2015届重庆中考数学(12,18,24,25,26题)训练(10)
- 格式:doc
- 大小:275.50 KB
- 文档页数:9
重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(,对称轴为2b x a =-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。
若∠1=135°,则∠2的度数为( )A. 65°B. 55°C. 45°D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209, 则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x ==6题图9.如图,AB 是O 的直径,点C 在O 上,AE 是O 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前重庆市2015年初中毕业暨高中招生考试数学 ...................................................................... 1 重庆市2015年初中毕业暨高中招生考试数学答案解析 (4)重庆市2015年初中毕业暨高中招生考试数学本试卷满分150分,考试时间120分钟.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --,对称轴为2b x a=-. 第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共38分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在4,0,1,3--这四个数中,最大的数是( ) A .4-B .0C .1-D .3 2.下列图形是轴对称图形的是( )AB C D 3.( ) A. B.C. D.4.计算23(b)a 的结果是( )A .63a bB .23a bC .53a bD .6a b5.下列调查中,最适合用普查方式的是( )A .调查一批电视机的使用寿命情况B .调查某中学九年级一班学生的视力情况C .调查重庆市初中学生每天锻炼所用的时间情况D .调查重庆市初中学生利用网络媒体自主学习的情况 6.如图,直线AB CD ∥,直线EF 分别与直线AB ,CD 相交于点G ,H .若1135∠=,则2∠的度数为( )A .65B .55C .45D .357.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,216,209,则这五个数据的中位数为( ) A .220B .218C .216D .209 8.一元二次方程220x x -=的根是( )A .120,2x x ==-B .121,2x x ==C .121,2x x ==-D .120,2x x ==9.如图,AB 是O 的直径,点C 在O 上,AE 是O 的切线,A 为切点,连接BC 并延长交AE 于点D .若80AOC ∠=.则ADB ∠的度数为 ( ) A .40 B .50 C .60D .2010.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示.下列说法错误的是 ( )A .小明中途休息用了20分钟B .小明休息前爬山的平均速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,……,按此规律排列,则第⑦个图形中的小圆圈的个数为( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)……A .21B .24C .27D .3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1.反比例函数3y x=的图像经过A ,B 两点,则菱形ABCD 的面积为 ( ) A .2B .4 C.D.第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 .14.计算:02015|2|-= .15.已知ABC DEF △△,ABC △与DEF △的相似比为4:1,则ABC △与DEF △对应边上的高之比为 .16.如图,在等腰直角三角形ABC 中,90ACB ∠=,AB =.以A 为圆心,AC 长为半径作弧,交AB 于点D ,则图中阴影部分的面积是 (结果保留π).17.从3-,2-,1-,0,4这五个数中随机抽取一个数记为a ,a 的值既是不等式231,3111x x +⎧⎨--⎩<>的解,又在函数2122y x x =+的自变量取值范围内的概率是 .18.如图,在矩形ABCD 中,AB =,10AD =.连接BD ,DBC ∠的平分线BE 交DC 于点E .现把BCE △绕点B 逆时针旋转,记旋转后的为BC E ''.当射线BE '和射线BC '都与线段AD 相交时,设交点分别为F ,若BFD △为等腰三角形,则线段DG 的长为 .三、解答题(本大题共8小题,78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分7分) 解方程组3.24,1y x x y =-⎧⎨+=⎩①②20.(本小题满分7分)如图,在ABC △和FEC △中.点,,,B C D E 在同一直线上,且AB FE =,BC DE =,B E ∠=∠.求证:ADB FCE ∠=∠.21.(本小题满分10分) 计算:(1)2(2)(x y)y x y -++;(2)22869y 11y y y y y ⎛⎫-+--÷ ⎪++⎝⎭.22.(本小题满分10分)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润ω(万元)的多少分为以下四个类型:A 类(10ω<),B 类(100ω≤<2),C 类(200ω≤<3),D 类(0ω≥3),该政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是 ,扇形统计图中B 类所对应扇形圆心角的度数为 度,请补全条形统计图;(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计算从D 类企业的4个参会代表中随机抽取2个发言,D 类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.23.(本小题满分10分)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如果把一个自然数各位数上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任何一个四位数“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位数“和谐数”,设其个位上的数字为x (1x ≤≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.24.(本小题满分10分)某水库大坝的横截面是如图所示的四边形ABCD ,其中AB CD ∥.大坝顶上有一瞭望台PC ,PC 正前方有两艘渔船M ,N .观察员在瞭望台顶端P 处观测到渔船M 的俯角α为31,渔船N 的俯角为β为45.已知MN 所在直线与PC 所在直线垂直,垂足为E ,且PE 长为30米.(1)求两渔船M ,N 之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD 的坡度1:0.25i =.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑图石方进行加固,坝底BA 加宽后变为BH ,加固后背水坡DH 的坡度1:1.75i =.施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米? (参考数据:tan310.60≈,sin310.52≈)25.(本小题满分12分)如图1,在ABC △中,90ACB ∠=,60BAC ∠=.点E 是BAC ∠角平分线上一点,过点E 作AE 的垂线,过点A 作AB 的垂线,两垂线交于点D ,连接DB ,点F 是BD 的中点.DH AC ⊥,垂足为H ,连接EF ,HF .(1)如图1,若点H 是AC 的中点,AC =求AB ,BD 的长; (2)如图1,求证:HF EF =;(3)如图2,连接CF ,EF .猜想:CEF △是否是等边三角形?若是,请证明;若不是,请说明理由.26.(本小题满分12分)如图1,在平面直角坐标系中,抛物线2y =+交x 轴于,A B 两点.(点A 在点B 的左侧),交y 轴于点W ,顶点为C ,抛物线的对称轴与x 轴的交点为D .(1)求直线BC 的解析式;(2)点(,0)E m ,(2,0)F m +为x 轴上两点,其中24m <<.EE ',FF '分别垂直于x 轴,交抛物线于点E ',F ',交BC 于点M ,N .当ME NF ''+的值最大时,在y 轴上找一点R ,使||RF RE ''-的值最大,请求出点R 的坐标及||RF RE ''-的最大值; (3)如图2,已知x 轴上的一点P 9(,0)2,现以P 为顶点,为边长在x 轴上方作等边三角形QPG ,使QP x ⊥轴,现将QPG △沿PA 方向以每秒1个单位长度的速度平移,当点P 到达点A 时停止.记平移后的QPG △为Q P G '''△,设Q P G '''△与ADC △的重叠部分面积为s .当点Q '到x 轴的距离与点Q '到直线AW 的距离相等时,求s 的值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
重庆市2015年初中中考数学试卷含答案重庆市2015年初中毕业暨高中招生考试数学试题bb4ac?b2在每个小题的下面,都给出了代号为A、B、C、D的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.在—4,0,—1,3这四个数中,最大的数是 A. —4 B. 0 C. —1 D. 3 考点:有理数大小比较.分析:先计算| ﹣4|=4 ,| ﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4 <﹣1,再根据正数大于0,负数小于0 得到﹣4 <﹣1<0<3 .解答:解:∵| ﹣4|=4 ,| ﹣1|=1,∴﹣4 <﹣1,∴﹣4 ,0,﹣1,3 这四个数的大小关系为﹣4 <﹣1<0<3 .故选D .点评:本题考查了有理数大小比较:正数大于0,负数小于0 ;负数的绝对值越大,这个数越小.2.下列图形是轴对称图形的是A.B.C. D 考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、是轴对称图形,故正确;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误; D 、不是轴对称图形,故错误.故选A.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.化简12的结果是 A. 43 B. 23 C. 32 D. 26 考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2.故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.计算a2b的结果是 A.a6b3 B. a2b3 C. a5b3 D. a6b 考点:幂的乘方与积的乘方.mn mnn分析:根据幂的乘方和积的乘方的运算方法:①=a ;②=an bn ;求出a2b 的结果是多少即可.解答:解:a2b= 3 ?b 3= a6b3 即计算a2b 的结果是a6b3.故选:A.mn mn 点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①=a;②n =an bn .??3??3??3??3 5.下列调查中,最适合用普查方式的是 A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况 C. 调查重庆市初中学生锻炼所用的时间情况 D. 调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A 不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故 B 符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故 C 不符合题意; D 、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D 不符合题意;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H。
2015年市中考数学试卷(A卷)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2015•)在﹣4,0,﹣1,3这四个数中,最大的数是()A.﹣4 B.0C.﹣1 D.3考点:有理数大小比较.分析:先计算|﹣4|=4,|﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4<﹣1,再根据正数大于0,负数小于0得到﹣4<﹣1<0<3.解答:解:∵|﹣4|=4,|﹣1|=1,∴﹣4<﹣1,∴﹣4,0,﹣1,3这四个数的大小关系为﹣4<﹣1<0<3.故选D.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.(4分)(2015•)下列图形是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A.是轴对称图形,故正确;B.不是轴对称图形,故错误;C.不是轴对称图形,故错误;D.不是轴对称图形,故错误.故选A.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(4分)(2015•)化简的结果是()A.4B.2C.3D.2考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2.故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.(4分)(2015•)计算(a2b)3的结果是()A.a6b3B.a2b3C.a5b3D.a6b考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n (n是正整数);求出(a2b)3的结果是多少即可.解答:解:(a2b)3=(a2)3•b3=a6b3即计算(a2b)3的结果是a6b3.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).5.(4分)(2015•)下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查市初中学生每天锻炼所用的时间情况D.调查市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A.调查一批电视机的使用寿命情况,调查全局有破坏性,适合抽样调查,故A不符合题意;B.调查某中学九年级一班学生的视力情况,适合普查,故B符合题意;C.调查市初中学生每天锻炼所用的时间情况,调查围广,适合抽样调查,故C不符合题意;D.调查市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D不符合题意. 故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.(4分)(2015•)如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为()A.65°B.55°C.45° D.35°考点:平行线的性质.分析:根据平行线的性质求出∠2的度数即可.解答:解:∵AB∥CD,∠1=135°,∴∠2=180°﹣135°=45°.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁角互补.7.(4分)(2015•)在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.209考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:先对这组数据按从小到大的顺序重新排序:198,209,216,220,230.位于最中间的数是216.则这组数的中位数是216.故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数的个数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.(4分)(2015•)一元二次方程x2﹣2x=0的根是()A.x=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=21考点:解一元二次方程-因式分解法.分析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:x2﹣2x=0,x(x﹣2)=0, x=0,x﹣2=0, x=0,x2=2,1故选D.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.9.(4分)(2015•)如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°考点:切线的性质.分析:由AB是⊙O直径,AE是⊙O的切线,推出AD⊥A B,∠DAC=∠B=∠AOC=40°,推出∠AOD=50°.解答:解:∵AB是⊙O直径,AE是⊙O的切线,∴∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°﹣∠B=50°,故选B.点评:本题主要考查圆周角定理、切线的性质,解题的关键在于连接AC,构建直角三角形,求∠B的度数.10.(4分)(2015•)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度考点:一次函数的应用.分析:根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.解答:解:A.根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B.根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C.根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D.小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.点评:本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.11.(4分)(2015•)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30考点:规律型:图形的变化类.分析:仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可.解答:解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的通项公式,难度不大.12.(4分)(2015•)如图,在平面直角坐标系中,菱形ABCD在第一象限,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2B.4C.2D.4考点:菱形的性质;反比例函数图象上点的坐标特征.分析:过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3 1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.解答:解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故选D.点评:本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2015•)我国“南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为3.7×104.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将37000用科学记数法表示为3.7×104.故答案为:3.7×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)(2015•)计算:20150﹣|2|= ﹣1 .考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1﹣2=﹣1.故答案为:﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.(4分)(2015•)已知△ABC∽△DEF,△ABC与△DEF的相似比为4:1,则△ABC与△DEF 对应边上的高之比为 4:1 .考点:相似三角形的性质.分析:根据相似三角形的对应边上的高之比等于相似比得出即可.解答:解:∵△ABC∽△DEF,△ABC与△DEF的相似比为4:1,∴△ABC与△DEF对应边上的高之比是4:1,故答案为:4:1.点评:本题考查了相似三角形的性质的应用,能熟练地运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的对应边上的高之比等于相似比.16.(4分)(2015•)如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是8﹣2π.(结果保留π)考点:扇形面积的计算;等腰直角三角形.分析:根据等腰直角三角形性质求出∠A度数,解直角三角形求出AC和BC,分别求出△ACB的面积和扇形ACD的面积即可.解答:解:∵△ACB是等腰直角三角形ABC中,∠ACB=90°,∴∠A=∠B=45°,∵AB=4,∴AC=BC=AB×sin45°=4,∴S△ACB===8,S扇形ACD==2π,∴图中阴影部分的面积是8﹣2π。
- 3 -- 5 -- 7 -重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)参考答案(全卷共五个大题 满分150分 考试时间120分钟)一、选择题(本大题12个小题,每小题4分,共48分)13. 43.710⨯14. -115. 4:116. 82π-17.25 18. 9817三、解答题(本大题共2个小题,每小题7分,共14分)19. 12x y =⎧⎨=-⎩20.∵BC =DE∴BC +CD =DE +CD即BD =CE易证:△ABD ≌△FEC故:ADB FCE ∠=∠四、解答题(本大题4个小题,每小题10分,共40分)21. ⑴24x xy + ⑵233y y y +-22. ⑴25;72;图略 ⑵16P = 23. ⑴四位“和谐数”:1111,2222,3443,1221等任意一个四位“和谐数”都能被11整数,理由如下:设四位“和谐数”是abcd ,则满足:个位到最高位排列:,,,d c b a最高位到个位排列:,,,a b c d由题意,两组数据相同,则:,a d b c == 则1000100101000100101001110911011111111abcd a b c d a b b a a b a b +++++++====+为正整数所以四位“和谐数”abcd 能被11整数又由于,,,a b c d 的任意性,故任意四位“和谐数”都可以被11整除⑵设能被11整除的三位“和谐数”为:zyx ,则满足:个位到最高位排列:,,x y z最高位到个位排列:,,z y x由题意,两组数据相同,则:x z = 故10110zyx xyx x y ==+10110991122911111111zyx x y x y x y x y x y +++--===++为正整数 故2(14)y x x x =≤≤,为自然数24. ⑴在Rt △PEN 中,EN =PE =30m在Rt △PEM 中,50tan31PE ME m ==︒∴20m MN EM EN =-=答:两渔船M 、N 之间的距离为20米⑵过点D 作DN ⊥AH 交直线AH 于点N由题意:tan 4DAB ∠=,4tan 7H ∠=在RT △DAN 中,246tan 3DN AN DAB ===∠m 在RT △DHN 中,24424tan 7DN HN H===∠m 故AH =HN -AN =42-6=36m- 9 -14322ADH S AH DN =⨯⨯=△2m 故需要填筑的土石方共343210043200V S L m =⨯=⨯=设原计划平均每天填筑3xm ,则原计划43200x天完成;增加机械设备后,现在平均每天填筑32xm4320010(1020)243200x x x +--⨯= 解得:864x =经检验:864x =是原分式方程的解,且满足实际意义答:该施工队原计划平均每天填筑8643m 的土石方五、解答题(本大题共2个小题,每小题12分,共24分)25.⑴AB =BD =⑵连接AF易证:△DAE ≌△ADH ,故DH =AE30EAF EAB FAB FAB ∠=∠-∠=︒-∠60(90)6030FDH FDA HDA FDA FBA FBA ∠=∠-∠=∠-︒=︒-∠-︒=︒-∠故EAF FD H ∠=∠易证:△DHF ≌△AEF∴HF =EF⑶(方法不唯一,有很多,合理即可)(法一)取AB 的中点M ,连接CM 、FM在RT △ADE 中,AD =2AEFM 是△ABD 的中位线,故AD =2FM∴FM =AE易证△ACM 为等边三角形,故AC =CM1302CAE CAB ∠=∠=︒ 30CMF AMF AMC ∠=∠-∠=︒故△ACE ≌△MCF (手拉手全等模型)故易证:△CEF 为等边三角形B(法二)延长DE 至点N ,使EN =DE ,连接AN ;延长BC 至点M ,使CB =CM ,连接AM ;延长BD 交AM 于点P易证:△ADE ≌△ANE ,△ABC ≌△AMC易证:△ADM ≌△ANB (手拉手全等模型),故DM =BNCF 是△BDM 的中位线,EF 是△BDN 的中位线 故1122EF BN DM CF === 180180260CFE CFD DFE MDP DBN MDP DBA ABN MDP DBA AMD DPA DBA PAB CAB ∠=∠+∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒-∠=︒-∠=︒ 故△CEF 为等边三角形B26.⑴y =+⑵22'(E M =+++=+-2'F N =- 11 -故:2''E M F N +=+-当3m ==时,''E M F N +最大,此时E F∴'':E F y =∴(0R ,max ''4RF RE -= ⑶由题意,Q 点在CAB ∠的角平分线或外角平分线上 ①当Q 点在CAB ∠的角平分线上时,如图''Q M Q N =CW △RMQ ’∽△RNC,故'RQ =RN =△CRN ∽△CWO,故CN =∴DN =CD -CN=4-=故S =x②当Q 点在CAB ∠的外角平分线上时,如图 △Q ’RN ∽△WCO,故'Q R =RM =△RCM∽△WCO,故CM在Rt△Q’MP’中,''3 AM M=,故''3CP MP CM=-==在Rt△CP’S中,'P S==故Sx。
﹝机密﹞ 2015 年6月13日11:00前重庆市 2015 年初中毕业暨高中招生考试数学试题( A 卷)(全卷共五个大题,满分150 分,考试时间120 分钟)注意事项:1、试题的答案书写在答题卡上,不得在试卷上直接作答;...2、作答前认真阅读答题卡的注意事项;...3、作图(包含做协助线)请一律用黑色..署名笔达成;4、考试结束,由监考人员将试题和答题卡一并回收....一、选择题(共12 小题,每题 4 分,满分48 分)1.( 4 分)( 2015?重庆)在﹣ 4, 0,﹣ 1, 3 这四个数中,最大的数是()A .﹣ 4B.0C.﹣1D.32.( 4 分)( 2015?重庆)以下图形是轴对称图形的是()A .B .C.D.3.( 4 分)( 2015?重庆)化简的结果是()A .4B .2 C. 3 D. 22 3的结果是()4.( 4 分)( 2015?重庆)计算( a b)6 3 2 3 5 3 6A .a bB .a b C. a b D. a b5.( 4 分)( 2015?重庆)以下检查中,最适适用普查方式的是()A .调查一批电视机的使用寿命状况B .检查某中学九年级一班学生的视力状况C.检查重庆市初中学生每日锻炼所用的时间状况D .调查重庆市初中学生利用网络媒体自主学习的状况6.( 4 分)( 2015?重庆)如图,直线 AB ∥CD ,直线 EF 分别与直线AB , CD 订交于点G,H.若∠ 1=135 °,则∠ 2 的度数为()A .65°B .55°C. 45°D. 35°7.( 4 分)( 2015?重庆)在某校九年级二班组织的跳绳竞赛中,第一小组五位同学跳绳的个数分别为198, 230, 220, 216, 209,则这五个数据的中位数为()A .220B .218C. 216D. 2098.( 4 分)( 2015?重庆)一元二次方程2﹣ 2x=0 的根是()xA.x1=0 , x2=﹣ 2 B .x1=1, x2=2 C. x1=1, x2=﹣2 D. x1=0 , x2=29.( 4 分)(2015?重庆)如图, AB 是⊙ O 直径,点 C 在⊙ O 上, AE 是⊙ O 的切线, A 为切点,连结 BC 并延伸交AE 于点 D.若∠ AOC=80 °,则∠ ADB 的度数为()A .40°B .50°C. 60°D. 20°10.( 4 分)( 2015?重庆)今年“五一”节,小明出门登山,他从山脚爬到山顶的过程中,中途歇息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的行程为s(米),s 与 t 之间的函数关系以下图.以下说法错误的选项是()A.小明半途歇息用了 20 分钟B.小明歇息前登山的均匀速度为每分钟70 米C.小明在上述过程中所走的行程为6600 米D.小明歇息前登山的均匀速度大于歇息后登山的均匀速度11.(4 分)( 2015?重庆)以下图形都是由相同大小的小圆圈按必定规律构成的,此中第①个图形中一共有 6 个小圆圈,第②个图形中一共有9 个小圆圈,第③ 个图形中一共有12个小圆圈,,按此规律摆列,则第⑦ 个图形中小圆圈的个数为()A .21B .24C. 27D. 3012.( 4 分)( 2015?重庆)如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC与 x 轴平行, A ,B 两点的纵坐标分别为3,1.反比率函数y=的图象经过 A ,B 两点,则菱形 ABCD 的面积为()A .2B.4C.2D.4二、填空题(共 6 小题,每题 4 分,满分 24 分)13.( 4 分)( 2015?重庆)我国“南仓”级远洋综合补给舱满载排水量为37000 吨,把数 37000用科学记数法表示为 3.7×104.14.( 4 分)( 2015?重庆)计算:20150﹣ |2|=﹣1.15.(4 分)( 2015?重庆)已知△ ABC ∽△ DEF ,△ ABC 与△DEF 的相像比为4:1,则△ABC 与△ DEF 对应边上的高之比为4: 1.16.( 4 分)( 2015?重庆)如图,在等腰直角三角形ABC 中,∠ ACB=90 °, AB=4.以A 为圆心, AC 长为半径作弧,交AB 于点 D ,则图中暗影部分的面积是8﹣2π.(结果保留π)17.( 4 分)( 2015?重庆)从﹣ 3,﹣ 2,﹣ 1, 0,4 这五个数中随机抽取一个数记为a,a 的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是.18.( 4 分)( 2015?重庆)如图,在矩形 ABCD 中, AB=4 ,AD=10 .连结 BD ,∠ DBC 的角均分线 BE 交 DC 于点 E,现把△ BCE 绕点 B 逆时针旋转,记旋转后的△ BCE 为△BC ′E′.当射线BE ′和射线 BC′都与线段AD 订交时,设交点分别为F,G.若△ BFD 为等腰三角形,则线段DG长为.三、解答题(共 2 小题,满分14 分)19.( 7 分)( 2015?重庆)解方程组.20.(7 分)( 2015?重庆)如图,在△ABD 和△ FEC 中,点 B,C,D, E 在同向来线上,且AB=FE , BC=DE ,∠ B=∠ E.求证:∠ ADB= ∠ FCE.四、解答题(共 4 小题,满分40 分)21.( 10 分)( 2015?重庆)计算:(1) y( 2x﹣ y) +(x+y )2;(2)( y﹣1﹣)÷.22.( 10 分)( 2015?重庆)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内全部的小微公司按年收益 w(万元)的多少分为以下四个种类: A 类( w< 10),B 类( 10≤w <20),C 类( 20≤w< 30),D 类( w ≥30),该镇政府对辖区内全部小微公司的有关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你联合图中信息解答以下问题:(1)该镇本次统计的小微公司总个数是 25 ,扇形统计图中 B 类所对应扇形圆心角的度数为 72度,请补全条形统计图;(2)为了进一步解决小微公司在发展中的问题,该镇政府准备召开一次会谈会,每个公司派一名代表参会.计划从 D 类公司的 4 个参会代表中随机抽取 2 个讲话, D 类公司的 4 个参会代表中有 2 个来自高新区,另 2 个来自开发区.请用列表或画树状图的方法求出所抽取的2 个讲话代表都来自高新区的概率.23.( 10 分)( 2015?重庆)假如把一个自然数各数位上的数字从最高位到个位挨次排出的一串数字,与从个位到最高位挨次排出的一串数字完整相同,那么我们把这样的自然数称为“和谐数”.比如自然数 12321,从最高位到个位挨次排出的一串数字是:1, 2, 3, 2, 1,从个位到最高位挨次排出的一串数字还是:1, 2, 3, 2, 1,所以 12321 是一个“和睦数”,再加22, 545, 3883, 345543,,都是“和睦数”.(1)请你直接写出 3 个四位“和睦数”;请你猜想随意一个四位“和睦数”可否被11整除?并说明原因;(2)已知一个能被11 整除的三位“和睦数”,设其个位上的数字x( 1≤x≤4, x 为自然数),十位上的数字为y,求 y 与 x 的函数关系式.24.( 10 分)( 2015?重庆)某水库大坝的横截面是以下图的四边形ABCD ,此中 AB ∥ CD ,大坝顶上有一眺望台PC,PC 正前面有两艘渔船M ,N.察看员在眺望台顶端P 处观察到渔船 M 的俯角α为 31°,渔船 N 的俯角β为 45°.已知 MN 所在直线与 PC 所在直线垂直,垂足为 E,且 PE 长为 30 米.(1)求两渔船M , N 之间的距离(结果精准到 1 米);(2)已知坝高24 米,坝长 100 米,背水坡AD 的坡度 i=1 : 0.25,为提升大坝防洪能力,请施工队将大坝的背水坡经过填筑土石方进行加固,坝底BA 加宽后变为BH ,加固后背水坡 DH 的坡度 i=1 :1.75,施工队施工10 天后,为赶快达成加固任务,施工队增添了机械设备,工作效率提升到本来的 2 倍,结果比原计划提早20 天达成加固任务,施工队原计划平均每日填筑土石方多少立方米?(参照数据: tan31°≈0.60, sin31°≈0.52)五、解答题(共 2 小题,满分24 分)25.(12 分)( 2015?重庆)如图1,在△ ABC 中,∠ ACB=90 °,∠ BAC=60 °,点 E 是∠ BAC 角均分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连结 DB ,点 F 是 BD 的中点, DH ⊥ AC ,垂足为H,连结 EF, HF.(1)如图 1,若点 H 是 AC 的中点, AC=2,求AB,BD的长;(2)如图 1,求证: HF=EF ;(3)如图 2,连结 CF, CE.猜想:△CEF 是不是等边三角形?假如,请证明;若不是,说明原因.26.( 12 分)( 2015?重庆)如图1,在平面直角坐标系中,抛物线y=﹣2交 x x + x+3轴于 A ,B 两点(点 A 在点 B 的左边),交 y 轴于点 W ,极点为 C,抛物线的对称轴与x 轴的交点为 D .(1)求直线 BC 的分析式;(2)点 E( m,0),F( m+2,0)为 x 轴上两点,此中 2< m< 4,EE′, FF′分别垂直于 x 轴,交抛物线于点 E′, F′,交 BC 于点 M , N,当 ME ′+NF ′的值最大时,在 y 轴上找一点 R,使|RF′﹣ RE′|的值最大,恳求出R 点的坐标及 |RF′﹣ RE′|的最大值;(3)如图 2,已知 x 轴上一点P(,0),现以P为极点,2为边长在x 轴上方作等边三角形 QPG,使 GP⊥ x 轴,现将△ QPG 沿 PA 方向以每秒 1 个单位长度的速度平移,当点 P 抵达点 A 时停止,记平移后的△ QPG 为△ Q′P′G′.设△ Q′P′G′与△ADC 的重叠部分面积为s.当 Q′到 x 轴的距离与点 Q′到直线 AW 的距离相等时,求 s 的值.参照详尽答案:一、选择题(共12 小题,每题 4 分,满分48 分)1.考点:有理数大小比较.版权全部剖析:先计算 |﹣ 4|=4,|﹣ 1|=1 ,依据负数的绝对值越大,这个数越小得﹣4<﹣ 1,再依据正数大于 0,负数小于 0 获得﹣ 4<﹣ 1< 0< 3.解答:解:∵ |﹣ 4|=4, |﹣ 1|=1 ,∴﹣ 4<﹣ 1,∴﹣ 4, 0,﹣ 1, 3 这四个数的大小关系为﹣4<﹣ 1< 0< 3.应选 D.评论:本题考察了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.考点:轴对称图形.版权全部剖析:依据轴对称图形的观点求解.解答:解: A 、是轴对称图形,故正确;B 、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D 、不是轴对称图形,故错误.应选 A.评论:本题考察了轴对称图形的观点:轴对称图形的重点是找寻对称轴,图形两部分沿对称轴折叠后可重合.3.考点:二次根式的性质与化简.版权全部剖析:直接利用二次根式的性质化简求出即可.解答:解:=2.应选: B.评论:本题主要考察了二次根式的性质与化简,正确化简二次根式是解题重点.4.考点:幂的乘方与积的乘方.版权全部剖析:依据幂的乘方和积的乘方的运算方法:①( a m)n =a mn( m,n 是正整数);② ( ab)n=a n b n (n 是正整数);求出( a2b)3的结果是多少即可.解答:解:( a2b)3 = (a2)3?b3 =a6b3即计算( a2b)3的结果是a6b3.应选: A.评论:本题主要考察了幂的乘方和积的乘方,要娴熟掌握,解答本题的重点是要明确:① (a m)n=a mn( m, n 是正整数);②( ab)n =a n b n( n 是正整数).5.考 d 全面检查与抽样检查.版权全部点:剖析:由普查获得的检查结果比较正确,但所费人力、物力和时间许多,而抽样检查获得的检查结果比较近似.解答:解:A 、检查一批电视机的使用寿命状况,检查局有损坏性,合适抽样检查,故 A 不切合题意;B 、检查某中学九年级一班学生的视力状况,合适普查,故 B 切合题意;C、检查重庆市初中学生每日锻炼所用的时间状况,检查范围广,合适抽样检查,故 C 不切合题意;D 、检查重庆市初中学生利用网络媒体自主学习的状况,合适抽样检查,故 D 不切合题意;应选: B.评论:本题考察了抽样检查和全面检查的差别,选择普查还是抽样检查要依据所要考察的对象的特点灵巧采用,一般来说,关于拥有损坏性的检查、没法进行普查、普查的意义或价值不大,应选择抽样检查,关于精准度要求高的检查,事关重要的检查常常采用普查.6.考点:平行线的性质.版权全部剖析:依据平行线的性质求出∠ 2 的度数即可.解答:解:∵ AB ∥ CD ,∠ 1=135 °,∴∠ 2=180 °﹣ 135°=45 °.应选 C.评论:本题考察的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.7.考点:中位数.版权全部剖析:找中位数要把数据按从小到大的次序摆列,位于最中间的一个数(或两个数的均匀数)为中位数.解答:解:先对这组数据按从小到大的次序从头排序:198 , 209, 216 , 220, 230 .位于最中间的数是216,则这组数的中位数是216.应选 C.评论:本题属于基础题,考察了确立一组数据的中位数的能力.注意找中位数的时候必定要先排好次序,而后依据奇数和偶数的个数来确立中位数,假如数占有奇数个,则正中间的数字即为所求,假如是偶数个则找中间两位数的均匀数.8.考点:解一元二次方程-因式分解法.版权全部剖析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解: x2﹣ 2x=0 ,x=0 , x ﹣ 2=0 ,x1=0, x2 =2,应选 D.评论:本题考察认识一元二次方程的应用,解本题的重点是能把一元二次方程转变为一元一次方程,难度适中.9.考点:切线的性质.版权全部剖析:AD ⊥ AB ,∠ DAC= ∠ B= ∠ AOC=40 °,推由 AB 是⊙ O 直径, AE 是⊙ O 的切线,推出出∠ AOD=50 °.解答:解:∵ AB 是⊙ O 直径, AE 是⊙ O 的切线,∴∠ BAD=90 °,∵∠ B= ∠ AOC=40 °,∴∠ ADB=90 °﹣∠ B=50 °,应选 B.评论:本题主要考察圆周角定理、切线的性质,解题的重点在于连结AC ,建立直角三角形,求10.考点:一次函数的应用.版权全部剖析:依据函数图象可知,小明40分钟登山2800 米,40~ 60 分钟歇息, 60~ 100 分钟登山( 3800 ﹣2800)米,登山的总行程为 3800 米,依据行程、速度、时间的关系进行解答即可.解答:解: A 、依据图象可知,在 40~ 60 分钟,行程没有发生变化,所以小明半途歇息的时间为: 60﹣ 40=20 分钟,故正确;B 、依据图象可知,当t=40 时, s=2800,所以小明歇息前登山的均匀速度为:2800÷40=70(米 /分钟),故 B 正确;C、依据图象可知,小明在上述过程中所走的行程为3800 米,故错误;D 、小明歇息后的登山的均匀速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前登山的均匀速度为:2800 ÷40=70 (米 /分钟),70 > 25,所以小明歇息前登山的均匀速度大于歇息后登山的均匀速度,故正确;应选: C.评论:本题考察了函数图象,解决本题的重点是读懂函数图象,获守信息,进行解决问题.11.考点:规律型:图形的变化类.版权全部剖析:认真察看图形,找到图形中圆形个数的通项公式,而后辈入n=7 求解即可.解答:解:察看图形得:第 1 个图形有 3+3×1=6 个圆圈,第2 个图形有 3+3×2=9 个圆圈,第 3个图形有 3+3×3=12 个圆圈,第 n 个图形有 3+3n=3 ( n+1)个圆圈,当 n=7 时, 3×( 7+1 )=24 ,应选 B.评论:本题考察了图形的变化类问题,解题的重点是认真察看图形并找到图形变化的通项公式,难度不大.12.考点:菱形的性质;反比率函数图象上点的坐标特点.版权全部剖析:过点 A 作 x 轴的垂线,与CB 的延伸线交于点E,依据 A , B 两点的纵坐标分别为3, 1,可得出横坐标,即可求得AE , BE ,再依据勾股定理得出AB ,依据菱形的面积公式:底乘高即可得出答案.解答:解:过点 A 作 x 轴的垂线,与CB 的延伸线交于点E,∵ A , B 两点在反比率函数y=的图象上且纵坐标分别为3, 1,∴A, B 横坐标分别为 1, 3,∴AE=2 , BE=2 ,∴AB=2,S 菱形ABCD =底×高 =2×2=4,应选 D.评论:本题考察了菱形的性质以及反比率函数图象上点的坐标特点,熟记菱形的面积公式是解题的重点.二、填空题(共 6 小题,每题 4 分,满分24 分)13.考点:科学记数法—表示较大的数.版权全部剖析:科学记数法的表示形式为a×10n的形式,此中1≤|a|< 10, n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解答:解:将 37000 用科学记数法表示为 3.7 ×104.故答案为: 3.7×104.评论:本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤|a|< 10,n 为整数,表示时重点要正确确立 a 的值以及n 的值.14.考点:实数的运算;零指数幂.版权全部专题:计算题.剖析:原式第一项利用零指数幂法例计算,第二项利用绝对值的代数意义化简,计算即可获得结果.解答:解:原式 =1﹣ 2=﹣1.故答案为:﹣ 1.评论:本题考察了实数的运算,娴熟掌握运算法例是解本题的重点.15.考点:相像三角形的性质.版权全部剖析:依据相像三角形的对应边上的高之比等于相像比得出即可.解答:解:∵△ ABC ∽△ DEF ,△ ABC 与△ DEF 的相像比为4: 1,∴△ ABC 与△ DEF 对应边上的高之比是4: 1,故答案为:4:1.评论:本题考察了相像三角形的性质的应用,能娴熟地运用相像三角形的性质进行计算是解本题的重点,注意:相像三角形的对应边上的高之比等于相像比.16.考点:扇形面积的计算;等腰直角三角形.版权全部剖析:依据等腰直角三角形性质求出∠ A 度数,解直角三角形求出AC 和 BC ,分别求出△ ACB 的面积和扇形ACD 的面积即可.解答:解:∵△ ACB 是等腰直角三角形ABC 中,∠ ACB=90 °,∴∠ A= ∠ B=45 °,∵ AB=4,∴ AC=BC=AB ×sin45 °=4,∴ S△ACB ===8, S 扇形ACD ==2π,∴图中暗影部分的面积是8﹣ 2π,故答案为:8﹣2π.评论:本题考察了扇形的面积,三角形的面积,解直角三角形,等腰直角三角形性质的应用,解本题的重点是能求出△ ACB 和扇形 ACD 的面积,难度适中.17.考点:概率公式;解一元一次不等式组;函数自变量的取值范围.版权全部剖析:由 a 的值既是不等式组的解,又在函数y=的自变量取值范围内的有﹣ 3,﹣ 2,可直接利用概率公式求解即可求得答案.解答:解:∵不等式组的解集是:﹣<x<,∴ a 的值既是不等式组的解的有:﹣3,﹣ 2,﹣ 1,0,∵函数 y= 的自变量取值范围为:2x2+2x ≠0,∴在函数 y= 的自变量取值范围内的有﹣3,﹣ 2, 4;∴ a 的值既是不等式组的解,又在函数y=的自变量取值范围内的有:﹣ 3,﹣ 2;∴ a 的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是:.故答案为:.评论:本题考察了概率公式的应用.用到的知识点为:概率=所讨状况数与总状况数之比.18.考旋转的性质.版权全部点:分依据角均分线的性质,可得CE 的长,依据旋转的性质,可得BC ′=BC , E′C′=EC ;依据等析:腰三角形,可得FD、FB的关系,依据勾股定理,可得BF的长,依据正切函数,可得tan∠ ABF,tan∠ FBG 的值,依据三角函数的和差,可得AG 的长,依占有理数的减法,可得答案.解解:作FK ⊥ BC ′于 K 点,如图:答:在 Rt△ ABD 中,由勾股定理,得BD===14设 DE=x , CE=4﹣x,由 BE 均分∠ DBC ,得=,即=.解得 x=,EC=.在 Rt△ BCE 中,由勾股定理,得BE===.由旋转的性质,得BE ′=BE=,BC′=BC=10,E′C′=EC=.△BFD 是等腰三角形, BF=FD=x ,在 Rt△ ABF 中,由勾股定理,得x 2=( 4 )2+ ( 10﹣ x)2,解得 x=,AF=10 ﹣=.tan∠ ABF===,tan∠ FBG===,tan∠ ABG=tan ∠ ABF+tan ∠ FBG===,tan∠ ABF==21,AG=×4=,DG=AD ﹣ AG=10 ﹣==,故答案为:.点本题考察了旋转的性质,利用了勾股定理,旋转的性质,正切函数的定义,利用三角函数评:的和差得出 AG 的长是解题重点.三、解答题(共 2 小题,满分14 分)19.考点:解二元一次方程组.版权全部专题:计算题.剖析:方程组利用代入消元法求出解即可.解答:解:,①代入②得: 3x+2x ﹣ 4=1,解得: x=1,把 x=1 代入①得: y= ﹣ 2,则方程组的解为.评论:本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.考点:全等三角形的判断与性质.版权全部专题:证明题.剖析:依据等式的性质得出BD=CE ,再利用SAS 得出:△ ABD 与△ FEC 全等,从而得出∠ ADB= ∠ FCE .解答:证明:∵ BC=DE ,∴ BC+CD=DE+CD ,即 BD=CE ,在△ABD 与△FEC 中,,∴△ ABD ≌△ FEC( SAS ),∴∠ ADB= ∠ FCE .评论:本题考察全等三角形的判断和性质,重点是依据等式的性质得出BD=CE ,再利用全等三角形的判断和性质解答.四、解答题(共 4 小题,满分40 分)21.考点:分式的混淆运算;整式的混淆运算.版权全部专题:计算题.剖析:( 1)原式利用单项式乘以多项式,以及完整平方公式化简,去括号归并即可获得结果;(2)原式括号中两项通分并利用同分母分式的减法法例计算,同时利用除法法例变形,约分即可获得结果.22 2解答:解:( 1)原式 =2xy ﹣ y +x +2xy+y2=4xy+x;(2)原式 =?=.评论:本题考察了分式的混淆运算,娴熟掌握运算法例是解本题的重点.22.考点:列表法与树状图法;扇形统计图;条形统计图.版权全部剖析:( 1)由题意可得该镇本次统计的小微公司总个数是:4÷16%=25 (个);扇形统计图中 B 类所对应扇形圆心角的度数为:×360°=72°;又由 A 类小微公司个数为:25﹣ 5﹣ 14﹣4=2 (个);即可补全条形统计图;( 2)第一依据题意画出树状图,而后由树状图求得全部等可能的结果与所抽取的 2 个发言代表都来自高新区的状况,再利用概率公式即可求得答案.解答:解:( 1)该镇本次统计的小微公司总个数是:4÷16%=25 (个);扇形统计图中 B 类所对应扇形圆心角的度数为:×360°=72°;故答案为:25, 72;A类小微公司个数为: 25﹣ 5﹣ 14﹣ 4=2 (个);补全统计图:( 2)分别用 A , B 表示 2 个来自高新区的,用C, D 表示 2 个来自开发区的.画树状图得:∵共有12 种等可能的结果,所抽取的 2 个讲话代表都来自高新区的有 2 种状况,∴所抽取的 2 个讲话代表都来自高新区的概率为:=.评论:本题考察了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率 =所讨状况数与总状况数之比.23.考点:因式分解的应用;规律型:数字的变化类.版权全部剖析:( 1)依据“和睦数”的定义(把一个自然数各数位上的数字从最高位到个位挨次排出的一串数字,与从个位到最高位挨次排出的一串数字完整相同)写出四个“和睦数”,设随意四位“和睦数”形式为:,依据和睦数的定义获得a=d, b=c ,则===91a+10b 为正整数,易证得随意四位“和睦数”都能够被11 整除;( 2)设能被11 整除的三位“和睦数”为:,则===9x+y+为正整数.故y=2x ( 1≤x≤4,x 为自然数).解答:解:( 1)四位“和睦数”:1221 , 1331, 1111, 6666(答案不独一)随意一个四位“和睦数”都能被11整除,原因以下:设随意四位“和睦数”形式为:,则知足:最高位到个位摆列:d,c, b, a个位到最高位摆列:a, b, c, d.由题意,可得两组数据相同,则:a=d, b=c,则===91a+10b 为正整数.∴四位“和睦数”能被 11 整数,又∵ a, b, c, d 为随意自然数,∴随意四位“和睦数”都能够被11 整除;( 2)设能被11 整除的三位“和睦数”为:,则知足:个位到最高位摆列:x , y, z.最高位到个位摆列:z, y, x .由题意,两组数据相同,则:x=z ,故==101x+10y ,故= = =9x+y+ 为正整数.故 y=2x ( 1≤x≤4, x 为自然数).评论:本题考察了因式分解的应用.解题的重点是弄清楚“和睦数”的定义,从而写出切合题意的数.24.考点:解直角三角形的应用-仰角俯角问题;分式方程的应用;解直角三角形的应用-坡度坡角问题.版权全部剖析:( 1)在直角△ PEN ,利用三角函数即可求得ME 的长,依据MN=EM ﹣ EN 求解;( 2)过点 D 作 DN ⊥ AH 于点 N ,利用三角函数求得AN 和 AH 的长,从而求得△ ADH的面积,获得需要填筑的土石方数,再依据结果比原计划提早20 天达成,列方程求解.解答:=50( m),解:( 1)在直角△ PEN 中, EN=PE=30m , ME=则 MN=EM ﹣ EN=20 ( m).答:两渔船 M 、 N 之间的距离是20 米;( 2)过点 D 作 DQ ⊥AH 于点 Q.由题意得: tan∠ DAB=4 , tanH= ,在直角△ DAQ 中, AQ= = =6( m),在直角△ DHQ 中, HQ= = =42 ( m).故 AH=HQ ﹣ AQ=42 ﹣ 6=36 ( m).S△ADH =AH ?DQ=432 ( m2).故需要填筑的土石方是V=SL=432 ×100=43200 ( m3).设原计划均匀每日填筑xm3,则原计划天达成,则增添机械设施后,此刻均匀每日填筑 2xm 3.依据题意,得: 10x+ () ?2x=43200 ,解得: x=864 .经查验 x=864 是原方程的解.答:施工队原计划均匀每日填筑土石方864 立方米.评论:本题考察了仰角的定义以及坡度,要修业生能借助仰角结构直角三角形并解直角三角形.五、解答题(共 2 小题,满分24 分)25.考点:全等三角形的判断与性质;等边三角形的判断与性质;三角形中位线定理.版权所有剖析:( 1)依据直角三角形的性质和三角函数即可获得结果;(2)如图 1,连结 AF ,证出△ DAE ≌△ ADH ,△ DHF ≌△ AEF ,即可获得结果;(3)如图 2,取 AB 的中点 M ,连结 CM , FM ,在 R t△ ADE 中, AD=2AE ,依据三角形的中位线的性质获得 AD=2FM ,于是获得 FM=AE ,由∠CAE= ∠ CAB=30 °∠ CMF= ∠ AMF ﹣ AMC=30 °,证得△ ACE ≌△ MCF ,问题即可得证.解答:解:( 1)∵∠ ACB=90 °,∠ BAC=60 °,∴∠ ABC=30 °,∴ AB=2AC=2 ×2 =4,∵AD ⊥ AB ,∠CAB=60 °,∴∠DAC=30 °,∵AH= AC=,∴ AD==2,∴BD==2;(2)如图 1,连结 AF ,∵AE 是∠ BAC 角均分线,∴∠ HAE=30 °,∴∠ ADE= ∠ DAH=30 °,在△ DAE 与△ ADH 中,,∴△ DAE ≌△ ADH ,∴DH=AE ,∵点 F 是 BD 的中点,∴DF=AF ,∵∠ EAF= ∠ EAB ﹣∠ FAB=30 °﹣∠ FAB∠FDH= ∠ FDA ﹣∠ HDA= ∠ FDA ﹣ 60°=( 90°﹣∠ FBA )﹣ 60°=30°﹣∠FBA ,∴∠ EAF= ∠ FDH ,在△DHF 与△AEF 中,,∴△ DHF ≌△ AEF ,∴HF=EF ;( 3)如图 2,取 AB 的中点M ,连结CM , FM ,在 R t△ ADE 中, AD=2AE ,∵ DF=BF , AM=BM ,∴AD=2FM ,∴FM=AE ,∵∠ABC=30 °,∴AC=CM= AB=AM ,∵∠ CAE=∠ CAB=30°∠ CMF=∠ AMF﹣∠ AMC=30°,在△ACE 与△MCF 中,,∴△ ACE ≌△ MCF ,∴CE=CF ,∠ ACE= ∠MCF ,∵∠ ACM=60 °,∴∠ ECF=60 °,∴△ CEF 是等边三角形.评论:本题考察了全等三角形的判断和性质,直角三角形的性质,等边三角形的判断,正确的作出协助线结构全等三角形是解题的重点.26.考点:二次函数综合题.版权全部剖析:( 1)求出抛物线与x 轴的交点坐标和极点坐标,用待定系数法求分析式即可;( 2)先求出 E′、F′的坐标表示,而后求出E′M 、F ′N,用二次函数的极点坐标求出当m=3 时, ME ′+NF ′的值最大,获得E′、 F′的坐标,再求出 E ′F′的分析式,当点 R 在直线 E′F′与y 轴的交点时, |RF′﹣ RE′|的最大值,从而求出R 点的坐标及 |RF′﹣ RE′|的最大值;( 3)分类议论 Q 点在∠ CAB 的角均分线或外角均分线上时,运用三角形相像求出相应线段,在求出△ Q′P′G′与△ ADC 的重叠部分面积为S.解答:x2 + x+3 =0,解:( 1)令 y=0 ,则﹣解方程得: x=6 或 x= ﹣ 2,∴ A(﹣ 2,0),B(6,0),又 y= ﹣x2 + x+3 =﹣( x﹣ 2)2 +4 ,又极点C(2,4 ),设直线BC 的分析式为:y=kx+b ,代入 B 、 C 两点坐标得:,解得:,∴ y= ﹣x+6 ;( 2)如图1,∵点 E( m, 0), F( m+2 , 0),∴ E′( m,﹣m2+m+3 ), F′( m+2,﹣m2+4),∴ E′M= ﹣m2+ m+3 ﹣(﹣m+6 ) =﹣m2+2 m﹣ 3 ,F′N= ﹣m2 +4 ﹣(﹣m+4 ) = ﹣m2 + m,∴ E′M+F ′N= ﹣m2+2 m﹣ 3 + (﹣m2 + m)= ﹣m2 +3 m﹣ 3 ,当 m=﹣=3 时, E′M+F ′N 的值最大,∴此时, E′( 3,)F′(5,),∴直线E′F′的分析式为:y= ﹣x+,∴ R(0,),依据勾股定理可得:RF′=10, RE′=6,∴ |RF′﹣ RE ′|的值最大值是4;(3)由题意得, Q 点在∠ CAB 的角均分线或外角均分线上,①如图 2,当 Q 点在∠ CAB 的角均分线上时,Q′M=Q ′N=,AW=,∵△ RMQ ′∽△ WOA ,∴∴RQ′=,∴RN=+,∵△ ARN ∽△ AWO ,∵∴AN=,∴ DN=AD ﹣ AN=4 ﹣=,∴S=;②如图 3,当 Q 点在∠ CAB 的外角均分线上时,∵△ Q′RN ∽ △ WAO ,∴RQ′=,∴RM=﹣,∵△ RAM ∽△ WOA ,∴AM=,在 RtQ ′MP ′中, MP ′=Q′M=3 ,∴ AP′=MP ′﹣ AM=3 ﹣=,在 Rt△ AP′S 中, P′S=AP ′=×,∴S=.评论:本题主要考察了待定系数法求函数分析式,二次函数的性质,三角形的三边关系,三角形相像的判断与性质以及数形联合和分类议论思想的综合运用,本题牵涉知识面广,综合性强,难度较大.。
数学精品复习资料重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a --(,对称轴为2b x a=-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况 6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。
若∠1=135°,则∠2的度数为( ) A. 65° B. 55° C. 45° D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x ==6题图9题图C. 121,2x x ==-D. 120,2x x ==9.如图,AB 是O 的直径,点C 在O 上,AE 是O 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。
重庆市2015年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a --(,对称轴为2b x a=-.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.在—4,0,—1,3这四个数中,最大的数是( ) A. —4 B. 0 C. —1 D. 3 2.下列图形是轴对称图形的是( )A .B .C .D 3.化简12的结果是( )A. 43B. 23C. 32D. 26 4.计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b5.下列调查中,最适合用普查方式的是( ) A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况 6.如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。
若∠1=135°,则∠2的度数为( ) A. 65° B. 55° C. 45° D. 35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B. 218C. 216D. 209 8.一元二次方程220x x -=的根是( ) A.120,2x x ==- B. 121,2x x == C. 121,2x x ==- D. 120,2x x ==6题图9题图9.如图,AB 是O e 的直径,点C 在O e 上,AE 是O e 的切线,A 为切点,连接BC 并延长交AE 于点D , 若∠AOC=80°,则∠ADB 的度数为( )A. 40°B. 50°C. 60°D. 20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中, 中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟), 所走的路程为s(米),s与t之间的函数关系如图所示, 下列说法错误的是( ) A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )① ② ③ A. 21 B. 24 C. 27 D. 3012.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A,B 两点的纵坐标分别为3,1,反比例函数3y x=的图像经过A,B 两点,则菱形对ABCD 的面积为( ) A. 2 B. 4 C. 22 D. 42二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 。
2015年重庆市初中毕业暨高中招生考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为--,对称轴为x=-.第Ⅰ卷(选择题,共48分)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.在-4,0,-1,3这四个数中,最大的数是( )A.-4B.0C.-1D.32.下列图形是轴对称图形的是( )3.化简的结果是( )A.4B.2C.3D.24.计算(a2b)3的结果是( )A.a6b3B.a2b3C.a5b3D.a6b5.下列调查中,最适合用普查方式的是( )A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB∥CD 直线EF分别与直线AB,CD相交于点G,H.若∠ = 5° 则∠ 的度数为( )A. 5°B.55°C. 5°D. 5°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B.218C.216D.2098.一元二次方程x2-2x=0的根是( )A.x1=0,x2=-2B.x1=1,x2=2C.x1=1,x2=-2D.x1=0,x2=29.如图,AB是☉O的直径,点C在☉O上,AE是☉O的切线,A为切点,连结BC并延长交AE 于点D.若∠AOC=80° 则∠ADB的度数为( )A. 0°B.50°C. 0°D. 0°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是( )A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6 600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈 …… 按此规律排列,则第⑦个图形中小圆圈的个数为( )A.21B.24C.27D.3012.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为( )A.2B.4C.2D.4第Ⅱ卷(非选择题,共102分)二、填空题:(本大题6个小题,每小题4分,共24分)13.我国“南仓”级远洋综合补给舰满载排水量为37 000吨,把数37 000用科学记数法表示为.14.计算:2 0150-|2|= .15.已知△ABC∽△DEF △ABC与△DEF的相似比为 ∶ 则△ABC与△DEF对应边上的高之比为.16.如图,在等腰直角三角形ABC中 ∠ACB=90° AB= .以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是.(结果保留π)的17.从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是.不等式组--的自变量取值范围内的概率是.解,又在函数y=x18.如图,在矩形ABCD中,AB=4,AD=10,连结BD ∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC'E'.当射线BE'和射线BC'都与线段AD 相交时,设交点分别F,G.若△BFD为等腰三角形,则线段DG长为.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).19.解方程组-①.②20.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE BC=DE ∠B=∠E.求证:∠ADB=∠FCE.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).21.计算:(1)y(2x-y)+(x+y)2;(2)--8÷-9.22.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类( 0≤w< 0) C类( 0≤w< 0) D类(w≥ 0) 该镇政府对辖区内所有的小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.23.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12 321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12 321是一个“和谐数”.再如22,545,3 883,345 5 … 都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数” 设其个位上的数字为x( ≤x≤ x为自然数),十位上的数字为y,求y与x的函数关系式.24.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N,观察员在瞭望台顶端P处观测到渔船M的俯角α为 ° 渔船N的俯角β为 5°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i= ∶0. 5.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH 的坡度i= ∶ .75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan °≈0. 0 sin °≈0.5 )五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).25.如图1,在△ABC中 ∠ACB=90° ∠BAC= 0°.点E是∠BAC角平分线上一点.过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连结DB,点F是BD的中点.DH⊥AC 垂足为H,连结EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连结CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.图1图226.如图1,在平面直角坐标系中,抛物线y=-x2+x+3交x轴于A,B两点(点A在点B 的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE',FF'分别垂直于x轴,交抛物线于点E',F',交BC于点M,N,当ME'+NF'的值最大时,在y轴上找一点R,使|RF'-RE'|的值最大,请求出R点的坐标及|RF'-RE'|的最大值;(3)如图2,已知x轴上一点P9 0,现以P为顶点,2为边长在x轴上方作等边三角形QPG,使GP⊥x轴.现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止.记平移后的△QPG为△Q'P'G' 设△Q'P'G'与△ADC的重叠部分面积为s,当点Q'到x 轴的距离与点Q'到直线AW的距离相等时,求s的值.图1图2答案全解全析:一、选择题1.D 3>0>-1>-4,所以最大的数是3,故选D.2.A A选项是轴对称图形,B、C、D选项都不是轴对称图形,故选A.3.B 故选B.4.A (a2b)3=(a2)3 b3=a6b3,故选A.5.B A、C、D选项适合抽样调查,B选项适合普查,故选B.6.C 因为AB∥CD 所以∠ =∠BGE 因为∠BGE= 80°-∠ = 5° 所以∠ = 5° 故选C.7.C 把五个数据从小到大排列为198,209,216,220,230,则中位数是216,故选C.8.D x2-2x=0,x(x-2)=0,解得x1=0,x2=2,故选D.9.B ∵AE是☉O的切线 ∴∠BAE=90° ∵∠B=∠AOC= 0° ∴∠ADB=90°-∠B=50° 故选B.10.C 从题图可看出A选项正确;小明休息前爬山的平均速度为 800=70米/分钟,休息后爬山的平均速度为 800- 80000- 0=25米/分钟,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,B、D选项正确;从题图看出小明所走的总路程为3 800米,所以C选项错误,故选C.11.B 第①个图形中有 × = 个小圆圈;第②个图形中有 × =9个小圆圈;第③个图形中有 × = 个小圆圈;……;第⑦个图形中有 ×8= 个小圆圈,故选B.12.D 由题意可得A(1,3),B(3,1),底边BC=AB=( - )( - )=2,菱形BC边上的高为3-1=2,所以菱形ABCD的面积是4故选D.评析本题重点考查反比例函数的图象与性质,平面直角坐标系内线段长度的计算方法,试题新颖别致,属于中等难度题.二、填空题13.答案 .7× 04解析 7 000= .7× 04.14.答案-1解析 2 0150-|2|=1-2=-1.15.答案 ∶解析两个相似三角形对应边上的高之比等于相似比,所以答案是 ∶ .16.答案8- π解析在Rt△ABC中 BC=AC=AB cos 5°= 所以阴影部分的面积为× × - 5π=8- π.17.答案5解析解不等式组--得- 0<x<① 函数y=x的自变量的取值范围是x≠0且x≠- ② 从-3,-2,-1,0,4这五个数中随机抽取一个数,共有5种可能,其中同时满足①②的有-3,-2,共2种可能,所以所求的概率是5.18.答案987解析过点F作FH∥BD交BG的延长线于点H,在矩形ABCD 中,BD=( 0= ∵AD∥BC ∴∠ADB=∠DBC ∵BE平分∠DBC ∴∠FBG=∠EBC=∠DBC ∴∠FBG=∠FDB 由题可得BF=FD ∴∠FBD=∠FDB ∴∠FBG=∠FBD ∴∠FBG=∠GBD ∵FH∥BD ∴∠H=∠GBD ∴∠H=∠FBG ∴FB=FH=FD 设FD=x(x>0),在Rt△ABF中,由勾股定理得BF2=AF2+AB2,即x2=(10-x)2+(4)2,解得x= 95 ∴FB=FH=FD= 95.∵FH∥BD ∴△FHG∽△DBG ∴=,设GD= ( >0) ∴ 95=95-,解得y=987∴GD=987.评析本题重点考查勾股定理,矩形的性质,相似三角形的性质与判定,方程思想等,综合性较强,属于难题.三、解答题19.解析将①代入② 得3x+2x-4=1,(2分)解得x=1.(4分)将x=1代入① 得y=-2.(6分)所以原方程组的解是- .(7分)20.证明∵BC=DE ∴BC+CD=DE+CD 即DB=CE.(3分)又∵AB=FE ∠B=∠E ∴△ABD≌△FEC.( 分)∴∠ADB=∠FCE.(7分)四、解答题21.解析(1)原式=2xy-y2+x2+2xy+y2(3分)=x2+4xy.(5分)(2)原式=( )(- )-8÷(- )( )(8分)=( )(- )( )(- )(9分)=-.(10分)22.解析(1)25;72.补全条形统计图如下:某镇各类型小微企业个数条形统计图(6分) (2)记来自高新区的2个代表为A1,A2,来自开发区的2个代表为B1,B2,画树状图如下:(8分)或列表如下:(8分)由树状图或列表可知,共有12种等可能情况,其中2个发言代表都来自高新区的有2种.所以,2个发言代表都来自高新区的概率P==.(10分)23.解析(1)写出3个满足条件的数即可.(千位上的数字与个位上的数字相同,百位上的数字与十位上的数字相同)猜想:任意一个四位“和谐数”能被11整除.设一个四位“和谐数”个位上的数字为a( ≤a≤9且a为自然数),十位上的数字为b(0≤b≤9且b为自然数),则这个四位“和谐数”可表示为1 000a+100b+10b+a.∵ 000a+ 00b+ 0b+a= 00 a+ 0b= ×9 a+ × 0b= (9 a+ 0b)∴ 000a+ 00b+ 0b+a能被11整除,即任意一个四位“和谐数”能被11整除.(5分)( )∵这个三位“和谐数”的个位上的数字为x,十位上的数字为y,∴这个三位“和谐数”可表示为100x+10y+x.(6分)∵ 00x+ 0 +x=99x+ + x-y=11(9x+y)+(2x-y),又这个三位“和谐数”能被11整除,且x,y是自然数,∴ x-y能被11整除.(8分)∵ ≤x≤ 0≤ ≤9 ∴ x-y=0.∴ 与x的函数关系式为 = x( ≤x≤ 且x为自然数).(10分)24.解析(1)由题意得 ∠E=90° ∠PME=∠α= ° ∠PNE=∠β= 5° PE= 0米.在Rt△PEN中,PE=NE=30(米).(2分)在Rt△PEM中 tan °=,=50(米).(4分)∴ME≈ 00. 0∴MN=ME-NE=50-30=20(米).答:两渔船M,N之间的距离约为20米.(5分)(2)过点D作DG⊥AB于G,坝高DG=24米.∵背水坡AD的坡度i= ∶0. 5 ∴DG∶AG= ∶0. 5.∴AG= (米).∵加固后背水坡DH的坡度i= ∶ .75 ∴DG∶GH= ∶ .75∴GH= (米).∴AH=GH-GA=42-6=36(米).(6分)∴S△ADH=AH DG=× × = (平方米).∴需要填筑土石方 × 00= 00(立方米).(7分)设施工队原计划平均每天填筑土石方x立方米,根据题意,得10+ 00- 0= 00-20.(9分)解方程,得x=864.经检验,x=864是原方程的根且符合题意.答:施工队原计划平均每天填筑土石方864立方米.(10分)五、解答题25.解析( )∵点H是AC的中点,AC=2,∴AH=AC=.(1分)∵∠ACB=90° ∠BAC= 0° ∴∠ABC= 0° ∴AB= AC= .(2分) ∵DA⊥AB DH⊥AC ∴∠DAB=∠DHA=90°.∴∠DAH= 0° ∴AD= .( 分)在Rt△ADB中 ∵∠DAB=90° ∴BD2=AD2+AB2.∴BD=( )=2.(4分)(2)证明:连结AF,如图.∵F是BD的中点 ∠DAB=90° ∴AF=DF ∴∠FDA=∠FAD.(5分) ∵DE⊥AE ∴∠DEA=90°.∵∠DHA=90° ∠DAH= 0°∴DH=AD.∵AE平分∠BAC ∴∠CAE=∠BAC= 0°.∴∠DAE= 0° ∴∠ADE= 0°.∴AE=AD ∴AE=DH.( 分)∵∠FDA=∠FAD ∠HDA=∠EAD= 0°∴∠FDA-∠HDA=∠FAD-∠EAD.∴∠FDH=∠FAE.(7分)∴△FDH≌△FAE(SAS).∴FH=FE.(8分)( )△CEF是等边三角形.(9分)理由如下:取AB的中点G,连结FG,CG.如图.∵F是BD的中点 ∴FG∥DA FG=DA.∴∠FGA= 80°-∠DAG=90°又∵AE=AD ∴AE=FG.在Rt△ABC中 ∠ACB=90°点G为AB的中点 ∴CG=AG.又∵∠CAB= 0° ∴△GAC为等边三角形.(10分)∴AC=CG ∠ACG=∠AGC= 0°.∴∠FGC= 0° ∴∠FGC=∠EAC.∴△FGC≌△EA C(SAS).(11分)∴CF=CE ∠ACE=∠GCF.∵∠ECF=∠ECG+∠GCF=∠ECG+∠ACE=∠ACG= 0°.∴△CEF是等边三角形.(12分)26.解析( )∵-x2+=0的解为x1=-2,x2=6,∴抛物线y=-x2+x+3 与x轴交于点A(-2,0),B(6,0).(1分) ∵ =-x2+=-(x-2)2+4C(2,4分)设直线BC的解析式为 =kx+b(k≠0) 将点(6,0),(2,4)代入得,0解得-.∴直线BC的解析式为y=-x+6.(4分)(2)由已知得E'-,M(m,-m+6),F'-( ) ( ),N(m+2,-(m+2)+6ME'=-m2+2,NF'=-m2+m.(5分)ME'+NF'=-m2+2m-3-m2+m=-(m-3)2+(2<m<4).当m=3时,ME'+NF'的值最大.(6分)此时E' 5,F'5 7,构造直角三角形可得E'F'=4,且直线E'F'的解析式为y=-x+ 7.当R是直线E'F'与y轴交点时,|RF'-RE'|取得最大值,最大值为E'F'的长度.因此|RF'-RE'|的最大值为4,此时点R0 7.(8分)(3)由题意得Q,设平移时间为t秒,∴Q'-t ,P'9-t 0.如图① 过点Q'作Q'K∥x轴交AW于K Q'H⊥AW交AW于H.∵Q'到x轴的距离为Q'到直线AW的距离Q'H=又∵A(-2,0),W(0,3),∴直线AW的解析式为y=x+3.∴K-.又∵点Q'可能在点K的左边或右边,∴KQ'=-t= 7-t.在Rt△WAO中 ∠WOA=90° AO= WO= ∴AW=.由题意易证Rt△WAO∽Rt△Q'KH ∴''=,即7-t=,∴t1= 7-,t2= 7.(10分)∵0≤t1≤ 0≤t2≤ ∴t1,t2符合条件.现分两种情况讨论:①当t1= 7-时,Q'-,P'5 0,∵0<-<2,5>2.∴重叠部分为如图①所示的等边三角形Q'H1I1,图①s=I1H1 Q'K1==× 7-=- 097.②当t2= 7时,Q'--,P'5- 0,∵--<-2,-2<5-<0,∴重叠部分为如图②所示的直角三角形H2I2P',图②∴s=H2I2 I2P'=8-t=8- 7=7 -9 .综上,当点Q'到x轴的距离与点Q'到直线AW的距离相等时,s=- 097或s=7 -9 .(12分)。
重庆市2015年初中毕业暨高中招生考试数学(本试卷满分150分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为,对称轴为第Ⅰ卷(选择题共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在-4,0,-1,3这四个数中,最大的数是()A.-4 B.0 C.-1 D.3答案:D 【解析】本题考查有理数大小比较,难度较小.有理数比较大小,通常通过在数轴上表示出来,然后根据在数轴上的点,右边的点所表示的数较大进行判断.因为-4<-1<0<3.所以最大的数为3,故选D.2.下列图形是轴对称图形的是()A B C D答案:A 【解析】本题考查轴对称图形的识别,难度较小.轴对称图形沿某直线折叠,直线两侧的部分能重合.A是轴对称图形;B,C,D不是轴对称图形,故选A.3.化简的结果是()A.B.C.D.答案:B 【解析】本题考查二次根式的化简,难度较小.,故选B.4.计算(a2b)3的结果是()A.a6b3B.a2b3C.a5b3D.a6b答案:A 【解析】本题考查积的乘方,难度较小.积的乘方等于乘方的积,所以(a2b)3=a6b3,故选A.5.下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况答案:B 【解析】本题考查调查方式的选择,难度较小.(1)当调查的对象个数较少,调查容易进行时,一般采用全面调查的方式进行;(2)当调查的结果对调查对象具有破坏性,或者会产生一定的危害性时,通常采用抽样调查的方式进行;(3)当调查对象的个数较多,调查不易进行时,常采用抽样调查的方式进行;(4)当调查的结果有特殊要求,或调查的结果有特殊意义时,如国家的人口普查,全国经济普查,我们仍需采用全面调查的方式进行.依据以上调查方式的选择,应当选用普查方式的是调查某中学九年级一班学生的视力情况,故选B.6.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为()A.65°B.55°C.45°D.35°答案:C 【解析】本题考查平行线的性质,难度较小.两直线平行,同旁内角互补,所以∠2=180°-∠1=180°-135°=45°,故选C.7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.209答案:C 【解析】本题考查中位数的识别,难度中等.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.将5个数由小到大排列为198,209,216,220,230,处于中间的数为216,所以中位数为216,故选C.8.一元二次方程x 2-2x=0的根是()A.x1=0,x 2=-2 B.x1=1,x2=2C.x1=1,x2=-2 D.x1=0,x2=2答案:D 【解析】本题考查一元二次方程的解法,难度中等.解法一:采用因式分解法直接求出方程的两解:x1=0,x2=2,故选D.解法二:代入法或排除法,即把各值代入一元二次方程进行检验.9.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°答案:B 【解析】本题考查圆的切线的性质,圆周角与圆心角的关系,难度中等.由AE是切线得∠BAE=90°,由∠AOC=80°得∠B=40°,所以∠ADB=50°,故选B.10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度答案:C 【解析】本题考查数形结合思想的应用,一次函数图象的意义,难度中等.根据函数的图象对实际问题做出合理的解释,第一段40分钟前进了2800米,所以平均速度为70米/分钟,故B正确;40~60之间休息了20分钟,故A正确;小明在上述过程中所走的路程为3800米,故C错误;休息后的速度为1000÷40=25(米/分钟),所以D正确,故选C.11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,……,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30答案:B 【解析】本题考查图形的规律探究,难度中等.观察图形特征可以看出,后面每个图形比前面一个图形多三个小圆圈,所以第7个图形中的小圆圈个数为6+(7-1)×3=24,故选B.12.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4C.D.答案:D 【解析】本题考查反比例函数与菱形的综合,难度较大.根据反比例函数的解析式及A,B两点的纵坐标求得A,B两点的横坐标分别为1,3,所以点A,B的坐标分别为(1,3),(3,1).如图,作BE垂直AD于E,则AE=BE=2,由勾股定理得,所以菱形面积为,故选D.第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上)13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为_________.答案:3.7×104【解析】本题考查用科学记数法表示较大数,难度较小.科学记数法是将一个数写成a×10n的形式,其中1≤|a|<10,n为整数.当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).37000=3.7×104.14.计算:20150-|2|=_________.答案:-1 【解析】本题考查实数的计算,难度较小.任何非零数的零次方等于1,正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值等于0.原式=1-2=-1.15.已知△ABC∽△DEF,△ABC与△DEF的相似比为4:1,则△ABC与△DEF对应边上的高之比为_________.答案:4:1 【解析】本题考查相似三角形的性质,难度较小.相似三角形的性质:①相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方.所以两三角形对应边上的高之比等于相似比为4:1.16.如图,在等腰直角三角形ABC中,∠ACB=90°,.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是_________(结果保留π).答案:8-2π【解析】本题考查不规则图形面积的计算,难度中等.图中阴影部分的面积等于三角形面积减去扇形面积.由题意及勾股定理得AC=BC=4,所以.17.从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数的自变量取值范围内的概率是_________.答案:【解析】本题考查概率、不等式组的解集、函数自变量的取值范围等知识,难度较大.解不等式组得所以不等式组的解集为,函数自变量的取值范围是2x2+2x≠0,即x≠0且x≠-1.所以-3,-2,-1,0,4五个数中满足以上条件的有-3,-2两个数,所以其概率为.18.如图,在矩形ABCD中,,AD=10.连接BD,∠DBC的平分线BE交DC于点E.现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG的长为_________.答案:【解析】本题考查图形变换、勾股定理、等腰三角形的性质、相似三角形的判定及性质等知识,难度较大.如图,分别过点E,D作EH⊥BD,DM⊥BD,交BD于点H,交BG的延长线于点M,过点M作MN⊥AD,交AD于点N.由已知得BD=14,在Rt △DEH中,由勾股定理得,.∵三角形BFD为等腰三角形,∴FD=FB,∴∠1+∠FBG=∠FDB=∠DBE+∠2,∵BE平分∠DBC,∴∠DBE=∠2,又∵∠FBG=∠2,∴∠1=∠2,∵∠BDM=∠C=90°,∴△BDM∽△BCE,∴,∴,由AAS可证△DEH≌△DMN,∴DN=DH=4,,∴2S=BD·MD=DG(MN+AB),∴.△BDM三、解答题(本大题共8小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分7分)解方程组答案:本题考查二元一次方程组的解法,可以利用代入法或加减法解题,难度中等.解:将①代入②得3x+2x-4=1,(2分)解得x=1,(4分)将x=1代入①得y=-2,(6分)所以原方程组的解是(7分)20.(本小题满分7分)如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.答案:本题考查三角形全等的判定与性质,难度中等.证明:∵BC=DE,∴BC+CD=DE+CD,即DB=CE.(3分)又∵AB=FE,∠B=∠E,∴△ABD≌△FEC,(6分)∴∠ADB=∠FCE.(7分)21.(本小题满分10分)计算:(1)y(2x-y)+(x+y)2;(2).答案:解:(1)本题考查整式的运算,根据运算法则、公式进行计算即可,难度中等.原式=2xy-y2+x2+2xy+y2(3分)=x2+4xy.(5分)(2)本题考查分式的化简,根据法则进行计算即可,解题关键在于分式的通分与约分的方法,难度中等.(8分)(9分).(10分)22.(本小题满分10分)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D 类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:某镇各类型小微企业个数条形统计图某镇各类型小微企业个数占该镇小微企业总个数的百分比扇形统计图(1)该镇本次统计的小微企业总个数是_________,扇形统计图中B类所对应扇形圆心角的度数为_________度,请补全条形统计图;(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计算从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.答案:本题考查统计与概率的综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题的关键,难度中等.解:(1)25,72,补全条形统计图如下:(6分)(2)记来自高新区的两个代表为A1,A2,来自开发区的两个代表为B1,B2,画树状图如下:(8分)或列表如下:(8分)由树状图或列表可知,共有12种等可能情况,其中两个发言代表都来自高新区的有2种.所以两个发言代表都来自高新区的概率.(10分)23.(本小题满分10分)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.答案:本题考查考生的归纳探究能力,为创新题,难度中等.解:(1)写出3个满足条件的数即可.(千位上的数字与个数上的数字相同,百位上的数字与十位上的数字相同)猜想:任意一个四位“和谐数”能被11整除.设四位“和谐数”个位上的数字为a(1≤a≤9且a为自然数),十位上的数字为b(0≤6≤9且b为自然数),则四位“和谐数”可表示为1000a+100b+10b+a.∵1000a+100b+10b+a=1001a+110b=11×91a+11×10b=11(91a+10b),∴1000a+100b+10b+a能被11整除,即任意一个四位“和谐数”能被11整除.(5分)(2)∵这个三位“和谐数”的个位上的数字为x,十位上的数字为y,∴这个三位“和谐数”可表示为100x+10y+x.(6分)∵100x+10y+x=99x+11y+2x-y=11(9x+y)+(2x-y),又∵这个三位“和谐数”能被11整除,且x,y是自然数,∴2x-y能被11整除.(8分)∵1≤x≤4,0≤y≤9,∴2x-y=0.∴y与x的函数关系式为y=2x(1≤x≤4且x为自然数).(10分)24.(本小题满分10分)某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥C D.大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N的俯角β为45°,已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1:1.75.施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)答案:本题考查利用解直角三角形、分式方程的知识解决实际问题,难度中等.解:(1)由题意得∠E=90°,∠PME=∠α=31°,∠PNE=∠β=45°,PE=30(米).在Rt△PEN中,PE=NE=30(米).(2分)在Rt△PEM中,,∴,ME≈50(米),(4分)∴MN=ME-NE≈50-30=20(米).答:两渔船M,N间的距离约为20米.(5分)(2)过点D作DG⊥AB于点G,坝高DG=24米.∵背水坡AD的坡度i=1:0.25,∴DG:AG=1:0.25.∴AG=6(米),背水坡DH的坡度i=1:1.75,∴DG:GH=1:1.75.∴GH=42(米),∴AH=GH-GA=42-6=36(米),(6分)∴(平方米),∴需要填筑土石方为432×100=43200(立方米).(7分)设施工队原计划平均每天填筑土石方x立方米,根据题意得.(9分)解方程得x=864.经检验,x=864是原方程的根且符合题意.答:施工队原计划平均每天填筑土石方864立方米.(10分)25.(本小题满分12分)如图1,在△ABC中,∠ACB=90°,∠BAC=60°.点E是∠BAC角平分线上一点.过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点.DH ⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.答案:本题是归纳猜想类题目,涉及勾股定理、三角形全等的证明、等边三角形的判定及性质等知识,难度较大.解:(1)∵点H是AC的中点,,∴.(1分)∵∠ACB=90°,∠CAB=60°,∴∠ABC=30°,∴.(2分)∵DA⊥AB,DH⊥AC,∴∠DAB=∠DHA=90°.∴∠DAH=30°,∴AD=2.(3分)在Rt△ADB中,∵∠DAB=90°,∴BD2=AD2+AB2,(4分)∴.(4分)(2)证明:连接AF,如图1.∵F是BD的中点,∠DAB=90°,∴AF=DF,∴∠FDA=∠FAD.(5分)∵DE⊥AE,∴∠DEA=90°.∵∠DHA=90°,∠DAH=30°,∴.∵AE平分∠BAC,∴,∴∠DAE=60°,∴∠ADE=30°,∴,∴AE=DH.(6分)∵∠FDA=∠FAD,∠HDA=∠EAD=60°,∴∠FDA-∠HDA=∠FAD-∠EAD,∴∠FDH=∠FAE,(7分)∴△FDH≌△FAE(SAS),∴FH=FE.(8分)(3)△CEF是等边三角形.(9分)理由如下:取AB的中点G,连接FG,CG.如图2.∵F是BD的中点,∴FG∥DA,.∴∠FGA=180°-∠DAG=90°,又∵,∴AE=FG.在Rt△ABC中,∠ACB=90°,点G为AB的中点,∴CG=AG.又∵∠CAB=60°,∴△GAC为等边三角形,(10分)∴AC=CG,∠ACG=∠AGC=60,∴∠FGC=30°,∴∠FGC=∠EAC,∴∠FGC≌∠EAC(SAS),(11分)∴CF=CE,∠ACE=∠GCF.∵∠ECF=∠ECG+∠GCF=∠ECG+∠ACE=∠ACG=60°,∴△CEF是等边三角形.(12分)26.(本小题满分12分)如图1,在平面直角坐标系中,抛物线交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4.EE′,FF′分别垂直于x 轴,交抛物线于点E′,F′,交BC于点M,N.当ME′+NF′的值最大时,在y轴上找一点R,使|RF′-RE′|的值最大,请求出R点的坐标及|RF′-RE′|的最大值;(3)如图2,已知x轴上一点,现以P为顶点,为边长在x轴上方作等边三角形QPG,使GP⊥x轴.现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止.记平移后的△QPG为△Q′P′G′,设△Q′P′G′与△ADC的重叠部分面积为s.当点Q′到x轴的距离与点Q′到直线AW的距离相等时,求s的值.答案:本题考查一次函数、二次函数、图形的运动变化,涉及待定系数法求函数的解析式,二次函数最大值的确定,相似三角形的判定及性质,分类讨论等数学思想方法的运用,难度较大.解:(1)∵的解为x1=-2,x2=6,∴抛物线与x轴交于点A(-2,0),B(6,0).(1分)∵,∴顶点.(2分)设直线BC的解析式为y=kx+b(k≠0),将点B(6,0),代入得解得∴直线BC的解析式为.(4分)(2)由已知得,,,,,,(5分).当m=3时,ME′+NF′的值最大.(6分)此时,,构造直角三角形可得E′F′=4,且直线E′F′的解析式为.当R是直线E′F′与y轴交点时,|RF′-RE′|取最大值,最大值为E′F′的长度,因此|RF′-RE′|的最大值为4,此时点.(8分)(3)∵,设平移时间为t秒,∴,.如图1,过点Q′作Q′K∥x轴交AW于点K,Q′H⊥AW于点H.∵Q′到x轴的距离为,∴点Q′到直线AW的距离.又∵A(-2,0),,∴直线AW的解析式为,∴.又∵点Q′可能在点K的左边或右边,∴.在Rt△WAO中,∠WOA=90°,AO=2,,∴.由题意易证Rt△WAO∽Rt△Q′KH,∴,即,∴或.(10分)∵,,∴t1,t2符合条件.现分两种情况讨论:①当时,,,∵,,∴重叠部分如图1所示的等边三角形Q′H1I1,其面积为.②当时,,,∵,,∴重叠部分如图2所示的直角三角形H2I2P′,其面积为.综上,当点Q′到x轴的距离与点Q′到直线AW的距离相等时,或综评:本套试卷难度中等,前面的1~17题都比较容易,后面有几道难题作为压轴题,用以区分不同考生对数学知识的掌握程度,如第18,25,26题,涉及实际应用的题目,如第5,10,22,24题;新颖题,如第23题;涉及数学思想方法的题目,如第11,16,18,22,23,24,25,26题.。
12、如图,A 、B 是双曲线 y = k x
(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k=
18.如图,在△ABC 中,∠ACB=90°,AC=8,BC=3,点A 、C 分别在x 轴、y 轴上,当点A 在x
轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B
到原点O 的最大距离为 _________ .
9.(2014年四川资阳,第24题12分)如图,已知抛物线y =ax 2+bx +c 与x 轴的一个交点为A (3,0),与y 轴的交点为B (0,3),其顶点为C ,对称轴为x =1.
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;
(3)若点P为线段AB上的一点(不与B、A重合),PH∥y轴,且PH交抛物线于点H ,
当△ABH的面积最大时,在x轴上存在点Q,使得△APQ为等腰三角形,求点Q的坐标。
考点:二次函数综合题.
分析:(1)根据对称轴可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),根据待定系数法可得抛物线的解析式为y=﹣x2+2x+3.
(2)分三种情况:①当MA=MB时;②当AB=AM时;③当AB=BM时;三种情况讨论可得点M的坐标.(3)平移后的三角形记为△PEF.根据待定系数法可得直线AB的解析式为y=﹣x+3.易得直线EF的解析式为y=﹣x+3+m.根据待定系数法可得直线AC的解析式.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.分二种情况:①当0<m≤时;②当<m<3时;讨论可得用m的代数式表示S.
解答:解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则
,
解得.
故抛物线的解析式为y=﹣x2+2x+3.
(2)①当MA=MB时,M(0,0);
②当AB=AM时,M(0,﹣3);
③当AB=BM时,M(0,3+3)或M(0,3﹣3).
所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).
(3)平移后的三角形记为△PEF.
设直线AB的解析式为y=kx+b,则
,
解得.
则直线AB的解析式为y=﹣x+3.
△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,
易得直线EF的解析式为y=﹣x+3+m.
设直线AC的解析式为y=k′x+b′,则
,
解得.
则直线AC的解析式为y=﹣2x+6.
连结BE,直线BE交AC于G,则G(,3).
在△AOB沿x轴向右平移的过程中.
①当0<m≤时,如图1所示.
设PE交AB于K,EF交AC于M.
则BE=EK=m,PK=P A=3﹣m,
联立,
解得,
即点M(3﹣m,2m).
故S=S△PEF﹣S△P AK﹣S△AFM
=PE2﹣PK2﹣AF•h
=﹣(3﹣m)2﹣m•2m
=﹣m2+3m.
②当<m<3时,如图2所示.
设PE交AB于K,交AC于H.
因为BE=m,所以PK=P A=3﹣m,
又因为直线AC的解析式为y=﹣2x+6,
所以当x=m时,得y=6﹣2m,
所以点H(m,6﹣2m).
故S=S△P AH﹣S△P AK
=P A•PH﹣P A2
=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2
=m2﹣3m+.
综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.
点评:考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,待定系数法求抛物线的解析式,待定系数法求直线的解析式,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.
10.(2014•温州,第21题10分)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).
(1)求该抛物线的解析式及顶点M的坐标.
(2)求△EMF与△BNE的面积之比.
))=
26.(12分)(2014•重庆)已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F 是点E关于AB的对称点,连接AF、BF.
(1)求AE和BE的长;
(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.
(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.
AD=
BD==.
=
D=3=
== BD=;
BQ=
BQ=﹣;
∠
﹣
∠
∠
== BQ=﹣
BQ=
的长度分别为、、﹣.。