代数式的值
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
3.2代数式的值常见题型一、单值代入求值:用单一的字母数值代替代数式中的字母,按代数式指明的运算,计算出结果;例1 当x=2时,求x 3+x 2-x+3的值.变式练习:1.当m=3时,求m ²+m-2的值.2.3.求当b =3时,代数式的值4.若x =4,代数式x x a 22-+的值为0,则a =二、多值代入求值:用多个的字母数值代替代数式中的相应字母,按代数式指明的运算,计算出结果例2 当a=3,a-b=1时,代数式a 2-ab 的值.变式练习:1.当12,2x y ==时,求代数式22112x xy y +++的值。
2.已知:m=51,n=-1,求代数式3(m 2n+mn)-2(m 2n-mn)-m 2n 的值三、整体代入求值:根据条件,不是直接把字母的值代入代数式,而是根据代数式的特点,将整体代入以求得代数式的值.例3 若代数式x+2y ²+5的值为7,求代数式3x+6y ²+4的值.解析:根据所给的条件,不可能求出具体字母x 、y 的值,可考虑采用整体代入的方法,所要求的代数式3x+6y ²+4可变形为3(x+2y ²)+4,从而直接代入x+2y ²+5的值 求出答案.变式练习:1.若012=-+x x ,求代数式2622-+x x 的值.2.已知,求代数式的值3.设012=-+m m ,则______1997223=++m m4.当2a b +=时,求代数式2()2()3a b a b +-++的值.若 ,求代数式 的值.1-32x x +3=x例4 已知3aba b=+,试求代数式()52a b ab a b ab +-+的值.变式练习:1.已知25a b a b-=+,求代数式()()2232a b a b a ba b-+++-的值2.当23x y x y -=+时,求代数式22263x y x yx y x y-+++-的值。
求代数式值的几种常用方法王一成求值的方法很多,中考数学中,也经常出现这类习题,若不掌握一定的方法,一些习题确实不容易解答。
初中阶段,常见的求值方法有哪些呢? 一、化简求值例:先化简,再求值:,其中,。
解:原式。
当,时,原式。
二、倒数法求值例:已知,求的值。
解:所以的值为131 例: 已知2311222--=-x x ,求)1()1111(2x x x x x +-÷+--的值。
解 由已知,得231222--=-xx 所以,231212--=-x则2322--=-x )1()1111(2x x x x x +-÷+-- =2321122322--=-=-∙-x x x x x 三、配方求值 例:已知,求的值。
解:由,得,即,由非负数的性质得,,解得,。
所以原式四、构造一元二次方程求值例:已知a 、b 、c 为实数且a+b=5 c 2=ab+b-9,求a+b+c 之值。
解 ∵a+b=5 c 2=ab+b-9∴⎩⎨⎧+=+=++9)1(6)1(2c a b a b则b ,a+1为t 2-6t+c 2+9=0两根 ∵a ,b 为实数 ∴b ,a+1为实数, 则t 2-6t+c 2+9=0有实根 ∴△=36-4(c 2+9)= -4c 2≥0 c=0 ∴a+b+c=5 五、整体求值 例:已知,则=_______。
解:由,即。
所以原式例:已知:当x =7时,代数式ax 5+bx 3+cx -5的值为7,求当x=-7时这个代数式的值。
解:因为当x =7时,ax 5+bx 3+cx -5=7,a ×75+b ×73+c ×7-5=7,即75a +73b +7c =12,所以当x=-7时,ax 5+bx 3+cx -5=a ×(-7)5+b ×(-7)3+c×7-5=-75a -73b -7c -5=-(75a +73b +7c)-5=-12-5=-17例:x 2+x+1=0,试求x 4+2003x 2+2002x+2004的值。
代数式的值【要点梳理】要点一:代数式的值★定义:用数代替代数式里的字母,按照代数式指明的运算计算出的结果,叫代数式的值. ★求代数式的值的步骤:(1)用具体数值代替代数式里的字母,简称“代入”;(2)按照代数式指明的运算计算出结果,简称“计算”.即一代入,二计算. 【例1】当1-=x 时,求数式13+x 的值. 【变式】当2-=a ,b =时,代数式a 2+b 2-3的值是( ). A .B .C .D . 【变式】当时,求下列代数式的值: (1) (2) (3)【变式】根据下面所给a 的值,求代数式a 2-2a +1的值。
(1)a =1 (2)a =-1 (3)a =0 (4)a =-0.5 【变式】根据给出的数据,分别求代数式和的值.(1) (2) (3) 【变式】当x =1,y =-6时,求下列代数式的值。
(1)x 2+y 2 (2)(x +y )2 (3)x 2-2xy +y 2【变式】当时,代数式。
【变式】当4=x 时,代数式的值是0,则的值为___________。
【变式】小张在计算31+a 的值时,误将“+”号看成“-”号,结果得12,那么31+a 的值应为_____________。
【变式】已知3=a ,162=b ,且b a b a +≠+,则代数式b a -的值为( ) A .1或7B .1或﹣7C .﹣1或﹣7D .±1或±7【变式】当a =5时,下列代数式中值最大的是( )12114112114-112-32,211==y x y x 32-22y xy x +-yx yx -+()2b a +222b ab a ++4,2==b a 2,3=-=b a 56,54-=-=b a 2=x _________132=-+x x a x x +-22aA.2a +3B.12a -C.212105a a -+ D.271005a -【变式】求下列代数式的值,计算正确的是( ) A. 当x =0时,3x +7=0 B. 当x =1时,3x 2-4x +1=0 C. 当x =3,y =2时,x 2-y 2=1 D. 当x =0.1,y =0.01时,3x 2+y =0.31 【变式】填表(1)随着值的逐渐增大,两个代数式的值怎样变化?(2)当代数式的值为25时,代数式的值是多少? 【例2】先阅读下面例题的解题过程,再解决后面的题目. 例:已知9﹣6y ﹣4y 2=7,求2y 2+3y +7的值.解:由9﹣6y ﹣4y 2=7,得﹣6y ﹣4y 2=7﹣9,即6y +4y 2=2,所以2y 2+3y =1,所以2y 2+3y +7=8.题目:已知代数式14x +5﹣21x 2的值是﹣2,求6x 2﹣4x +5的值. 【变式】已知0322=-+a a ,则代数式3422-+a a 的值是( ) A .﹣3B .0C .3D .6【变式】已知,则代数式。
第十讲 代数式的值一、知识要点求代数式的值的主要方法:1、利用特殊值;2、先化简代数式,后代入求值;3、化简条件后代入代数式求值;4、同时化简代数式和条件式再代入求值;5、整体代入法;6、换元法。
二、例题示范例1、已知a 为有理数,且a 3+a 2+a+1=0,求1+a+a 2+a 3+…+a 2001的值。
提示:整体代入法。
例2 (迎春杯初中一年级第八届试题)若例3、已知a+b+c=0,求(a+b)(b+c)(c+a)+abc 的值。
提示:将条件式变形后代入化简。
例4、当a=-0.2,b=-0.04时,求代数式)(41)16.0(7271)(73722b a b a b a +-++--值。
例5、已知x 2+4x=1,求代数式x 5+6x 4+7x 3-4x 2-8x+1的值。
提示:利用多项式除法及x 2+4x -1=0。
例6、(1987年北京初二数学竞赛题)如果a 是x 2-3x+1=0的根,试求的值.例7、已知x,y,z 是有理数,且x=8-y,z 2=xy -16,求x,y,z 的值。
提示:配方,利用几个非负数之和为零,则各个非负数都是零。
例8、已知x,y,z,w 满足方程组⎪⎪⎩⎪⎪⎨⎧-=+++=+++=+++-=+++52527222w z y x w z y x w z y x w z y x求xyzw 的值。
例9、已知a+b+c=3,(a -1)3+(b -1)3+(c -1)3=0,且a=2,求a 2+b 2+c 2的值。
例10 若求x+y+z 的值.提示 令例11(x-3)5=ax 5+bx 4+cx 3+dx 2+ex+f ,则a+b+c+d+e+f=______, b+c+d+e=_____.例12、若a,c,d 是整数,b 是正整数,且a+b=c,b+c=d,c+d=a ,求a+b+c+d 的最大值。
(1991年全国初中联赛题)。
代数式求值的方法一、概念:代数式求值:一般地,用数值代替代数式中的字母,按照 代数式中指明的运算计 算的结果叫做代数式求值。
二、代数式求值的几种方法:1.直接代入求值;2.化简代入求值;3.求值带入法;4..整体代入求值1、直接代入法例1.当2,2-==y x 时,则代数式)1(+-y x x = .分析:当2,2-==y x 时,原式=[]1222+--⨯)(=2×5=10.点评:直接代入求值法就是把条件中给出的字母的值直接代入所求的代数式中,计算出其结果,这是代数式求值的最基本,最常见的方法。
2、化简代入法例 2.当x=-2时,则代数式(3x 2-2)-(4x 2-2x-3)+(2x 2-1)的值为 。
分析:这里如果使用上面的直接代入法一定很麻烦,所以我们可以先化简,再代入,这样既可以节省时间,准确率也能提高.原式=3x 2-2-4x 2+2x 2+3+2x 2-1=(3x 2-4x 2+2x 2)+2x-2+3-1=x 2+2x=(-2)2+2×(-2)=0.点评:先把要求的代数式进行化简,然后将所给字母的值代入化简后的代数式,计算出结果,一般情况下,求代数式的值多按此步骤进行。
3、求值代入法例 3.若(x-y+1)2+1y x ++=0,则代数式x 2+xy+y 2的值是 。
分析:观察题目,可知可以先求出x ,y 的值,在代入求解即可。
由非负数的性质可知,⎩⎨⎧=++=+-0101y x y x 解之得:⎩⎨⎧=-=01y x , 故原式=(-1)2+(-1)×0+02点评:常见的求值条件中,除了应用非负数的性质外,还会结合一些基本概念,如a ,b 互为相反数,x,y 互为倒数,解答时可以现根据条件求出字母的值或部分和与积得值,再代入计算。
4、整体代入法例 4.已知2a-b=3,则代数式(b-2a)2-4a+2b+2000的值是 。
分析:将2b-a 当做一个整体,将所求的代数式变形后,代入计算即可。
数学教案-代数式的值教学目标1.使学生把握代数式的值的概念,能用详细数值代替代数式中的字母,求出代数式的值;2.培育学生精确地运算力量,并适当地渗透特别与一般的辨证关系的思想。
教学建议1.重点和难点:正确地求出代数式的值。
2.理解代数式的值:(1)一个代数式的值是由代数式中字母的取值而打算的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必需指明在什么条件下.如:对于代数式;当时,代数式的值是0;当时,代数式的值是2.(2)代数式中字母的取值必需确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如:中不能取1,由于时,分母为零,式于无意义;假如式子中字母表示长方形的长,那么它必需大于0.3.求代数式的值的一般步骤:在代数式的值的概念中,实际也指明白求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清晰运算符号,二要留意运算挨次.在计算时,要留意按代数式指明的运算进展.4。
求代数式的值时的留意事项:(1)代数式中的运算符号和详细数字都不能转变。
(2)字母在代数式中所处的位置必需搞清晰。
(3)假如字母取值是分数时,作乘方运算必需加上小括号,将来学了负数后,字母给出的值是负数也必需加上括号。
5.本节学问构造:本小节从一个应用代数式的实例动身,引出代数式的值的概念,进而通过两个例题叙述求代数式的值的方法.6.教学建议(1)代数式的值是由代数式里的字母所取的值打算的,因此在教学过程()中,留意渗透对应的思想,这样有助于培育学生的函数观念.(2)列代数式是由特别到一般, 而求代数式的值, 则可以看成由一般到特别,在教学中,可结合前一小节,适当渗透关于特别与一般的辨证关系的思想.教学设计例如代数式的值(一)教学目标1使学生把握代数式的值的概念,能用详细数值代替代数式中的字母,求出代数式的值;2培育学生精确地运算力量,并适当地渗透特别与一般的辨证关系的思想。
代数式的值-教学教案教学目标1.使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学建议1.重点和难点:正确地求出代数式的值。
2.理解代数式的值:(1)一个代数式的值是由代数式中字母的取值而决定的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必须指明在什么条件下.如:对于代数式;当时,代数式的值是0;当时,代数式的值是2.(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如:中不能取1,因为时,分母为零,式于无意义;如果式子中字母表示长方形的长,那么它必须大于0.3.求代数式的值的一般步骤:在代数式的值的概念中,实际也指明了求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.4。
求代数式的值时的注意事项:(1)代数式中的运算符号和具体数字都不能改变。
(2)字母在代数式中所处的位置必须搞清楚。
(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。
5.本节知识结构:本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法.6.教学建议(1)代数式的值是由代数式里的字母所取的值决定的,因此在教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念.(2)列代数式是由特殊到一般,而求代数式的值,则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想.教学设计示例代数式的值(一)教学目标1使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
初中数学课堂引入案例
数学组 曹玉玲
[任课年级] 七年级
[使用教材] 北师大版
[课题] 代数式求值
[学习目标] 会求代数式的值,感受代数式求值可以理解为一个转换过程或
某种算法;会利用代数式求值推断代数式所反映的规律;能解
释代数式值的实际意义。
[教学引入的目标和基本思路]
让学生通过活动“揭秘”,体会用字母表示数的优越性,激发学生学习兴趣
[引入过程]
请同学们任选一个非0数,将这个数加上本身,结果再乘以它本身,结果再减去本身,结果再除以它本身,告诉老师你的最后结果,老师能马上猜出你想的是什么数,你相信吗?
1、全班每个学生任想一个数,按规则正确算出最后结果,选男生女生各5名,检验其猜想的数,激发学生探究数学的“神秘”之处的兴趣。
2、活动揭秘:让学生体会用字母表示数的优越性。
假设你想的数为x ,那么有=-=-+12)(x x x x x x 最后结果,从而2
1+=最后结果x ,就是你任想的数。
3、验算任想的数:将学生任想的数代替2x-1中的x ,计算得出结果快捷简便。
4、引出课题:代数式的值:根据问题的要求,用具体数值代替代数式中的字母,就可以求出代数式的值
[应用效果及反思]
本节开始就有效地引起了学生的学习兴趣,师生共同交流较为充分,此过程中有效的复习了上节课内容,同时,让学生体会到解决问题的乐趣。