函数,其图象是以原点为中心的中心对称图形.而f (x )=x -1+1x -1+1.可知,函数g (x )的图象按向量a =(1,1)平移,即得到函数f (x )的图象,故函数f (x )的图象是以点(1,1)为中心的中心对称图形.………………………………(10分)(3)证明 在曲线上任取一点⎝⎛⎭⎫x 0,x 0+1x 0-1,由f ′(x 0)=1-1(x 0-1)2知,过此点的切线方程为y -x 20-x 0+1x 0-1=⎣⎡⎦⎤1-1(x 0-1)2(x -x 0).…………………………………………………(12分)令x =1,得y =x 0+1x 0-1,切线与直线x =1的交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1;令y =x ,得y =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1); 直线x =1与直线y =x 的交点为(1,1), 从而所围三角形的面积为 12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1|2x 0-1-1|=12⎪⎪⎪⎪2x 0-1|2x 0-2|=2. 所以,所围三角形的面积为定值2.……………………………………………………(16分)。