第十七章 勾股定理 教学设计(教师用)
- 格式:doc
- 大小:147.00 KB
- 文档页数:11
人教版八年级下册第十七章勾股定理(第一课时)教学设计一、教材分析(一)教材的地位与作用勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。
学生通过勾股定理的学习,可以在原有的基础上对直角三角形由进一步的认识和理解。
(二)教学目标1. 体验勾股定理的探索过程,了解关于勾股定理的文化背景,通过我国古代研究勾股定理的成就的介绍,培养学生的自豪感。
2.能利用勾股定理解决一些简单问题。
(三)教学重、难点重点:探索和证明勾股定理。
难点:用拼图方法证明勾股定理。
二、学情分析学生对几何图形的观察,几何图形的分析能力已经初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
每名学生都期待自己探索、发表自我见解和展示自我才华的机会。
三、教学过程教学环节教学内容活动和意图创设情境数学源于生活,生活之中处处有数学。
今天,我们一起穿越,和数学名家一起探讨数学奥秘。
两名学生,分别扮演毕达格拉斯和他的朋友,进行地砖图案对话,引出S A,S B,S C满足一定的数量关系,以及A,B,C所围成的直角三角形的三边的数量关系。
数学源于生活。
穿越似的角色扮演,言简意赅的对话,可以有效的提升学生的好奇心和求知欲,激发学生对数学的兴趣,自然而然的引入课题。
实验探究按照毕达格拉斯的思路,我们需要探究2个问题。
问题1:A、B、C三者的面积关系包含A、B边长相等和不相等两种情况通过公式或割补法计算,得SA+S B= S C问题2:A、B、C所围直角三角形的三边关系由SA= a2,S B = b2 ,S C = c2 ,S A+S B= S C得所围直角三角形的三边关系a2 + b2 = c2勾股定理,也称为毕达哥拉斯定理。
问题是思维的起点,通过层层发问,引导学生发现新知。
渗透从特殊到一般的数学思想,为学生提供参与数学活动的时间和空间。
第十七章“勾股定理”数学活动教学设计【教学目标】知识技能:1、理解勾股定理的多种证明方法,能运用勾股定理解决实际问题。
2、了解勾股定理的文化背景,体验勾股定理探索过程。
数学思考:在拼图证明勾股定理的过程中,体会数形结合思想,发展合情推理能力.问题解决:1.通过剪图、拼图活动,体验数学思维的严谨性,发展形象思维。
2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究过程。
情感态度:1、通过对勾股定理历史的了解,增强学生爱国情操,激发学生学习兴趣。
2、在探究活动中,培养学生的合作交流意识和积极探索精神。
【教学重点】1.运用勾股定理解决实际问题,了解勾股定理的历史文化。
2、理解勾股定理的证明。
【教学难点】通过拼图证明勾股定理。
【教学方法】启发式教学法、小组讨论法。
【教学过程设计】活动一、测量学校旗杆高度。
学校需要测量旗杆的高度,观察发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.请你应用勾股定理提出一个解决这个问题的方案。
设计意图:从现实生活中提出问题,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,问题的解决能让学生深刻体验勾股定理的作用。
活动二、了解勾股定理历史,感受数学文化介绍勾股定理的由来、地位、作用等。
设计意图:了解勾股定理的历史,感受数学文化,激发学习热情.通过介绍勾股定理在中国古代的历史,激发学生的民族自豪感。
活动三、通过拼图证明勾股定理。
用若干张全等的直角三角形纸片拼出图案,证明了勾股定理。
设计意图:通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维,使学生对定理的理解更加深刻,体会数学中的数形结合思想。
活动四、剪一剪、拼一拼。
把同学们手中的两张卡片分别剪开,各自拼成一个大的正方形。
图1 图2设计意图:通过由简到繁的拼图,让学生在“做中学”、“学中做”,导、学、做三合一,使学生在活动中感受到学习的乐趣。
《勾股定理》教学设计拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了。
原来,他发现了地砖上的三个正方形存在某种数学关系。
教学过程流程教学活动教师与学生行为教学效果预估与对策设计意`图(二)自主探索,合作交流探究活动1:问题1:你能发现下图中三个正方形面积之间有怎样的关系?问题2:下图中的各组图形面积之间都有上述的结果吗?对于问题(2)、(3)教师给学生足够的思考时间,然后让学生交流合作,得出结论。
问题(3)可让学生在自己准备好的小方格上画出,并计算A、B、C三个正方形的面积,用字母表示三个正方形面积之间的数对等腰直角三角形三边性质的探索,学生们探究欲望会很强烈,小组交流想法也会达成共识,对于验证三个正方形面积之间的关系,在方法上会各通过设计问题串,让探索过程由浅入深,循序渐进。
经历观察、猜想、归纳这一数学学习过程,符合学生认知规律。
探索面积证法的多问题3:你能用等腰直角三角形的边长表示正方形的面积吗?由此猜想等腰直角三角形三边有怎样的关系?量关系,进而发现了等腰直角三角形三边的特殊关系。
并在小组内交流,教师适当引导,深入学生当中,倾听他们的想法。
有千秋。
教师同时辅之多媒体的动态演示,使教学效果更直观,利于学生接受,顺利突破难点。
样性,体现数学解决问题的灵活性,发展学生的合情推理能力。
教学过程流程教学活动教师与学生行为教学效果预估与对策设计意图(二)自主探索,合作交流探究活动2(课本P23):做一做:问题1:请分别计算出图中正方形A、B、C的面积,看看能得出什么结论?问题2:如果用a,b,c分别表示三个正方形的边长,三者之间的面积关系如何表示?由三个正方形所搭成的直角三角形三边存在怎样的关系?教师观察学生活动,指导与合作,让学生充分发表自己的见解,暴露他们的思维过程。
计算正方形C的面积不易求根据探索等腰直角三角形三边关系过程,学生在对探讨一般直角三角形三边性质有了一定基础。
计算正方形C的面积利用分割法和把它看做边长是整数的大正方形面积的一半很容易想到,但拼凑法会有一定困此环节设计让学生动手画一画,算一算,充分利用计算面积的不同方法,进一步体会数形结合思想,让学生经历从特殊到一般的过程,体会事物由特殊到一般的出,教师及时点拨,同时借助多媒体动态演示。
新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。