助烧剂(SiO2-Y2O3-Al2O3和SiO2-高岭土)制备多孔碳化硅陶瓷的性能研究
- 格式:pdf
- 大小:1.56 MB
- 文档页数:7
MgO助剂对Al2O3陶瓷烧结的增强机制研究作者:薄睿恬姜宏伟郑友进来源:《佛山陶瓷》2017年第05期摘要:通过添加一定比例的MgO作为烧结助剂,研究常压条件下MgO对Al2O3晶粒烧结过程的变化情况。
本研究工作主要通过两组MgO比例及关键温度点的时间控制实验,来考察Al2O3晶粒的烧结状况。
对样品进行了体积密度、硬度、表面形貌和晶体结构测试。
实验表明,0.8wt% MgO助剂和关键点温度的保持,使MgO助剂烧结生成物MgAlO4在起到钉扎作用的同时,可以填充Al2O3晶粒形成的空隙,MgAlO4小晶粒的钉扎和填充,共同成为Al2O3陶瓷的增强机制。
关健词:Al2O3陶瓷;晶粒控制;空隙填充1 引言氧化铝陶瓷是一种极为常用的陶瓷材料,具有优良的绝缘、透光、耐高温、耐磨、耐腐蚀性能。
一般采用放电等离子烧结、热压烧结、超高压烧结、微波烧结、等离子束熔融法等方法制备,通过这些各有特点的方法,得到了具有各方面优异性能的氧化铝陶瓷,满足了人们对氧化铝性能的需求。
随着技术的发展,氧化铝陶瓷作为重要的功能陶瓷材料,微观结构的样式决定着制品性能的实现程度,因此,通过不同的工艺手段改变其结构样式,是新型氧化铝陶瓷材料的重要研究内容。
Elena A. T等[1]采用5 μm的MgO-Al2O3基复合微粉,并添加了纳米级Ce、Zr粉,通过3种温升曲线,研究了MgO-Al2O3的烧结工艺。
张志林等[2]以MgO-Al2O3为烧结助剂,对微晶Al2O3陶瓷进行了研究。
刘兵等[3]研究了加入Y2O3和Pr6O11混合纳米粉,对Al2O3陶瓷微观组织结构的影响。
夏清等[4]研究了MgO-CaO-Si2O等助剂对95瓷的烧结影响。
单萌等[5]研究了添加微量MgO助剂的亚微米晶氧化铝。
孙阳等[6]研究了MgO烧结助剂对氧化铝多孔陶瓷结构和性能的影响。
可以看出,对于氧化铝陶瓷提升性能的研究,基本是通过添加助剂提高液相动力、通过助剂或中间相提供障碍阻止氧化铝晶粒长大这样的技术途径来实现的。
BAS粘接碳化硅材料的性能杨小波;孙志强;张冰清;苗镇江;王华栋;吕毅【摘要】采用原位生成钡长石为烧结助剂,研究BAS/SiC复相陶瓷的低温无压液相烧结工艺,制备高致密度的陶瓷材料。
通过XRD、SEM及力学试验机等研究烧结温度、BAS含量对复相碳化硅陶瓷的致密化、组织结构及力学性能的影响。
结果表明:在1800 ℃温度下原位生成了BAS相,运用无压液相烧结法制备出了密度达到3.2 g/cm3的BAS/SiC复相陶瓷;陶瓷中BAS以六方结构析出、SiC颗粒均匀分布;烧结温度不宜超过1800 ℃,温度过高将促使碳化硅颗粒长大,损伤陶瓷材料抗弯强度和断裂韧度;当复相BAS/SiC陶瓷中BAS质量分数为30%时,弯曲强度达到413 MPa,模量达到210 GPa,断裂韧度达到5.03MPa?m1/2。
%Celsian was synthesized in situ and was used to sinter silicon carbide. The low temperature pressureless liquid sintering process for BAS/SiC complex phase ceramics was studied, and ceramic materials with high density were prepared. The effect of sintering temperature and content of BAS on density, structure and mechanical properties of the ceramics were investigated. The densification and microstructures ofBAS/SiC ceramics were observed by scanning electron microscope. The crystalline phase of the composite ceramics was identified by X-ray powder diffraction. The results show that celsian is synthesized at the temperature of 1800 ℃, and BAS/SiC ceramic s are prepared with density of 3.2 g/cm3. BAS is precipitated in hexagonal structure, and SiC particles are distributed uniformly in the composite ceramic. The flexural strength and fracture toughness of composite ceramics are decreased due to grainsgrowt h while the sintering temperature is above 1800 ℃. When the mass content of BAS reaches 30%, the typical flexural strength, elastic modulus and fracture toughness of the pressureless sintered BAS/SiC ceramics are 413 MPa, 210 GPa and 5.03 MPa?m1/2 at room temperature.【期刊名称】《航空材料学报》【年(卷),期】2019(039)003【总页数】6页(P75-80)【关键词】钡长石; 碳化硅; 无压烧结; 力学性能;【作者】杨小波;孙志强;张冰清;苗镇江;王华栋;吕毅【作者单位】航天特种材料及工艺技术研究所,北京 100074;航天特种材料及工艺技术研究所,北京 100074;航天特种材料及工艺技术研究所,北京 100074;航天特种材料及工艺技术研究所,北京 100074;航天特种材料及工艺技术研究所,北京 100074;航天特种材料及工艺技术研究所,北京 100074【正文语种】中文【中图分类】TQ174.75+8.16碳化硅陶瓷材料具有强度大、硬度高、耐高温、耐化学腐蚀、耐磨且导热系数高、热膨胀系数小、密度小等优点[1],在航空、航天、石油、化工、机械、电气、冶金、核工业、船舶等众多领域得到广泛应用[2]。
【摘 要】利用添加造孔剂法制备SiC 复相多孔陶瓷。
研究了Y 2O 3添加剂对SiC 复相多孔陶瓷的烧结温度及烧结体力学性能的影响机理。
结果表明:Y 2O 3的加入大大降低了SiC 复相多孔陶瓷烧结温度,样品的力学性能有所提高,抗弯强度提高18.46%,稀土氧化物占总质量3%时能提高SiC 复相多孔陶瓷的抗氧化性,氧化速率降低了66.7%。
YAG 相在SiC 晶界均匀分布,细晶,裂纹偏转及晶界桥联是SiC 复相多孔陶瓷的增韧的机理。
【关键词】稀土氧化物,多孔陶瓷,碳化硅中图分类号:TQ174.4+7 文献标识码:A0 引 言SiC 是共价键性极强的化合物,在高温状态下仍能保持高的键合强度,且热膨胀系数小、较强的抗酸碱能力、具有较高的热传导性,故SiC 多孔陶瓷是高温过滤器件、高级保温材料、污水净化分离、生物催化剂载体等应用最有希望的生态环保材料之一。
SiC 多孔陶瓷又存在着烧结困难,高温氧化的缺点。
为了提高SiC 多孔陶瓷的应用范围必须要克服这些缺陷。
目前有关SiC 多孔陶瓷烧结的报道多采用添加粘土来降低烧结温度,但其中引入的杂质不可避免的会影响SiC 多孔陶瓷的优良性能,所以粘土的添加量是有限的[1]。
由于稀土元素具有4fx5d16s2 电子层结构,电价高、半径大、极化力强、化学性质活泼及能水解等性质,故在特种陶瓷及功能材料方面具有广阔的发展前景[2]。
采用高岭土和Al 2O 3、Y 2O 3为烧结助剂,采用添加造孔剂法常压烧结得到SiC 多孔陶瓷,并分析了物相组成和微观结构。
1 实 验实验采用纯度为99.9%的碳化硅,粒径为75μm,造孔剂为石墨(粒径为165μm)占5~10%,烧结助剂为高岭土、氧化铝及稀土氧化物,PVA 为瞬时粘结剂。
碳化硅占65~75%,高岭土与氧化铝占15~20%(Al 2O 3 ∶SiO 2≈3∶1)。
1#、2#、3#、4#配方中分别放0%、1%、3%、5% 的Y 2O 3。
氮化硅陶瓷材料Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】摘要氮化硅陶瓷是一种具有广阔发展前景的高温、高强度结构陶瓷,它具有强度高、抗热震稳定性好、疲劳韧性高、室温抗弯强度高、耐磨、抗氧化、耐腐蚀性能好等高性能,已被广泛应用于各行各业。
本文介绍了氮化硅陶瓷的基本性质,综述了氮化硅陶瓷的制备工艺和国内外现代制造业中的应用,并展望了氮化硅陶瓷的发展前景。
Abtract:Silicon nitride ceramic is a broad development prospects of high temperature, high strength structural ceramics, it has high strength, thermal shock stability, high temperature fatigue toughness, high bending strength, wear resistance, oxidation resistance,corrosion resistance and good performance of high performance, has been widely used in all walks of life. This paper introduces thebasic properties of silicon nitride ceramics, reviews the fabricating technique of silicon nitride ceramics at home and abroad and modern manufacturing industry in the application, and looks forward to the development prospect of silicon nitride ceramics.氮化硅陶瓷材料关键词氮化硅陶瓷性能制备工艺应用Key words properties of silicon nitride ceramic preparation process and Application1.前言随着现代科学技术的发展,各种零部件的使用条件愈加苛刻(如高温、强腐蚀等),对新材料的研究和应用提出了更高的要求,传统的金属材料由于自身耐高温、抗腐蚀性能差等弱点已难以满足科技日益发展对材料性能的要求,现亟待开发新材料。
多孔SiC陶瓷的制备与应用
多孔SiC陶瓷是一种具有特殊结构和优异性能的材料,广泛应用于催化剂载体、过滤器、电介质、热障涂层等领域。
本文将介绍多孔SiC陶瓷的制备方法和应用。
多孔SiC陶瓷的制备方法有多种,常见的包括模板法、泡沫法、聚合物法等。
模板法是最常用的制备方法之一。
它的原理是利用模板材料,如泡沫镍、泡沫钛等,通过化学气相沉积(CVD)或浸渍-烧结法制备多孔SiC陶瓷。
在制备过程中,首先将模板材料浸泡在SiC前驱体溶液中,让其充分浸渍。
然后,利用CVD或烧结技术,将SiC前驱体转化为SiC 陶瓷。
通过高温处理,将模板材料烧蚀掉,留下多孔的SiC陶瓷。
多孔SiC陶瓷具有许多优异的性能,使其在各个领域得到广泛应用。
多孔结构赋予多孔SiC陶瓷较大的比表面积和孔隙度,使其具有良好的吸附性能和催化性能。
多孔SiC陶瓷常用作催化剂的载体,用于吸附废气中的有害物质或催化反应。
多孔SiC陶瓷具有优异的过滤性能,可用作高温气体的过滤器。
在高温环境下,多孔SiC陶瓷能有效过滤掉细颗粒和有害物质,保护设备和环境。
多孔SiC陶瓷还可用作电介质材料。
其高温稳定性和低电介质损耗使其适用于电子设备和高温电容器。
多孔SiC陶瓷还可用作热障涂层材料,能有效抵御高温和氧化介质的侵蚀,用于涡轮发动机等高温环境中。
电子陶瓷基板基片材料性能和种类在电子半导体领域用的大多数是陶瓷封装基板,陶瓷基板封装需要好的高热导率、绝缘性等性能,今天小编重点来讲解电子陶瓷基板基片材料的性能和种类。
电子陶瓷基板基片材料的性能要求:电子陶瓷封装基板主要利用材料本身具有的高热导率,将热量从芯片(热源)导出,实现与外界环境的热交换。
对于功率半导体器件而言,封装基板必须满足以下要求:(1)高热导率。
目前功率半导体器件均采用热电分离封装方式,器件产生的热量大部分经由封装基板传播出去,导热良好的基板可使芯片免受热破坏。
(2)与芯片材料热膨胀系数匹配。
功率器件芯片本身可承受较高温度,且电流、环境及工况的改变均会使其温度发生改变。
由于芯片直接贴装于封装基板上,两者热膨胀系数匹配会降低芯片热应力,提高器件可靠性。
(3)耐热性好,满足功率器件高温使用需求,具有良好的热稳定性。
(4)绝缘性好,满足器件电互连与绝缘需求。
(5)机械强度高,满足器件加工、封装与应用过程的强度要求。
(6)价格适宜,适合大规模生产及应用。
电子陶瓷基板基片材料都有哪些种类呢?目前常用电子封装基板主要可分为高分子基板、金属基板(金属核线路板,MCPCB)和陶瓷基板几类。
对于功率器件封装而言,封装基板除具备基本的布线(电互连)功能外,还要求具有较高的导热、耐热、绝缘、强度与热匹配性能。
因此,高分子基板(如PCB)和金属基板(如MCPCB)使用受到很大限制;而陶瓷材料本身具有热导率高、耐热性好、高绝缘、高强度、与芯片材料热匹配等性能,非常适合作为功率器件封装基板,目前已在半导体照明、激光与光通信、航空航天、汽车电子、深海钻探等领域得到广泛应用。
1陶瓷基片材料作为封装基板,要求陶瓷基片材料具有如下性能:(1)热导率高,满足器件散热需求;(2)耐热性好,满足功率器件高温(大于200°C)应用需求;(3)热膨胀系数匹配,与芯片材料热膨胀系数匹配,降低封装热应力;(4)介电常数小,高频特性好,降低器件信号传输时间,提高信号传输速率;(5)机械强度高,满足器件封装与应用过程中力学性能要求;(6)耐腐蚀性好,能够耐受强酸、强碱、沸水、有机溶液等侵蚀;(7)结构致密,满足电子器件气密封装需求;(8)其他性能要求,如对于光电器件应用,还对陶瓷基片材料颜色、反光率等提出了要求。
碳化硅制作多孔陶瓷方法Silicon carbide (SiC) is a popular material for making porous ceramics due to its high temperature stability, chemical inertness, and thermal shock resistance. 碳化硅(SiC)是制作多孔陶瓷材料的主要材料之一,因为它具有高温稳定性、化学惰性和抗热震性。
There are several methods that can be used to make porous ceramics using silicon carbide. 有几种方法可以使用碳化硅制作多孔陶瓷。
One such method involves the use of sacrificial templates, where a material is used as a template, and then removed, leaving behind the porous structure. 其中一种方法涉及使用牺牲模板,其中一种材料被用作模板,然后被去除,留下多孔结构。
Another method is the foam impregnation technique, where a pre-made foam structure is impregnated with a silicon carbide slurry and then fired to create the porous ceramic. 另一种方法是泡沫浸渍技术,其中预制泡沫结构被浸渍硅 carbide浆料,然后烧结成多孔陶瓷。
Each method has its advantages and disadvantages, and the choice of method depends on the specific requirements of the application. 每种方法都有其优缺点,选择方法取决于具体应用的要求。
聚碳硅烷低温烧结碳化硅泡沫陶瓷的制备聚碳硅烷低温烧结碳化硅泡沫陶瓷(Polycarbosilane Low-temperature Sintered Silicon Carbide Foam Ceramics)是一种新型的复合材料,最近逐渐受到了人们的关注。
它具有高强度、高温性能优异等特点,广泛应用于轻量化结构材料、高温隔热材料、防弹材料等领域。
本文将详细介绍制备这种材料的过程。
一、材料制备在制备聚碳硅烷低温烧结碳化硅泡沫陶瓷时,需要将聚碳硅烷(Polycarbosilane,PCS)作为前驱体,通过化学泡沫塑料法(Chemical Foam Plastics,CFP)进行发泡处理,然后在700°C以下的低温条件下进行烧结,并采用环境友好的气雾燃烧法(Environmental-friendly Gas-foaming Combustion,EGC)处理。
这样,就可以得到具有骨架结构的低密度泡沫陶瓷。
二、制备过程制备过程主要包括以下几个步骤:1、PCS中的单体需要通过真空蒸馏和高温下的酸碱处理后,才能得到精纯的单体;2、将得到的PCS单体与发泡剂混合,在一定温度和压力下反应出大量气泡并形成泡沫;3、将泡沫用真空泰坦化的方法加入适量的粉料,形成具有一定强度的骨架结构;4、对添加粉料的泡沫进行模切或模压成型,调整骨架结构形状和孔隙率,然后将其烘干,使其变得更加坚硬;5、将已经烘干的泡沫陶瓷,放入烧结炉中,在700°C以下的低温条件下进行烧结,使聚碳硅烷分子发生重排和交联反应,形成具有一定强度和抗氧化性的硅碳陶瓷材料。
6、接下来,利用环境友好的气雾燃烧法对泡沫陶瓷进行处理,使其表面光滑,粘结性强,同时提高其耐热性和稳定性。
三、材料表征得到聚碳硅烷低温烧结碳化硅泡沫陶瓷后,需要对其进行表征,以了解材料的性能。
首先,采用扫描电镜(Scanning Electron Microscope,SEM)对材料的形貌和孔隙结构进行观察和测量。