数学九年级专题练习第28章 第81课时 特殊角的三角函数值
- 格式:ppt
- 大小:1.94 MB
- 文档页数:13
b caA CB 锐角三角函数—特殊角的三角函数值【新课知识讲解及巩固】一、考标要求:1、探索并掌握勾股定理及其逆定理。
2、掌握锐角三角函数(正弦、余弦、正切)的概念。
3、掌握30°、45°、60°角的三角函数值。
会使用计算器求锐角三角函数值,及求三角函数值对应的角度(锐角)。
二、考点梳理:1、三角函数的定义: 在Rt △ABC 中,∠C=90°∠A 的正弦:sinA= , ∠A 的余弦:cosA = ,∠A 的正切:tanA = 。
2、特殊角的三角函数值0<sin α<1, 0<cos α<1, tan α>03、锐角三角函数之间的关系式: 在Rt △ABC 中,∠C=90°(1)互余关系:sinA cosB ,cosA sinB ;(2)平方关系:A con A 22sin += ;(3)倒数关系:tanA ·tanB= ;4、我们可以利用计算器计算任意一个锐角的三角函数值,反过来,已知一个三角函数值,我们也可以利用计算器求出相应的锐角的大小。
三、考点探视:三个三角函数(正弦、余弦、正切)的定义、特殊角的三角函数值及简单运用三角函数的定义解题是本节的考查重点,主要以选择题和填空题的形式出现。
1、分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值。
三角函数 sin α cos α tan α ︒30︒45︒60∠αA(1) (2)2、在Rt △ABC 中,如果各边长都扩大2倍,那么锐角A 的正弦值、余弦值和正切值有什么变化?3、已知Rt △ABC 中,∠C=90°,cosA=35,AB=15,则AC 的长是( ).A.3B.6C.9D.124.如图,在Rt △ABC 中,∠C=90°,BC=•6,sinA=35,求cosA 、tanB 的值.5.在Rt △ABC 中,∠C=90°,AC=•8,tanA=43,求sinA ,cosB 的值. 6、在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有()A .B .C .D .7、在中,∠C =90°,如果cos A=45 ,那么的值为()A .35B .54C .34D .436CB A(1)CBA43ABC1312A BC88、Rt △ABC 中,∠C=90°若sinA=31时,tanA= 。
锐角三角函数(九下第28章)1.锐角三角函数,表示的是边、角之间的关系,三者之间可以相互转化.sinA=a c ,则a=c ·sinA,c=a sinA ; cosA=bc ,则b=c ·cosA,c=bcosA ;tanA=a b ,则a=b ·tanA;b=atanA.2.1.△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( )A.csinA=aB.bcosB=cC.atanA=bD.ctanB=b 2.如图,在△ABC 中,∠C=90°,AB=5,BC=3,则sinA 的值是( ) A.34 B.43 C.35 D.453.如图,若∠A=60°,∠C=90°,AC=20 m ,则BC 大约是(结果精确到0.1 m)( ) A.34.6 m B.4.6 m C.28.3 m D.17.3 m4.在△ABC 中,若|sinA-12|+(cosB-12)2=0,则∠C 的度数是( ) A.30° B.45° C.60° D.90°5.在Rt△ABC中,∠C=90°,若sinA=513,则cosA的值是( )A.512B.813C.23D.12136.已知直线l1∥l2∥l3∥l4,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )A.23B.34C.43D.327.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底G为BC的中点,则矮建筑物的高CD为( )A.20米米米8.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )海里/小时 B.30海里/小时海里/小时海里/小时9.在Rt △ABC 中,∠C=90°,AB=2BC ,现给出下列结论:①;②cosB=12;③;④,其中正确的结论是 (只需填上正确结论的序号). 10.如图,AB 是⊙O 的直径,AD =DE ,AB=5,BD=4,则sin ∠ECB= .11.如图,△ABC 中,∠C=90°,点D 在AC 上,已知∠BDC=45°,,AB=20.求∠A 的度数.12.阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=12,cos30°,则sin 230°+cos 230°= ;①sin45°,cos45°,则sin 245°+cos 245°= ;②sin60°,cos60°=12,则sin 260°+cos 260°= ;③…观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= .④(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;(2)已知:∠A为锐角(cosA>0)且sinA=35,求cosA.13.某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示).已知立杆AB的高度是3米,从侧面D点测得路况警示牌顶端C点和底端B点的仰角分别是60°和45°.求路况警示牌宽BC的值.14.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)参考答案达标练习1.A2.C3.A4.D5.D6.C7.A8.D9.②③④10.4 511.∵在Rt△BDC中,sin∠BDC=BC BD,∴BC=BD×sin∠×sin45°=10.∵在Rt△ABC中,sin∠A=BCAB=1020=12,∴∠A=30°.12.1 1 1 1(1)过点B作BH⊥BC于点H,BH2+AH2=AB2,则sinA=BHAB,cosA=AHAB.∴sin2A+cos2B=22BHAB+22AHAB=222BH AHAB+=1.(2)∵sin2A+cos2B=1,sinA=35,∴cos2A=1-(35)2=1625.∵cosA>0,∴cosA=45.13.在Rt△ABD中,∠BAD=90°,∠ADB=45°,AB=3,∴AD=AB=3.在Rt△ADC中,∠DAC=90°,∠ADC=60°,tan∠ADC=AC AD.∴tan60°=AB BCAD+.33BC+,即答:路况警示牌宽BC为-3)米.14.作BD⊥AC于D.由题意可知,∠BAC=45°,∠ABC=105°,∴∠ACB=180°-∠BAC-∠ABC=30°.在Rt△ABD中,BD=AB·sin∠BAD=20=10(海里),在Rt△BCD中,BC=BDsin BCD∠(海里). 答:此时船C与船B的距离是.。
28.1.3 特殊角的三角函数值学案一、新课导入1.课题导入情景:出示一副三角尺,老师手中的两块三角尺中有几个不同的锐角?问题:分别求出这几个锐角的正弦值、余弦值和正切值.本节课我们学习30°,45°,60°角的三角函数值.(板书课题)2.学习目标(1)推导并熟记30°,45°,60°角的三角函数值.(2)能运用30°,45°,60°角的三角函数值进行简单的计算.(3)能由30°,45°,60°角的三角函数值求对应的锐角.3.学习重、难点重点:推导并熟记30°,45°,60°角的三角函数值.难点:相关运算.二、分层学习1.自学指导(1)自学内容:教材P65探究~P66例3上面的内容.(2)自学时间:8分钟.(3)自学方法:完成探究提纲.②通过计算,得到30°,45°,60°角的正弦值、余弦值、正切值如下表:③观察上表,sin30°,sin45°,sin60°的值有什么规律?cos30°,cos45°,cos60°呢?tan30°,tan45°,tan60°呢?2.自学:学生可参考自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生能否推导30°,45°,60°角的三角函数值.②差异指导:根据学情进行针对性指导.(2)生助生:小组内相互交流、研讨、纠正错误.4.强化:特殊角的三角函数值的推导和记忆以及30°,45°,60°角的正弦值、余弦值、正切值的变化规律.第二层次学习1.自学指导(1)自学内容:教材P66例3~P67练习上面的内容.(2)自学时间:10分钟.(3)自学方法:先自主学习,再同桌之间讨论交流,互相纠错.(4)自学参考提纲:①含30°,45°,60°角的三角函数值的计算题的解题要点是什么?熟练掌握特殊锐角的三角函数值.②求直角三角形中某锐角的解题要点是什么?先求该锐角的正弦值或余弦值或正切值,然后根据特殊锐角的三角函数值求该锐角的度数.③求下列各式的值:a.1-2sin30°cos30°;b.3tan30°-tan45°+2sin60°;=-1.c.(cos230°+sin230°)×tan60°.2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生对特殊角的三角函数值表的掌握情况.②差异指导:根据学情指导学生记忆或推导特殊角的三角函数值.(2)生助生:小组交流、研讨.4.强化(1)求特殊锐角的三角函数值的关键是先把它转化为实数的运算,再根据实数的运算法则计算.(2)求锐角的度数的关键是先求其正弦值或余弦值或正切值,然后对应特殊锐角的三角函数值求角的度数.(3)当A、B为锐角时,若A≠B,则sin A≠sin B,cos A≠cos B,tan A≠tanB.三、评价1.学生自我评价:这节课你学到了什么?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:根据学生的情感态度和学习效果等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时中的特殊角是指30°,45°,60°的角,课堂上采用“自主探究”的形式,给学生自主动手的时间并提供创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究和合作的能力.本节课的最终教学目的是让学生理解并掌握30°,45°,60°角的三角函数值,并且能够熟记其函数值,然后利用它们进行计算.评价作业一、基础巩固(70分)3.(40分)求下列各式的值.(1)sin45°+cos45°;=2.(2)sin45°cos60°-cos45°;(3)cos245°+tan60°cos30°;=2.(4)1-cos30°sin60°+tan30°.的度数.∵∠B 是锐角且tan B =1,∴∠B =45°.∴∠C =180°-∠A -∠B =75°.二、综合应用(20分)是(D )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形6.(10分)如图,△ABC 内接于⊙O ,AB ,CD 为⊙O 的直径,D E ⊥AB 于点E ,三、拓展延伸(10分)7.(10分)对于钝角α,定义它的三角函数值如下:sinα=sin(180°-α),cosα=-cos(180°-α).(1)求sin 120°,cos 120°,sin 150°的值;(2)若一个三角形的三个内角的比是1∶1∶4,A,B是这个三角形的两个顶点,sin A,cos B是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A 和∠B的大小.解:∵三角形的三个内角的比是1∶1∶4,∴三角形三个内角度数分别为30°,30°,120°.∴∠A=30°或120°,∠B=30°或120°.又∵sin A,cos B是方程4x2-mx-1=0的两个不相等的实数根,。
第二十八章锐角三角函数课后练习锐角三角函数的定义与求值1.在Rt△ABC中,∠C=90°,BC=5,AC=12,则tan A的值是.2.把△ABC三边的长度都扩大为原来的2倍,则锐角A的余弦值()A.不变B.扩大为原来的2倍C.缩小为原来的12D.不能确定3.在Rt△ACB中,∠C=90°,AB=8,sin A=34,则BC的长为()A.6B.7.5C.8D.12.54.如图,已知△ABC的三个顶点均在正方形格点上,则下列结论错误的为()A.cos B.sin B=5C.tan B=12D.tan B·tan C=1特殊角的锐角三角函数值5.在△ABC中,∠A,∠B均为锐角,且(tan B-3)2+2cosA是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形,那么锐角α为30度.7.计算:3tan30°+tan45°-2sin60°.解直角三角形及其应用8.如图,在Rt△ABC中,∠C=90°,AB=8,CB=43,解这个直角三角形.9.如图,AB为☉O的直径,点P在AB的延长线上,PC,PD与☉O相切,切点分别为C,D.若AB=10,PC=12,则sin∠CAD等于()A.125B.1312C.135D.121310.某县动车站于2014年开通,方便了更多的人出行,如图是该动车站某扶梯的示意图,扶梯AB的坡度i=5∶12(i为铅直高度与水平宽度的比).琪琪同学乘扶梯从扶梯底端A以0.5m/s的速度用时40s到达扶梯顶端B,则琪琪同学上升的铅直高度BC为m.11.如图是矗立在公路边水平地面上的交通警示牌.经测量得到如下数据:AM=4m,AB=8m,∠MBC=30°,∠MAD=45°,则警示牌的高CD为多少米(结果保留根号)?12.2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离(结果精确到0.1m;参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).13.如图,某校数学兴趣小组需测量一古塔的高度AB.该古塔旁有一个小山坡,在山脚处C观测塔的顶端A的仰角为60°,已知BC=10m,ED⊥BD(点B,C,D在同一直线上).(1)求古塔的高度AB(结果保留根号);(2)涛涛站在古塔的顶端A处观测山坡的顶端E的俯角为30°,该山坡的坡度i=tan∠ECD=1∶3,求山坡的高度DE(结果保留根号).14.如图,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6m到达坡底A处,在A处测得大树顶端B的仰角是45°,若坡角∠FAE=30°,求大树的高度(结果保留根号).。
特殊角的三角函数值课前测试【题目】课前测试1已知α为锐角,且tanα是方程x2+2x﹣3=0的一个根,求2sin2α+cos2α﹣tan(α+15°)的值。
【答案】﹣【解析】本题考查了特殊角的三角函数值以及因式分解法解一元二次方程,解方程x2+2x﹣3=0得x1=1,x2=﹣3,∵tanα>0,∴tanα=1,∴α=45°,∴2sin2α+cos2α﹣tan(α+15°)=2sin245°+cos245°﹣tan60°=2•()2+()2﹣•=1+﹣3=﹣.总结:本题属于比较简单的计算题,解答本题的关键是解方程求出tanα的值,先求出tanα的值,求出α的度数,然后将特殊角的三角函数值代入求解即可。
【难度】3【题目】课前测试2对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)。
(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小。
【答案】(1)sin120°=,cos120°=﹣,sin150°=;(2)m=0,∠A=30°,∠B=120°【解析】本题考查了解一元二次方程的解以及特殊角的三角函数值,(1)由题意得sin120°=sin(180°﹣120°)=sin60°=,cos120°=﹣cos(180°﹣120°)=﹣cos60°=﹣,sin150°=sin(180°﹣150°)=sin30°=;(2)∵三角形的三个内角的比是1:1:4,∴三个内角分别为30°,30°,120°,①当∠A=30°,∠B=120°时,方程的两根为,﹣,将代入方程得:4×()2﹣m×﹣1=0,解得:m=0,经检验﹣是方程4x2﹣1=0的根,∴m=0符合题意;②当∠A=120°,∠B=30°时,两根为,,不符合题意;③当∠A=30°,∠B=30°时,两根为,,将代入方程得:4×()2﹣m×﹣1=0,解得:m=0,经检验不是方程4x2﹣1=0的根.综上所述:m=0,∠A=30°,∠B=120°.总结:解答本题的关键是按照题目所给的运算法则求出三角函数的值和运用分类讨论的思想解题,(2)分三种情况进行分析:①当∠A=30°,∠B=120°时;②当∠A=120°,∠B=30°时;③当∠A=30°,∠B=30°时,根据题意分别求出m的值即可。
专题1.5 锐角三角函数的计算——特殊角的三角函数值(专项练习)一、单选题 1.tan45°=( ) A .1B .22C 3D 323). A .cos30︒B .tan30︒C .cos45︒D .sin30︒3.点()sin60,cos30︒︒关于y 轴对称的点的坐标是( ). A .132⎛- ⎝⎭B .13,2⎛ ⎝⎭C .33⎛ ⎝⎭D .33⎝⎭4.已知()3tan 903α︒-=α的度数是( )A .60°B .45°C .30°D .75°5.在△ABC 中,∠C =90°,AB 2BC =1,则∠A 的度数为( ) A .30B .45︒C .60︒D .75︒6.关于三角函数有如下的公式:()sin sin cos cos sin αβαβαβ-=-,由该公式可求得sin15︒的值是( )A 62+B 62-C 32-D 31-7.若)23A 32cos B 30-+=,则ABC 的形状是( )A .含有60°直角三角形B .等边三角形C .含有60°的任意三角形D .等腰直角三角形82x 0(x ≠0),cos30°38 ) A .1个B .2个C .3个D .4个9.如图,30BAC ∠=︒,AD 平分BAC ∠,DF AB ⊥交AB 于F ,DE DF ⊥交AC 于E .若8AE =,则DF 等于( )A .5B .4C .3D .210.如果∠A 为锐角,cos A 3∠A 取值范围是( ) A .0°<∠A ≤30° B .30°<∠A ≤45° C .45°<∠A<60° D .60°<∠A <90°二、填空题11.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos∠AOB 的值等于______12.如图,在网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则AOB ∠的正切值是______.13.两块全等的等腰直角三角形如图放置,90,A DE ∠=︒交AB 于点P ,E 在斜边BC 上移动,斜边EF 交AC 于点Q ,32,10BP BC ==,当BPE 是等腰三角形时,则AQ 的长为___________.14.如图,平行四边形ABCD 的边AB 在x 轴正半轴上,5BC =,4sin 5CBA ∠=,一次函数4y x =-的图象经过点A 、C ,反比例函数ky x=的图象经过点D ,则k =________.15.如图,在菱形ABCD 中,AB =8,∠B =120°,点O 是对角线AC 的中点,OE ∠CD 于点E ,则OE 的长为 __.16.如图,在∠ABC 中,AB =4,BC =7,∠B =60°,点D 在边BC 上,CD =3,联结AD .如果将∠ACD 沿直线AD 翻折后,点C 的对应点为点E ,那么点E 到直线BD 的距离为____.17.如图,在矩形ABCD 中,10BC =,30ABD ∠=︒,若点M 、N 分别是线段DB 、AB 上的两个动点,则AM MN +的最小值为___________________.18.如图,已知线段4AB =,O 是AB 的中点,直线l 经过点O ,160∠=,P 点是直线l 上一点,当APB ∆为直角三角形时,则BP =_____.三、解答题19.计算:(1) 3tan30tan 452sin30︒+︒+︒; (2) 2cos 30tan 30sin 60245︒︒︒︒+⨯. 20.计算 (1) 013131(2007)()3tan 3084π-+---︒(2) 2cos 6045tan 30cos30︒+︒+︒⋅︒.21.计算与化简题(1) 计算:11351220224sin 603-⎛⎫-⨯++︒ ⎪⎝⎭(2) 先化简,再求代数式21691224a a a a -+⎛⎫-÷⎪--⎝⎭的值,其中4cos303tan 45a =︒+︒.22.如图,已知等边三角形ABC 的边长为6cm ,点P 从点A 出发,沿A →C →B 的方向以2cm/s的速度向终点B运动,同时点Q从点B出发,沿B→A的方向以1cm/s的速度向终点A运动.当点P运动到点B时,两点均停止运动.运动时间记为t,请解决下列问题:(1)若点P在边AC上,当t为何值时,APQ为直角三角形?(2)是否存在这样的t值,使APQ的面积为3 2 ?若存在,请求出t的值,若不存在,请说明理由.23.四边形ABCD是菱形,∠ABC=60°,E是对角线BD上的一个动点,连接AE,将线段AE绕点A逆时针旋转120°得到线段AF,连接EF,DF.(1)如图1,求∠BDF的度数;(2)如图2,当DB=3DF时,连接EC,求证:四边形FECD是矩形;(3)若G为DF中点,连接EG,当线段BD与DF满足怎样的数量关系时,四边形AEGF 是菱形,并说明理由.24.如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将∠BCD沿直线BD翻折得到∠BC′D,若点C′恰好落在抛物线的对称轴上,求点C′和点D的坐标;参考答案1.A【分析】根据直角三角形中45°角的正切值计算并判断即可.解:tan45°=1,故选:A .【点拨】本题考查直角三角形中45°角的正切值,能够牢记直角三角形中特殊度数的角的正切值,正弦值,余弦值是解决此类题型的关键.2.A【分析】根据特殊角的三角函数值解答. 解:A 、cos30︒3B 、tan30︒3C 、cos45︒=22,不符合题意; D 、sin30︒=12,不符合题意;故选A .【点拨】本题考查特殊角的三角函数值,准确掌握常见的特殊角的三角函数值是解题的关键.3.C【分析】先利用特殊角的三角函数值得出点的坐标,再写出其关于y 轴对称的坐标即可. 解:∠sin60°3cos30°3∠33y 轴对称的点的坐标是(33.故选:C .【点拨】本题考查了特殊角的三角函数值和关于坐标轴对称的点的特征,掌握特殊角的三角函数值是解决本题的关键.4.A【分析】根据3tan 30︒=9030α︒-=︒即可求解. 解:∠()3tan 903α︒-=,α为锐角,∠9030α︒-=︒, ∠60α=︒, 故选:A .【点拨】本题考查根据特殊角三角函数值求角的度数,熟记特殊角的三角函数值是解答的关键.5.B【分析】直接利用已知画出直角三角形,再利用锐角三角函数关系得出答案. 解:∠∠C =90°,AB 2BC =1,∠sin A =22BC AB = ∠∠A =45°. 故选:B .【点拨】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 6.B【分析】根据()sin15sin 4530sin45cos30cos45sin30︒=︒-︒=︒︒-︒︒,代入特殊三角函数值计算即可.解:()sin15sin 4530︒=︒-︒sin45cos30cos45sin30=︒︒-︒︒23212=62-=故选:B .【点拨】本题考查了实数的运算,特殊角的三角函数值,灵活运用公式把一般角转化为特殊角的和或者差是解题的关键.7.A333,cos A B ==,从而得到60,30A B ∠=︒∠=︒,即可求解.解:解∠∠)23A 32cos B 30-+=,330,2cos 30A B -==,333,cos A B =, ∠60,30A B ∠=︒∠=︒, ∠∠C =90°,∠ABC 是含有60°直角三角形. 故选:A【点拨】本题主要考查了特殊角锐角三角函数值,绝对值和平方的非负性,熟练掌握特殊角锐角三角函数值是解题的关键.8.B【分析】根据零指数幂,特殊角的三角函数值,实数的意义,即可解答. 2x 0(x ≠0)=1,3cos30°382382,x 0=1, 所以,有理数的个数是2, 故选:B .【点拨】本题考查了零指数幂,特殊角的三角函数值,实数,熟练掌握这些数学概念是解题的关键.9.B【分析】过D 点作DG ∠AC 于G 点,通过DF ∠AB ,DE ∠DF ,可得AB ED ∥,进而有∠BAD =∠ADE ,∠DAE =∠ADE =15°,即可得AE =DE =8,易证得AFD AGD ≅△△,即可求解DF =DG =4.解:过D 点作DG ∠AC 于G 点,如图,∠AD 平分∠BAC ,∠BAC =30°, ∠∠BAD =∠CAD =15°, 又∠DF ∠AB ,DE ∠DF ,∠AB ED ∥,∠AFD =∠AGD =90°, ∠∠BAD =∠ADE , ∠∠DAE =∠ADE =15°, ∠∠AED 是等腰三角形,∠AE=DE=8,∠DEC=∠EDA+∠EAD=30°,在Rt∠DEG中,有1sin sin302 DGDEGDE=∠==,∠DG=4,∠∠AFD=∠AGD,∠BAD=∠CAD,AD=AD,∠AFD AGD≅△△,∠DF=DG=4,故选:B.【点拨】本题考查了角平分线的性质、平行的相关的性质、等腰三角形的判定和性质以及特殊角的三角函数等知识,利用角平分线的性质是解答本题的关键.10.C【分析】分别求出60°和45°角的余弦值,由此得到答案.解:∠cos60°=12,cos45°2,且1322∠45°<∠A<60°.故选C.【点拨】此题考查了角度的余弦公式,余弦值随着角度的增大而减小的性质,熟记公式是解题的关键.11.1 2解:∠OA=OB=AB,∠∠ABC是等边三角形,∠∠AOB=60°,∠cos∠AOB=cos60°=12.故答案是:12.12.1【分析】连接AB,由勾股定理求得AB、AO、BO的长,判断△ABO是等腰直角三角形,即可求得答案.解:连接AB,由勾股定理得:AB 221310+AO 221310+OB 222425+= ∠AB =AO ,(22222101020OA AB OB +=+==,∠△ABO 是以OB 为斜边的等腰直角三角形,∠tan tan 451AOB ∠︒==,故答案为:1.【点拨】此题考查了勾股定理在网格中的应用、勾股定理的逆定理、等腰直角三角形的性质、特殊角的三角函数值等知识,熟练掌握勾股定理及其逆定理是解题的关键.13.8210322【分析】解答时,分BE =PE ,PB =PE 和BP =BE 三种情况求解即可.解:当BE =PE 时,∠∠B =∠C =∠DEF =∠DFE =45°,∠∠BPE =45°,∠BEP =90°,∠QEC =45°,∠EQC =90°,∠PE =BE =BPsin 45°=232,EQ =CQ =ECsin 45°=272(103)- ∠ BC =10,∠AC =BCsin 45°=210=52 ∠AQ =AC -QC =723252= 当PB =PE 时, 根据前面计算,得到BH =PH =3,∠BH =HE =3,∠∠B =∠C =∠DEF =∠DFE =45°,∠∠EQC =45°,∠CEQ =90°,EC =EQ =BC -BE =10-6=4,∠CQ =4=42sin 452CQ =, ∠ BC =10,∠AC =BCsin 45°=210=52 ∠AQ =AC -QC =52422当BP =BE 时,∠∠B =∠C =∠DEF =∠DFE =45°,∠∠BPE =∠BEP =∠QEC =∠EQC ,∠PE =BE =32EQ =CQ =BC -BE =(1032)-,∠ BC =10,∠AC =BCsin 45°=210=522⨯ ∠AQ =AC -QC =52(1032)8210-=,综上所述AQ 的长为8210232, 故答案为:8210232【点拨】本题考查了等腰直角三角形的性质,勾股定理,等腰三角形的判定和性质,特殊角的三角函数值,熟练掌握等腰直角三角形的性质和准确进行等腰三角形的等腰分类,灵活运用特殊角的三角函数值是解题的关键.14.4【分析】根据平行四边形的性质、三角函数值,结合一次函数求出D 的坐标即可求解; 解:如图,过点D 作DE ∠AB将y =0代入y =x -4中记得x =4∠A (4,0)在平行四边形ABCD 中,∠∠OAD =∠CBA∠4sin 5DE OAD AD ∠== ∠AD =BC =5∠DE =4,AE =3∠OE =OA -AE =4-3=1∠D (1,4)∠144k x y =⋅=⨯=故答案为:4【点拨】本题主要考查反比例函数、平行四边形、三角函数值、一次函数,掌握相关知识并灵活应用是解题的关键.15.23【分析】连接OB ,由菱形的性质得BC =AB =8,BO ∠AC ,再由等腰三角形的性质得∠ACB =∠ACD =30°,然后由锐角三角函数定义求出OC =3最后由含30°角的直角三角形的性质求解即可.解:连接OB,如图所示:∠四边形ABCD为菱形,点O是对角线AC的中点,∠BC=AB=8,BO∠AC,∠∠ACB=∠ACD12=(180°﹣120°)=30°,在Rt∠BOC中,OC=cos30°•BC3=8=3∠OE∠CD,∠∠CEO=90°,在Rt∠COE中,OE12=OC12=⨯33故答案为:3【点拨】本题考查了菱形的性质、等腰三角形的性质、锐角三角函数定义以及含30°角的直角三角形的性质,解题的关键是熟练掌握菱形的性质.1633【分析】过E点作EH∠BC于H,证明∠ABD是等边三角形,进而求得∠ADC=120°,再由折叠得到∠ADE=∠ADC=120°,进而求出∠HDE=60°,最后在Rt∠HED中使用三角函数即可求出HE的长.解:如图,过点E作EH∠BC于H,∠BC=7,CD=3,∠BD=BC-CD=4,∠AB=4=BD,∠B=60°,∠∠ABD是等边三角形,∠∠ADB =60°,∠∠ADC =∠ADE =120°,∠∠EDH =60°,∠EH ∠BC ,∠∠EHD =90°.∠DE =DC =3,∠EH =DE 333 ∠E 到直线BD 33 33 【点拨】本题考查了折叠问题,解直角三角形,点到直线的距离,本题的关键点是能求出∠ADE=∠ADC=120°,另外需要重点掌握折叠问题的特点:折叠前后对应的边相等,对应的角相等.17.15【分析】如图,过A 作AG BD ⊥于G ,延长AG ,使AG EG =,过E 作EN AB ⊥于N ,交BD 于M ,则AM MN EN +=最短,再利用矩形的性质与锐角三角函数求解EN 即可得到答案.解:如图,过A 作AG BD ⊥于G ,延长AG ,使AG EG =,过E 作EN AB ⊥于N ,交BD 于M ,则AM MN EN +=最短,四边形ABCD 为矩形,10BC =,30ABD ∠=︒,10,20,cos303,AD BD AB BD ∴===•︒= ,AG BD AD AB •=•2010103,AG ∴=⨯53,2103,AG AE AG ∴===,,,AE BD EN AB EMG BMN ⊥⊥∠=∠30,E ABD ∴∠=∠=︒3cos3010315,EN AE ∴=•︒== 15,AM MN ∴+=即AM MN +的最小值为15.故答案为:15.【点拨】本题考查的是矩形的性质,锐角三角函数的应用,同时考查利用轴对称与垂线段最短求线段和的最小值问题,解题的关键是掌握以上知识. 18.2或2327【分析】分90APB ∠=、90PAB ∠=、90PBA ∠=三种情况,根据直角三角形的性质、勾股定理计算即可.解:如图:∠2AO OB ==,160∠=∠当2BP =时,90APB ∠=,当90PAB ∠=时,∠60AOP ∠=,∠tan 23AP OA AOP =⋅∠=, ∠2227BP AB AP +=当90PBA ∠=时,∠60AOP ∠=,∠tan 123BP OB =⋅∠=故答案为2或2327【点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .19.3 2 (2)14【分析】(1)根据特殊角的三角函数值解决此题.(2)根据特殊角的三角函数值及二次根式的乘法进行计算即可解决此题.(1)解:原式=331+212⨯ 3=1+13=2; (2)解:原式=23⎝⎭33223142=+-1 14=. 【点睛】本题主要考查特殊角的三角函数值及二次根式的运算,熟练掌握特殊角的三角函数值是解决本题的关键.20.(1)2-;(2)32【分析】(1)先化简绝对值、计算零指数幂与负整数指数幂、特殊角的正切值、立方根,再计算二次根式的乘法与加减法即可得;(2)先计算特殊角的三角函数值,再计算二次根式的乘法与加减法即可得.(1) 解:原式3311432=+-- 323=2=-.(2) 解:原式122332=111222=++ 32=. 【点睛】本题考查了含特殊角的三角函数的混合运算、二次根式的乘法与加减法、零指数幂与负整数指数幂等知识点,熟记特殊角的三角函数值是解题关键.21.(1)3-(2)23a -3【分析】(1)根据负整数指数幂,胡加绝对值,零次幂,特殊角的三角函数值,进行计算求解即可;(2)先去括号,把除法变为乘法把分式化简,再把数代入求值.(1) 解:原式=3335314-⨯+-+951=-++ 3=-;(2)21691224a a a a -+⎛⎫-÷ ⎪--⎝⎭()()2222123a a a a ---=⨯-- ()()222323a a a a --=⨯-- 23a =-; 4cos303tan 45a =︒+︒3431=⨯ 33=; 原式323333==+-. 【点睛】本题考查了实数的混合运算,分式的化简求值,正确的计算是解题的关键.22.(1)1.2s 或3s ; (2)存在,(35)s 或4s【分析】(1)当APQ 为直角三角形时,∠A =60度,所以可能只有∠APQ =90°或∠AQP =90°,当∠APQ =90°时,∠AQP =30°,AP =12AQ ,求出t =1.2秒;当∠AQP =90°时,∠APQ =30°,AQ =12AP ,求得t =3秒;(2)当点P 在AC 上时,边AQ =6-t ,算出AQ 上的高PD 3t ,即可写出12(6-t )3t =23t =35P 在BC 上时,算出AQ 边上的高PF )36t -,即可写出12(6-t ))36t -=23t =4. (1)解:∠∠ABC 是等边三角形,∠AB =BC =CA =6,∠A =∠B =∠C =60°,当点P 在边AC 上时,由题意知,AP =2t ,AQ =6-t ,当∠APQ =90°时,AP =12AQ ,即2t =12(6-t ),解得t =1.2,当∠AQP =90°时,AQ =12AP ,即6-t =12×2t ,解得t =3,所以,点P 在边AC 上,当t 为1.2s 或3s 时,∠APQ 为直角三角形;(2)存在∠当点P 在边AC 上时,此时0≤t ≤3,过点P 作PD ∠AB 于点D ,在Rt∠APD 中,∠A =60°,AP =2t , ∠sin A =PD AP ,即sin60°=2PD t 3 ∠PD 3t ,S △APQ =12AQ ●PD =12(6-t )3t ,由12(6-t )3t =23135t =,235t =∠当点P 在边BC 上时,此时3≤t ≤6,如图,过点P 作PF ∠AB 于点F ,在Rt∠BPF 中,∠B =60°,BP =12-2t , ∠sin B =PF BP,即sin60°=122PF t -3 ∠PF )36t -,S △APQ =12AQ ●PF =12(6-t ))36t -, 由12(6-t ))36t -=3()1248t t ==,不合题意,舍去因此,当t 为(35s 或4s 时,∠APQ 的面积为3【点睛】本题主要考查了直角三角形的存在性和三角形的面积的存在性,解决问题的关键是熟练掌握直角三角形的直角三个角都有可能,要分类讨论;面积是同一个值的三角形不可能只有一个,全面考虑,分类讨论.23.(1)60︒;(2)证明见解析;(3)32BD DF =,理由见解析 【分析】(1)先证明,BAE DAF ≌可得,ABE ADF ∠=∠再证明30,30,ABE ADB 从而可得答案;(2) 先证明2,DEDF 再证明90,EFD FDC ∠=∠=︒90,FEC ∠=︒ 从而可得结论; (3)先证明2,DF DE 结合,BE DF = 可得3,BD DE 从而可得答案.【详解】解(1) 四边形ABCD 是菱形,∠ABC =60°,120BAD ∴∠=︒,由旋转可得:120,,EAF AE AF120,BAD EAF ,,BADBAE EAD EAF EAD DAF ,BAE DAF又∠四边形ABCD 是菱形,,AB AD ∴=,BAE DAF ≌,ABE ADF ∴∠=∠又∠四边形ABCD 是菱形,60,ABC ∠=︒30,30,ABE ADBBDC30,ADF ∴∠=︒ 60.BDF ADB ADF (2)由(1)可得:60,BDF30,CDB90,CDF ∴∠=︒由(1)可得:,BAE DAF ≌,BE DF ∴= 33,DB DF BE DE BE2,DE DF60,30,BDF BDC 90,FDC ∴∠=︒1cos cos60,2EDF ∠=︒= 1cos ,2DF EDF DE ∴∠== EDF ∴是直角三角形,90,EFD180906030,FED ∴∠=︒-︒-︒=︒120,,EAF AE AF ∠=︒=30,AEF AFE ∴∠=∠=︒60,AED ∴∠=︒由菱形的对称性可得:60,DEC DEA ∠=∠=︒306090,FEC ∴∠=︒+︒=︒ 而90,EFD FDC ∠=∠=︒∴ 四边形ABCD 为矩形.(3)3,2BD DF 理由如下:如图,四边形AEGF 是菱形,120,EAF ∠=︒1120,302EGF EAF FEG GFE AEG 60,BDF 90,FED2,DF DE,BE DF =2,BE DE3,BD DE 3,2BD DF3.2BD DF 【点睛】本题考查的是旋转的性质,全等三角形的判定与性质,菱形的性质,锐角三角函数的应用,灵活的应用以上知识解题是解题的关键.24.(1)y =x 2﹣2x ﹣3;(2)点C ′的坐标为(1,3,点D 的坐标为(123) 【分析】(1)根据抛物线2y ax bx c =++经过点(2,5)A -,与x 轴相交于(1,0)B -,(3,0)C 两点,利用待定系数法求得该抛物线的解析式即可;(2)先确定二次函数对称轴,BC 长度,根据题意和翻折的性质,得到B C′长度,利用三角函数求出∠C′BC ,再根据角平分线求出∠DBC ,解直角三角形可以求得点C '和点D 的坐标,本题得以解决.【详解】解:(1)∠抛物线y =ax 2+bx +c 经过点A (﹣2,5),与x 轴相交于B (﹣1,0),C (3,0)两点,∠4250930a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩,得123a b c =⎧⎪=-⎨⎪=-⎩,即抛物线的函数表达式是y =x 2﹣2x ﹣3;(2)∠与x 轴相交于B (﹣1,0),C (3,0)两点,∠BC =3﹣(﹣1)=3+1=4,该抛物线的对称轴是直线x =132-+=1, 设抛物线的对称轴与x 轴的交点为H ,则点H 的坐标为(1,0),∠BH =2,∠将∠BCD 沿直线BD 翻折得到∠BC ′D ,点C ′恰好落在抛物线的对称轴上,∠BC =BC ′=4,∠C ′HB =90°,∠C ′BD =∠DBC ,∠OC 2242-3cos∠C ′BH ='BH BC =24=12, ∠C ′的坐标为(1,3,∠C ′BH =60°,∠∠DBC =30°,∠BH =2,∠DBH =30°,∠OD =BH 323 ∠点D 的坐标为(123), 由上可得,点C ′的坐标为(1,3,点D 的坐标为(123).【点睛】本题考查待定系数法求抛物线解析式,图形翻折变化、二次函数的性质、特殊角的三角函数值,解答本题的关键是明确题意,利用数形结合的思想解答.。
2018-2019学年九年级数学下册第二十八章锐角三角函数28.1 锐角三角函数28.1.3 特殊角的三角函数值同步练习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学下册第二十八章锐角三角函数28.1 锐角三角函数28.1.3 特殊角的三角函数值同步练习(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学下册第二十八章锐角三角函数28.1 锐角三角函数28.1.3 特殊角的三角函数值同步练习(新版)新人教版的全部内容。
课时作业(十八)[28.1 第3课时特殊角的三角函数值]一、选择题1.2018·大庆计算2cos60°的结果为()A.1 B.错误! C。
错误! D。
错误!2.化简:错误!=()A.1-错误! B。
错误!-1C.0 D.1-33.用计算器计算cos44°的结果(精确到0.01)是()A.0.90 B.0.72 C.0.69 D.0。
664.已知cosθ=0.7415926,则∠θ约为()A.40° B.41° C.42° D.43°5.如图K-18-1,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是( )图K-18-1A。
错误!错误!错误!错误!错误!错误! B.错误!错误!错误!错误!错误!错误!C.错误!错误!错误!错误!错误!错误!D.错误!错误!错误!错误!错误!错误!6.如图K-18-2,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,OA长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值为( )图K-18-2A.错误!B.错误!C.错误! D。
《特殊角的三角函数值》基础训练知识点1特殊角的三角函数值1.[2018天津中考]cos30°的值等于( )A. B.2.下列各式不正确的是( ) A.cos30°=sin60° B.tan45°=2sin30° C.sin30°+cos30°=1 D.tan60o ·cos60o =sin60o3.点(-cos60°,tan30°)关于x 轴对称的点的坐标是( )A.(12 -12 4.[2017江苏泰州靖江一模]若某三角形的三个内角度数之比为1:2:3,则该三角形中最小内角的正切值为____. 5.计算:(1)tan 230o +cos 230o -sin 245°tan45°;(2) sin 30sin 60cos45-︒︒︒tan45°.知识点2由特殊角的三角函数值求角6.[2018山东青岛胶州期末]在Rt △ABC 中,∠C=90°,A 的度数是( ) A.30° B.45° C.60° D.90°7.[2017山东聊城中考]在Rt △ABC 中,cosA=12,那么sinA 的值是( )A.2 B. 128.[2018吉林实验中学一模]在△ABC 中,∠A ,∠B ,∠C 都是锐角,tanA=1,sinB=2,你认为最确切的判断是( )A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形9.在△ABC 中,∠C=90°,AC=1,B 的度数是____.知识点3特殊角的三角函数值的运用10.已知菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC=45°,B 的坐标是____.11.如图,在△ABC 中,∠B=60o ,sinC=45,AC=10,求AB 的长.12.[2017江西南昌实验中学期末改编]如图,△ABC 表示学校内的一块三角形空地,为美化校园环境,准备在空地内种植草皮.已知某种草皮每平方米售价为200元,则购买这种草皮需花费多少元?课时3特殊角的三角函数值1.B2.C【解析】cos30°=tan60°,所以A项正确;tan45°=l,2sin30°=1,所以B项正确;sin30°=12,cos30°=所以C项错误;tan60°=cos60°=12,sin60°=2D项正确.故选C.3.B【解析】因为cos60°=12,tan30°所以点(-cos60°,tan30°)即(-12,根据关于x轴对称的两点的坐标关系:横坐标不变,纵坐标互为相反数,可知选B.4.3【解析】由题意,得该三角形中最小内角的度数为180°×1123++=30°,而tan30°=.5.【解析】(l)tan230°+cos230°-sin245°tan45°=(2+2-()2×l=13+34-12=712.(2)sin30tan45 sin60-cos45︒-︒︒︒=11=2 +.6.C7.B【解析】在Rt△ABC中,∵cosA=12,∠A=60°,∴sinA=sin60°=B.8.B【解析】∵∠A,∠B都是锐角,tanA=l,sinB=2,∴∠A=45°,∠B=45°,∴∠C=180°-∠A -∠B=90°,∴△ABC 是等腰直角三角形.故选B.9.45°【解析】由题意可得,在Rt △ABC 中,sinB=AC AB ,∴∠B=45°.10.1,1)【解析】过点B 作BD ⊥x 轴于点D ,∵四边形0ABC 是菱形,∴OA=AB=OC=AB ∥0C ,∴∠BAD=∠AOC=45°,∴BD=ABsin ∠BAD=2=l ,AD=ABcos ∠2=1,∴OD=OA +AD=1,∴点B 的坐标是1,1). 11.【解析】如图,过点A 作AD ⊥BC 于点D ,在Rt △ACD 中,sinC= AD AC = 45, ∵AC=10,∴AD=8.在Rt △ABD 中,∠B=60°,sinB=AD AB ,∴ sin60°= 8AB = 2,∴AB= 3.12.【解析】如图,过点B 作BD ⊥AC 交CA 的延长线于点D ,因为∠BAC=150°,所以∠BAD=30°. 在Rt △ABD 中,BD=ABsin ∠BAD=20×sin30°=10(m),所以S △ABC =12AC ·BD=12×30×10=150(m 2),150×200=30000(元).所以购买这种草皮需花费30000元.《特殊角的三角函数》提升训练1.[2018河南郑州外国语中学课时作业]已知α为锐角,2α-(1α+1=0,则α的度数为( )A.30°B.45°C.30°或45°D.45°或60° 2.[2018天津一中课时作业]已知∠A 为锐角,且cosA ≤12,那么( ).A.0°<∠A ≤60°B.60°≤∠A <90°C.0°<∠A ≤30°D.30°≤∠A <90° 3.[2018山西太原市外国语学课时作业]如图,BD 是菱形ABCD 的对角线,CE ⊥AB 于点E 交BD 于点F ,且点E 是AB 的中点,则tan ∠BFE 的值为( )A.12 B.2 C.4.[2018福建厦门双十中学课时作业]对于三个数a ,b ,c ,用min{a ,b ,c}表示这三个数中最小的数.例如:min{1,2,3}=-1;min{-1,2,a }=a(a 1)1(a 1)-⎧⎨--⎩≤>,则min{sin30°,cos45°,tan30°}=____.5.[2018河北张家口五中课时作业]已知a 为锐角,当21tan a-无意义时,tan(a +15°)-tan(a -15°)的值是____.6.[2018江西高安中学课时作业]要求tan30°的值,可构造如图所示的直角三角形进行计算:作Rt △ABC ,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=∠ABC=30°,tan30°=AC BC =在此图的基础上通过添加适当的辅助线,可求出tan15°的值.请你写出添加辅助线的方法,并求出tan15°的值.7.[2018江苏南京外国语学校课时作业]阅读理解我们知道,四边形具有不稳定性,容易变形.如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为a ,我们把1sin a的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是120°,则这个平行四边形的变形度是;____;猜想证明设矩形的面积为S 1,其变形后的平行四边形的面积为S 2,试猜想S 1,S 2,1sin a之间的数量关系,并说明理由; 拓展探究如图2,在矩形ABCD 中,点E 是AD 边上的一点,且AB 2=AE ·AD ,这个矩形发生变形后为平行四边形A 1B 1C 1D 1,点E 1为点E 的对应点,连接B 1E 1,B 1D 1,若矩形ABCD 的面积为>0),平行四边形A 1B 1C 1D 1的面积为>0),试求∠A 1E 1B 1+∠A 1D 1B 1的度数.参考答案1.C 【解析】2α-(1α+1=0,得α-1)(tan α-1)=1,所以tan α=tan α=1,所以α=30°或45°.故选C. 2.B 【解析】∵∠A 为锐角,∴0<cosA <1,且随着角的变大,余弦值变小,∴当0<cosA ≤12时,60°≤∠A <90°.故选B. 3.D 【解析】连接AC ,由题意知CE 垂直平分AB ,所以BC=AC ,又四边形ABCD 是菱形,所以AB=BC ,所以△ABC 是等边三角形,所以∠ABC=60°,所以∠ABD=12∠ABC=30°,所以∠BFE=60°,所以tan ∠故选D.4.sin30°【解析】sin30°=12,cos45°=2,tan30°=3,因为12<3<2,所以sin30°<tan30°<cos45°,所以min{sin30°,cos45°,tan30°}= sin30°. 名师点睛:解答本题的关键是弄清新定义,再选择最小的一个数.当-21tan a 无意义时,tana=l ,又a 为锐角,所以a=45°,∴tan(a +45°)-tan(a -15°)=tan60°-tan30°= 6.【解析】如图。