2021年海南省高考数学二轮解答题专项复习:数列(含答案解析)
- 格式:docx
- 大小:121.39 KB
- 文档页数:53
海南省海南中学高考数学数列多选题与热点解答题组合练及答案一、数列多选题1.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++,数列{}n a 的前n 项为n S ,则( ) A .12n k += B .133n n a a +=- C .()2332n a n n =+D .()133234n n S n +=+- 【答案】ABD 【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可. 【详解】由题意可知,第1次得到数列1,3,2,此时1k = 第2次得到数列1,4,3,5,2,此时3k = 第3次得到数列1, 5,4,7,3,8,5,7,2,此时 7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k = 第n 次得到数列1,123,,,,k x x x x ,2 此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得: 123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈用等比数列求和可得()33132n n a -=+则 ()121331333322n n n a+++--=+=+23322n +=+ 又 ()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+ 所以 133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误. 123n n S a a a a =++++23133332222n n +⎛⎫=++++ ⎪⎝⎭()231331322nn --=+ 2339424n n +=+-()133234n n +=+-,故D 项正确. 故选:ABD. 【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.2.设数列{}n a 的前n 项和为n S ,若存在实数A ,使得对任意*n N ∈,都有n S A <,则称数列{}n a 为“T 数列”.则以下结论正确的是( )A .若{}n a 是等差数列,且10a >,公差0d <,则数列{}n a 是“T 数列”B .若{}n a 是等比数列,且公比q 满足||1q <,则数列{}n a 是“T 数列”C .若12(1)2n n n a n n ++=+,则数列{}n a 是“T 数列”D .若2241n n a n =-,则数列{}n a 是“T 数列 【答案】BC 【分析】写出等差数列的前n 项和结合“T 数列”的定义判断A ;写出等比数列的前n 项和结合“T 数列”的定义判断B ;利用裂项相消法求和判断C ;当n 无限增大时,n S 也无限增大判断D . 【详解】在A 中,若{}n a 是等差数列,且10a >,公差0d <,则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,当n 无限增大时,n S 也无限增大,所以数列{}n a 不是“T 数列”,故A 错误. 在B 中,因为{}n a 是等比数列,且公比q 满足||1q <,所以()11111112 111111n n nna q a a q a a q a Sq q q q q q-==-+<------,所以数列{}n a是“T数列”,故B正确.在C中,因为11211(1)22(1)2n n n nnan n n n+++==-+⋅+⋅,所以122311111111111||122222322(1)22(1)22 n n n nSn n n++ =-+-++-=-<⨯⨯⨯⨯⋅+⋅+⋅∣∣.所以数列{}n a是“T数列”,故C正确.在D中,因为22211141441nnan n⎛⎫==+⎪--⎝⎭,所以222111114342143141nS nn⎛⎫=+++++⎪⨯-⨯--⎝⎭,当n无限增大时,n S也无限增大,所以数列{}n a不是“T数列”,故D错误.故选:BC.【点睛】方法点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k⎛⎫=-⎪++⎝⎭;(2)n k n++()1n k nk=+-;(3)()()1111212122121n n n n⎛⎫=-⎪-+-+⎝⎭;(4)()()122121nn n+--()()()()1121212121n nn n++---=--1112121n n+=---;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.3.如图,已知点E是ABCD的边AB的中点,()*nF n∈N为边BC上的一列点,连接nAF交BD于nG,点()*nG n∈N满足()1223n n n n nG D a G A a G E+=⋅-+⋅,其中数列{}na是首项为1的正项数列,nS是数列{}n a的前n项和,则下列结论正确的是()A.313a=B.数列{}3na+是等比数列C.43na n=-D.122nnS n+=--【答案】AB 【分析】化简得到()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,根据共线得到1230n n a a +--=,即()1323n n a a ++=+,计算123n n a +=-,依次判断每个选项得到答案. 【详解】()()112232n n n n n n G D a G A a G A G B +=⋅-+⋅+, 故()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,,n n G D G B 共线,故1230n n a a +--=,即()1323n n a a ++=+,11a =,故1342n n a -+=⨯,故123n n a +=-.432313a =-=,A 正确;数列{}3n a +是等比数列,B 正确;123n n a +=-,C 错误;2124323412nn n S n n +-=-=---,故D 错误.故选:AB . 【点睛】本题考查了向量运算,数列的通项公式,数列求和,意在考查学生的计算能力,转化能力和综合应用能力.4.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=,故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误; 故选:BC.5.记数列{}n a 的前n 项和为n S ,*n ∈N ,下列四个命题中不正确的有( ) A .若0q ≠,且对于*212,n n n n a a a ++∀∈=N ,则数列{}n a 为等比数列B .若nn S Aq B =+(非零常数q ,A ,B 满足1q ≠,0A B +=),则数列{}n a 为等比数列C .若数列{}n a 为等比数列,则232,,,n n n n n S S S S S --仍为等比数列D .设数列{}n a 是等比数列,若123a a a <<,则{}n a 为递增数列 【答案】AC 【分析】若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,可判断A ;利用n a 与n S 的关系,可求得数列{}n a 的通项公式,可判断B ;若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,可判断C ;设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,分类讨论10a >与10a <两种情况,可判断D ; 【详解】对于A ,若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,故A 错误;对于B ,当2n ≥时,()111(1)nn n n n n a S S Aq B AqB Aq q ---=-=+-+=-且1q ≠;当1n =时,0A B +=,则()111a S Aq B A q ==+=-符合上式,故数列{}n a 是首项为()1A q -公比为q 的等比数列,故B 正确;对于C ,若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,不为等比数列,故C 错误;对于D ,设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,若10a >,可得21q q <<,即1q >,则{}n a 为递增数列;若10a <,可得21q q >>,即01q <<,则{}n a 为递增数列;故D 正确;故选:AC 【点睛】结论点睛:本题考查等比数列通项公式及和的性质,等比数列和的性质:公比为1q ≠-的等比数列{}n a 的前n 项和为n S ,则232,,,n n n n n S S S S S --仍成等比数列,其公比为n q ;同理等差数列和的性质:公差为d 的等差数列{}n a 的前n 项和为n S ,数列232,,,m m m m m S S S S S --构成等差数列,公差为md ,考查学生的分析能力,属于中档题.6.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( ) A .11111n n n a a a +=-+ B .{}n a 是单调递增数列 C .211011111111a a a a +++>+++ D .若1212120111n n a a aa a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a a a a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确; 对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+, 所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n n n n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭, 所以,()()()12121212111111111111n nn n a a a a a a a a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭, 由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确. 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.7.(多选)在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .1q =B .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】BC 【分析】 计算可得2q,故选项A 错误;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误.【详解】∵142332,12,a a a a =⎧⎨+=⎩∴23142332,12,a a a a a a ==⎧⎨+=⎩ 解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列, ∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 错误; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项,B C 正确; 又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:BC. 【点睛】方法点睛:证明数列的性质,常用的方法有:(1)定义法;(2)中项公式法.要根据已知灵活选择方法证明.8.(多选题)已知函数()22()()n n f n n n ⎧=⎨-⎩当为奇数时当为偶数时,且()()1n a f n f n =++,则na 等于( )A .()21n -+B .21n -C .21nD .12n -【答案】AC 【分析】对n 进行分类讨论,按照()()1n a f n f n =++写出通项即可. 【详解】当n 为奇数时,()()()()22112121n a f n f n n n n n =++=-+=--=-+; 当n 为偶数时,()()()221121n a f n f n n n n =++=-++=+,所以()()()2121n n n a n n ⎧-+⎪=⎨+⎪⎩当为奇数时当为偶数时. 故选:AC . 【点睛】易错点睛:对n 进行分类讨论时,应注意当n 为奇数时,1n +为偶数;当n 为偶数时,1n +为奇数.9.已知等差数列{}n a 的前n 项和为n S ,若981S =,713a =,3S ,1716S S -,k S 成等比数列,则( ) A .2n S n = B .122310111112021a a a a a a ++⋅⋅⋅+= C .11k = D .21n a n =-【答案】ACD 【分析】先根据题意求出等差数列的首项和公差,再根据等差数列的通项公式和求和公式求得,n n a S ,再由3S ,1716S S -,k S 成等比数列列出式子求解得出k 的值,再利用裂项相消法求和,得到122310111111021a a a a a a ++⋅⋅⋅+=,从而判断各项的正误. 【详解】依题意,95981S a ==,解得59a =; 而713a =,故75275a a d -==-,则1541a a d =-=, 则21n a n =-,2n S n =,故D 、A 正确:因为3S ,1716S S -,k S 成等比数列,故()223171617k S S S S a =-=,则22933k =,解得11k =,故C 正确;而122310111111021a a a a a a ++⋅⋅⋅+=,故B 错误. 故选:ACD . 【点睛】思路点睛:该题考查的是有关数列的问题,解题方法如下: (1)根据题意,求得通项公式,进而求得前n 项和; (2)根据三项成等比数列的条件,列出等式,求得k 的值;(3)利用裂项相消法,对12231011111a a a a a a ++⋅⋅⋅+求和; (4)对选项逐个判断正误,得到结果.10.已知数列{}n a ,{}n b 满足:12n n n a a b +=+,()*1312lnn n n n b a b n N n++=++∈,110a b +>,则下列命题为真命题的是( )A .数列{}n n a b -单调递增B .数列{}n n a b +单调递增C .数列{}n a 单调递增D .数列{}n b 从某项以后单调递增【答案】BCD 【分析】计算221122ln 2a b a b a b -=--<-,知A 错误;依题意两式相加{}ln +-n n a b n 是等比数列,得到()1113ln -+=+⋅+n n n a b a b n ,知B 正确;结合已知条件,计算10n n a a +->,即得C 正确;先计算()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-,再结合指数函数、对数函数增长特征知D 正确. 【详解】由题可知,12n n n a a b +=+①,1312lnn n n n b a b n ++=++②,①-②得,1131lnn n n n n a b a b n +++-=--,当1n =时,2211ln 2a b a b -=--,∴2211-<-a b a b ,故A 错误.①+②得,()113ln(1)3ln n n n n a b a b n n +++=+++-,()11ln(1)3ln n n n n a b n a b n +++-+=+-,∴{}ln +-n n a b n 是以11a b +为首项,3为公比的等比数列,∴()111ln 3-+-=+⋅n n n a b n a b ,∴()1113ln -+=+⋅+n n n a b a b n ,③又110a b +>,∴B 正确.将③代入①得,()()11113ln n n n n n n a a a b a a b n -+=++=++⋅+,∴()11113ln 0n n n a a a b n -+-=+⋅+>,故C 正确.将③代入②得,()()11113311ln 3ln ln n n n n n n n n b b a b b a b n n n-+++=+++=++⋅++,∴()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-.由110a b +>,结合指数函数与对数函数的增长速度知,从某个()*n n N∈起,()1113ln 0n a b n -+⋅->,又ln(1)ln 0n n +->,∴10n n b b +->,即{}n b 从某项起单调递增,故D 正确. 故选:BCD . 【点睛】判定数列单调性的方法:(1)定义法:对任意n *∈N ,1n n a a +>,则{}n a 是递增数列,1n n a a +<,则{}n a 是递减数列;(2)借助函数单调性:利用()n a f n =,研究函数单调性,得到数列单调性.。
城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
14.(全国卷II)已知{}n a 是各项为不同的正数的等差数列,1lg a 、2lg a 、4lg a 成等差数列.又21nn b a =,1,2,3,n =.(Ⅰ) 证明{}n b 为等比数列;(Ⅱ) 如果无穷等比数列{}n b 各项的和13S =,求数列{}n a 的首项1a 和公差d . (注:无穷数列各项的和即当n →∞时数列前n 项和的极限)解:(Ⅰ)设数列{a n }的公差为d ,依题意,由 2142lg lg lg a a a =+ 得2214a a a =即)3()(1121d a a d a +=+,得 10a d d ==或 因1221+=+n n a a b b n n ∴ 当d =0时,{a n }为正的常数列 就有11221==++n n a a b b n n当d =1a 时,1112112)12(,)12(1a a a a a a n n n n -+=-+=++,就有1221+=+n n a a b b n n 21= 于是数列{n b }是公比为1或21的等比数列 (Ⅱ)如果无穷等比数列{}n b 的公比q =1,则当n →∞时其前n 项和的极限不存在。
因而d =1a ≠0,这时公比q =21,112b d = 这样{}n b 的前n 项和为11[1()]22112n n dS -=- 则S=11[1()]122lim lim 112n n n n dS d →+∞→+∞-==-由13S =,得公差d =3,首项1a =d =315. (全国卷III)在等差数列}{n a 中,公差412,0a a a d 与是≠的等差中项.已知数列 ,,,,,,2131n k k k a a a a a 成等比数列,求数列}{n k 的通项.n k 解:由题意得:4122a a a =……………1分即)3()(1121d a a d a +=+…………3分 又0,d ≠d a =∴1…………4分又 ,,,,,,2131n k k k a a a a a 成等比数列, ∴该数列的公比为3313===dd a a q ,………6分 所以113+⋅=n k a a n ………8分又11)1(a k d k a a n n k n =-+=……………………………………10分13+=∴n n k 所以数列}{n k 的通项为13+=n n k ……………………………12分16. (山东卷)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈(I )证明数列{}1n a +是等比数列;(II )令212()n n f x a x a x a x =+++,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;(II )由(I )知321nn a =⨯- 因为212()n n f x a x a x a x =+++所以112()2n n f x a a x na x -'=+++从而12(1)2n f a a na '=+++=()()23212321(321)n n ⨯-+⨯-++⨯- =()232222n n +⨯++⨯-()12n +++=()1(1)31262n n n n ++-⋅-+ 由上()()22(1)23131212n f n n n '--=-⋅-()21221n n --=()()1212121(21)n n n n -⋅--+=12(1)2(21)nn n ⎡⎤--+⎣⎦①当1n =时,①式=0所以22(1)2313f n n '=-;当2n =时,①式=-120<所以22(1)2313f n n '<-当3n ≥时,10n ->又()011211nn n nn n n n C C C C -=+=++++≥2221n n +>+所以()()12210nn n ⎡⎤--+>⎣⎦即①0>从而2(1)f '>22313n n - 17.(上海)本题共有2个小题,第1小题满分6分, 第2小题满分8分.假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? [解](1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列, 其中a 1=250,d=50,则S n =250n+502)1(⨯-n n =25n 2+225n, 令25n 2+225n ≥4750,即n 2+9n-190≥0,而n 是正整数, ∴n ≥10.到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列, 其中b 1=400,q=1.08,则b n =400·(1.08)n-1·0.85. 由题意可知a n >0.85 b n ,有250+(n-1)·50>400·(1.08)n-1·0.85. 由计箅器解得满足上述不等式的最小正整数n=6.到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 18. (天津卷)已知)0,0,( 1221>>∈+++++=*---b a N n b ab b a b a a u n n n n n n .(Ⅰ)当b a =时,求数列{}n u 的前n 项和n S ; (Ⅱ)求1lim-∞→n nn u u .(18)解:(Ⅰ)当b a =时,nn a n u )1(+=.这时数列}{n u 的前n 项和n n n a n na a a a S )1(432132++++++=- . ①①式两边同乘以a ,得 1432)1(432+++++++=n n n a n na a a a aS ②①式减去②式,得 132)1(2)1(++-++++=-n n n a n a a a a S a若1≠a ,a a n aa a S a n n n ++---=-+1)1(1)1()1(,221212)1(2)2()1(1)1()1()1(a a a a n a n a a n a a a a S n n n n n -+-+-+=-+-+--=+++ 若1=a ,2)3()1(32+=+++++=n n n n S n (Ⅱ)由(Ⅰ),当b a =时,nn a n u )1(+=,则a n n a na a n u u n n nn n n n =+=+=∞→-∞→-∞→)1(lim )1(lim lim 11. 当b a ≠时,112[1()()n n n n n n n b b b u a a b ab b a a a a--=++++=++++ 1111()1()1n n n n b a a a b b a b a+++-==---此时,nnn n n n ba b a u u --=++-111. 若0>>b a ,a aba b b a b a b a u u nnn nn n n n n n n =--=--=∞→++∞→-∞→)(1)(limlimlim 111. 若0>>a b ,b ba b b aa u u nn n n nn =--==∞→-∞→1)()(lim lim1.19. (天津卷)若公比为c 的等比数列{n a }的首项1a =1且满足:122n n n a a a --+=(n =3,4,…)。
2021年高考数学解答题专项复习-《数列》1.设{a}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.n(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.2.设{a}是等差数列,且a1=ln2,a2+a3=5ln2.n(1)求{a n}的通项公式;(2)求错误!未找到引用源。
.3.设数列{a}的前n项和为S n.已知2S n=3n+3.n(1)求{a n}的通项公式;(2)若数列{b n}满足a n·b n=log3a n,求{b n}的前n项和T n.4.已知{a}是公差为1的等差数列,且a1,a2,a4成等比数列.n(1)求{a n}的通项公式;(2)求数列的前n项和.5.已知数列{a}前n项和为S n,且S n=2n2+n,n∈N+,数列{b n}满足a n=4log2b n+3,n∈N+.n(1)求a n和b n的通项公式;(2)求数列{a n·b n}的前n项和T n.6.已知数列{a}和{b n}满足a1=1,b1=0,,.n(1)证明:{a n+b n}是等比数列,{a n–b n}是等差数列;(2)求{a n}和{b n}的通项公式.7.S为数列{a n}的前n项和.已知a n>0,=.n(1)求{a n}的通项公式;(2)设 ,求数列{b n}的前n项和.8.已知等差数列{a}满足a3=6,前7项和为S7=49.n(1)求{a n}的通项公式(2)设数列{b n}满足b n=(a n-3)·3n,求{b n}的前n项和T n.9.设数列{a}满足a1+3a2+...+(2n-1)a n=2n.n(1)求{a n}通项公式;(2)求数列的前n项和.10.已知等比数列{a}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,n数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.11.已知数列{a}是递增的等比数列,且a1+a4=9,a2a3=8.n(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,,求数列{b n}的前n项和T n.12.已知数列{a}为递增的等差数列,其中a3=5,且a1,a2,a5成等比数列.n(1)求{a n}的通项公式;(2)设记数列{b n}的前n项和为T n,求使得成立的m的最小正整数.13.等比数列{a}的各项均为正数,且.n(1)求数列{a n}的通项公式;(2)设,求数列的前n项和T n.14.已知数列{a}是首项为正数的等差数列,数列的前n项和为.n(1)求数列{a n}的通项公式;(2)设错误!未找到引用源。
2021年高考新高考卷Ⅱ海南数学试题含答案解析姓名:__________ 班级:__________考号:__________一、解答题(共6题)1、已知函数.(1)当时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.2、已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为,(1)求C方程;(2)点N为椭圆上任意一点,求△AMN的面积的最大值.3、如图,四棱锥P-ABCD的底面为正方形,PD^底面ABCD.设平面PAD与平面PBC的交线为.(1)证明:^平面PDC;(2)已知PD=AD=1,Q为上的点,QB=,求PB与平面QCD所成角的正弦值.4、为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表:(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;(2)根据所给数据,完成下面的列联表:(3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?附:,5、已知公比大于的等比数列满足.(1)求的通项公式;(2)求.6、在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.问题:是否存在,它的内角的对边分别为,且,,________?注:如果选择多个条件分别解答,按第一个解答计分.二、填空题(共4题)1、某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG 为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直线DE和EF 的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2.2、将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为________.3、斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.4、已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________三、选择题(共11题)1、已知a>0,b>0,且a+b=1,则()A. B.C. D.2、下图是函数y= sin(ωx+φ)的部分图像,则sin(ωx+φ)= ()A. B. C. D.3、我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是()A. 这11天复工指数和复产指数均逐日增加;B. 这11天期间,复产指数增量大于复工指数的增量;C. 第3天至第11天复工复产指数均超过80%;D. 第9天至第11天复产指数增量大于复工指数的增量;4、若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是()A. B.C. D.5、已知函数在上单调递增,则的取值范围是()A. B. C. D.6、要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A. 2种B. 3种C. 6种D. 8种7、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A. 62%B. 56%C. 46%D. 42%8、日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A. 20°B. 40°C. 50°D. 90°9、在中,D是AB边上的中点,则=()A. B. C. D.10、=()A. B. C. D.11、设集合A={2,3,5,7},B={1,2,3,5,8},则=()A. {1,3,5,7}B. {2,3}C. {2,3,5}D. {1,2,3,5,7,8}四、多项选择(共1题)1、已知曲线.()A. 若m>n>0,则C是椭圆,其焦点在y轴上B. 若m=n>0,则C是圆,其半径为C. 若mn<0,则C是双曲线,其渐近线方程为D. 若m=0,n>0,则C是两条直线============参考答案============一、解答题1、(1)(2)【解析】【分析】(1)先求导数,再根据导数几何意义得切线斜率,根据点斜式得切线方程,求出与坐标轴交点坐标,最后根据三角形面积公式得结果;(2)解法一:利用导数研究,得到函数得导函数的单调递增,当a=1时由得,符合题意;当a>1时,可证,从而存在零点,使得,得到,利用零点的条件,结合指数对数的运算化简后,利用基本不等式可以证得恒成立;当时,研究.即可得到不符合题意.综合可得a的取值范围.解法二:利用指数对数的运算可将,令,上述不等式等价于,注意到的单调性,进一步等价转化为,令,利用导数求得,进而根据不等式恒成立的意义得到关于a的对数不等式,解得a的取值范围.【详解】(1),,.,∴切点坐标为(1,1+e),∴函数f(x)在点(1,f(1)处的切线方程为,即,切线与坐标轴交点坐标分别为,∴所求三角形面积为;(2)解法一:,,且.设,则∴g(x)在上单调递增,即在上单调递增,当时,,∴,∴成立.当时,,,,∴存在唯一,使得,且当时,当时,,,因此>1∴∴恒成立;当时,∴不是恒成立.综上所述,实数a的取值范围是[1,+∞).解法二:等价于,令,上述不等式等价于,显然为单调增函数,∴又等价于,即,令,则在上h’(x)>0,h(x)单调递增;在(1,+∞)上h’(x)<0,h(x)单调递减,∴,,∴a的取值范围是[1,+∞).【点睛】本题考查导数几何意义、利用导数研究不等式恒成立问题,考查综合分析求解能力,分类讨论思想和等价转化思想,属较难试题.2、(1);(2)12.【解析】【分析】(1)由题意分别求得a,b的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N的位置,然后联立直线方程与椭圆方程,结合判别式确定点N到直线AM的距离即可求得三角形面积的最大值.【详解】(1)由题意可知直线AM的方程为:,即.当y=0时,解得,所以a=4,椭圆过点M(2,3),可得,解得b2=12.所以C的方程:.(2)设与直线AM平行的直线方程为:,如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.联立直线方程与椭圆方程,可得:,化简可得:,所以,即m2=64,解得m=±8,与AM距离比较远的直线方程:,直线AM方程为:,点N到直线AM的距离即两平行线之间的距离,利用平行线之间的距离公式可得:,由两点之间距离公式可得.所以△AMN的面积的最大值:.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3、(1)证明见解析;(2).【解析】【分析】(1)利用线面平行的判定定理以及性质定理,证得,利用线面垂直的判定定理证得平面,从而得到平面;(2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标,求得,即可得到直线与平面所成角的正弦值.【详解】(1)证明:在正方形中,,因为平面,平面,所以平面,又因为平面,平面平面,所以,因为在四棱锥中,底面是正方形,所以且平面,所以因所以平面;(2)如图建立空间直角坐标系,因为,则有,设,则有,因为QB=,所以有设平面的法向量为,则,即,令,则,所以平面的一个法向量为,则根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于所以直线与平面所成角的正弦值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定和性质,线面垂直的判定和性质,利用空间向量求线面角,利用基本不等式求最值,属于中档题目.4、(1);(2)答案见解析;(3)有.【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据可得列联表;(3)计算出,结合临界值表可得结论.【详解】(1)由表格可知,该市100天中,空气中的浓度不超过75,且浓度不超过150的天数有天,所以该市一天中,空气中的浓度不超过75,且浓度不超过150的概率为;(2)由所给数据,可得列联表为:合计64 16 8010 10 20合计74 26 100(3)根据列联表中的数据可得,因为根据临界值表可知,有的把握认为该市一天空气中浓度与浓度有关.【点睛】本题考查了古典概型的概率公式,考查了完善列联表,考查了独立性检验,属于中档题.5、(1);(2)【解析】【分析】(1)由题意得到关于首项、公比的方程组,求解方程组得到首项、公比的值即可确定数列的通项公式;(2)首先求得数列的通项公式,然后结合等比数列前n项和公式求解其前n项和即可.【详解】(1) 设等比数列的公比为q(q>1),则,整理可得:,,数列的通项公式为:.(2)由于:,故:.【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,等差数列与等比数列求和公式是数列求和的基础.6、详见解析【解析】【分析】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a,b的比例关系,根据比例关系,设出长度长度,由余弦定理得到的长度,根据选择的条件进行分析判断和求解.解法二:利用诱导公式和两角和的三角函数公式求得的值,得到角的值,然后根据选择的条件进行分析判断和求解.【详解】解法一:由可得:,不妨设,则:,即.选择条件①的解析:据此可得:,,此时.选择条件②的解析:据此可得:,则:,此时:,则:.选择条件③的解析:可得,,与条件矛盾,则问题中的三角形不存在.解法二:∵,∴,,∴,∴,∴,∴,若选①,,∵,∴,∴c=1;若选②,,则,;若选③,与条件矛盾.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.二、填空题1、【解析】【分析】利用求出圆弧所在圆的半径,结合扇形的面积公式求出扇形的面积,求出直角的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.【详解】设,由题意,,所以,因为,所以,因为,所以,因为与圆弧相切于点,所以,即为等腰直角三角形;在直角中,,,因为,所以,解得;等腰直角的面积为;扇形的面积,所以阴影部分的面积为.故答案为:.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.2、【解析】【分析】首先判断出数列与项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.【详解】因为数列是以1为首项,以2为公差的等差数列,数列是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列是以1为首项,以6为公差的等差数列,所以的前项和为,故答案为:.【点睛】该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于简单题目.3、【解析】【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y并整理得到关于x的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【详解】∵抛物线的方程为,∴抛物线的焦点F坐标为,又∵直线AB过焦点F且斜率为,∴直线AB的方程为:代入抛物线方程消去y并化简得,解法一:解得所以解法二:设,则,过分别作准线的垂线,设垂足分别为如图所示.故答案为:【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题. 4、【解析】【分析】利用计算即可.【详解】因为正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点所以故答案为:【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些.三、选择题1、 ABD【解析】【分析】根据,结合基本不等式及二次函数知识进行求解.【详解】对于A,,当且仅当时,等号成立,故A正确;对于B,,所以,故B正确;对于C,,当且仅当时,等号成立,故C不正确;对于D,因为,所以,当且仅当时,等号成立,故D正确;故选:ABD【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.【解析】【分析】首先利用周期确定的值,然后确定的值即可确定函数的解析式,最后利用诱导公式可得正确结果.【详解】由函数图像可知:,则,所以不选A,当时,,解得:,即函数的解析式为:.而故选:BC.【点睛】已知f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.3、 CD【分析】注意到折线图中有递减部分,可判定A错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD正确.【详解】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B错误;由图可知,第3天至第11天复工复产指数均超过80%,故C正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D正确;【点睛】本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题.4、 D【解析】【分析】首先根据函数奇偶性与单调性,得到函数在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在上的奇函数在上单调递减,且,所以在上也是单调递减,且,,所以当时,,当时,,所以由可得:或或解得或,所以满足的的取值范围是,故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.5、 D【解析】【分析】首先求出的定义域,然后求出的单调递增区间即可.【详解】由得或所以的定义域为因为在上单调递增所以在上单调递增所以故选:D【点睛】在求函数的单调区间时一定要先求函数的定义域.6、 C【解析】【分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【详解】第一步,将3名学生分成两个组,有种分法第二步,将2组学生安排到2个村,有种安排方法所以,不同的安排方法共有种故选:C【点睛】解答本类问题时一般采取先组后排的策略.7、 C【解析】【分析】记“该中学学生喜欢足球”为事件,“该中学学生喜欢游泳”为事件,则“该中学学生喜欢足球或游泳”为事件,“该中学学生既喜欢足球又喜欢游泳”为事件,然后根据积事件的概率公式可得结果.【详解】记“该中学学生喜欢足球”为事件,“该中学学生喜欢游泳”为事件,则“该中学学生喜欢足球或游泳”为事件,“该中学学生既喜欢足球又喜欢游泳”为事件,则,,,所以所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为.故选:C.【点睛】本题考查了积事件的概率公式,属于基础题.8、 B【解析】【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点处的纬度,计算出晷针与点处的水平面所成角.【详解】画出截面图如下图所示,其中是赤道所在平面的截线;是点处的水平面的截线,依题意可知;是晷针所在直线.是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知、根据线面垂直的定义可得..由于,所以,由于,所以,也即晷针与点处的水平面所成角为.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.9、 C【解析】【分析】根据向量的加减法运算法则算出即可.【详解】故选:C【点睛】本题考查的是向量的加减法,较简单.10、 B【解析】【分析】直接计算出答案即可.【详解】故选:B【点睛】本题考查的是复数的计算,较简单.11、 C【解析】【分析】根据集合交集的运算可直接得到结果.【详解】因为A={2,3,5,7},B={1,2,3,5,8},所以故选:C【点睛】本题考查的是集合交集的运算,较简单. 四、多项选择1、 ACD【解析】【分析】结合选项进行逐项分析求解,时表示椭圆,时表示圆,时表示双曲线,时表示两条直线.【详解】对于A,若,则可化为,因为,所以,即曲线表示焦点在轴上的椭圆,故A正确;对于B,若,则可化为,此时曲线表示圆心在原点,半径为的圆,故B不正确;对于C,若,则可化为,此时曲线表示双曲线,由可得,故C正确;对于D,若,则可化为,,此时曲线表示平行于轴的两条直线,故D正确;故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.。
解密04 数列求和及综合问题A 组 考点专练一、选择题1.已知T n 为数列⎩⎨⎧⎭⎬⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A.1 026B.1 025C.1 024D.1 023【答案】C【解析】因为2n +12n =1+12n ,所以T n =n +1-12n ,则T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013,所以整数m 的最小值为1 024.2.在等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项的和为( ) A.1 009 B.1 010 C.2 019 D.2 020【答案】D【解析】设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2, b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,∴数列{a n cos n π}的前2 020项的和S 2 020=(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×1 010=2 020. 3.数列{a n }满足a 1=1,对任意n ∈N *,都有a n +1=1+a n +n ,则1a 1+1a 2+…+1a 99=( )A.9998 B.2C.9950D.99100【答案】C【解析】对任意n ∈N *,都有a n +1=1+a n +n ,则a n +1-a n =n +1,则a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+1=n (n +1)2,则1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以1a 1+1a 2+…+1a 99=2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫199-1100]=2×⎝⎛⎭⎫1-1100=9950. 4.(多选题)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=S n +2a n +1,数列⎩⎨⎧⎭⎬⎫2n a n a n +1的前n 项和为T n ,n ∈N *,则下列选项正确的为( ) A.数列{a n +1}是等差数列 B.数列{a n +1}是等比数列 C.数列{a n }的通项公式为a n =2n -1 D.T n <1 【答案】BCD【解析】由S n +1=S n +2a n +1,得a n +1=S n +1-S n =2a n +1,可化为a n +1+1=2(a n +1).由a 1=1,得a 1+1=2,则数列{a n +1}是首项为2,公比为2的等比数列.则a n +1=2n,即a n =2n-1.由2na n a n +1=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,得T n=1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1<1.所以A 错误,B ,C ,D 正确.故选BCD.5.(多选题)已知数列{a n }满足a n +1+a n =n ·(-1)n (n +1)2,其前n 项和为S n ,且m +S 2 019=-1 009,则下列说法正确的是( ) A.m 为定值 B.m +a 1为定值 C.S 2 019-a 1为定值 D.ma 1有最大值【答案】BCD【解析】当n =2k (k ∈N *)时,由已知条件得a 2k +a 2k +1=2k ·(-1)k (2k+1),所以S 2 019=a 1+a 2+a 3+…+a 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019)=a 1-2+4-6+8-10+…-2 018=a 1+1 008-2 018=a 1-1 010,所以S 2 019-a 1=-1 010.m +S 2 019=m +a 1-1 010=-1 009,所以m +a 1=1,所以ma 1≤⎝⎛⎭⎫m +a 122=14,当且仅当m =a 1=12时等号成立,此时ma 1取得最大值14.故选BCD. 二、填空题6.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =________. 【答案】2n +1-2【解析】因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n,所以S n =2-2n +11-2=2n +1-2.7.已知数列{a n }的前n 项和为S n ,且2S n =3a n +1,则a 1=________,a n =________. 【答案】-1 -3n -1【解析】令n =1,则2S 1=3a 1+1,又S 1=a 1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=12(3a n -3a n -1),整理得a n =3a n -1,即a na n -1=3(n ≥2).因此,{a n }是首项为-1,公比为3的等比数列. 故a n =-3n -1.8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________. 【答案】5【解析】S n =1×21+2×22+…+n ×2n , 则2S n =1×22+2×23+…+n ×2n +1,两式相减得 -S n=2+22+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1,故S n =2+(n -1)·2n +1. 又a n =2n ,∴S n -na n +1+50=2+(n -1)·2n +1-n ·2n +1+50=52-2n +1, 依题意52-2n +1<0,故最小正整数n 的值为5. 三、解答题9.记S n 为等差数列{a n }的前n 项和,且a 10=4,S 15=30. (1)求数列{a n }的通项公式以及前n 项和S n ;(2)记数列{2a n +4+a n }的前n 项和为T n ,求满足T n >0的最小正整数n 的值. 【解析】(1)记数列{a n }的公差为d ,S 15=30⇒15a 8=30⇒a 8=2,故d =a 10-a 810-8=1,故a n =a 10+(n -10)d =4+n -10=n -6,S n =na 1+n (n -1)d 2=-5n +n (n -1)2=n 22-11n2.(2)依题意,2a n +4+a n =n -6+2n -2T n =(-5-4+…+n -6)+(2-1+20+…+2n -2)=n (n -11)2+2n -12, 当n =1时,T 1=-1×10+21-12<0;当n =2时,T 2=-2×9+22-12<0;当n =3时,T 3=-3×8+23-12<0;当n =4时,T 4=-4×7+24-12<0;当n ≥5时,n (n -11)2≥-15,2n -12≥312,所以T n >0.故满足T n >0的最小正整数n 的值为5.10.甲、乙两同学在复习数列时发现曾经做过的一道有关数列的题目因纸张被破坏,导致一个条件看不清,具体如下:等比数列{a n }的前n 项和为S n ,已知________. (1)判断S 1,S 2,S 3的关系;(2)若a 1-a 3=3,设b n =n 12|a n |,记{b n }的前n 项和为T n ,求证:T n <43.甲同学记得缺少的条件是首项a 1的值,乙同学记得缺少的条件是公比q 的值,并且他俩都记得第(1)问的答案是S 1,S 3,S 2成等差数列.如果甲、乙两同学记得的答案是正确的,请你通过推理把条件补充完整并解答此题.【解析】(1)由S 1,S 3,S 2成等差数列,得 2S 3=S 1+S 2,即2(a 1+a 1q +a 1q 2)=2a 1+a 1q , 解得q =-12或q =0(舍去).若乙同学记得的缺少的条件是正确的,则公比q =-12.所以S 1=a 1,S 2=a 1+a 2=a 1-12a 1=12a 1,S 3=a 1+a 2+a 3=a 1-12a 1+14a 1=34a 1,可得S 1+S 2=2S 3,即S 1,S 3,S 2成等差数列.(2)由a 1-a 3=3,可得a 1-14a 1=3,解得a 1=4,所以a n =4×⎝⎛⎭⎫-12n -1.所以b n =n 12|a n |=n 12⎪⎪⎪⎪⎪⎪4×⎝⎛⎭⎫-12n -1=23n ·⎝⎛⎭⎫12n. 所以T n =23⎝⎛⎭⎫1×12+2×14+3×18+…+n ×12n , 12T n =23⎝⎛⎭⎫1×14+2×18+3×116+…+n ×12n +1, 两式相减,得12T n =23⎝⎛⎭⎫12+14+18+116+…+12n -n ·12n +1=23⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎫1-12n1-12-n ·12n +1,化简可得T n =43⎝ ⎛⎭⎪⎫1-n +22n +1.由1-n +22n +1<1,得T n <43.B 组 专题综合练11.设数列{a n }的各项均为正数,前n 项和为S n ,对于任意的n ∈N *,a n ,S n ,a 2n 成等差数列,设数列{b n}的前n 项和为T n ,且b n =(ln x )na 2n ,若对任意的实数x ∈(1,e](e 为自然对数的底数)和任意正整数n ,总有T n <r (r ∈N *),则r 的最小值为________. 【答案】2【解析】由题意得,2S n =a n +a 2n , 当n ≥2时,2S n -1=a n -1+a 2n -1,∴2S n -2S n -1=a n +a 2n -a n -1-a 2n -1,∴(a n +a n -1)(a n -a n -1-1)=0,∵a n >0,∴a n -a n -1=1,即数列{a n }是公差为1的等差数列,又2a 1=2S 1=a 1+a 21,a 1=1,∴a n =n (n ∈N *).又x ∈(1,e],∴0<ln x ≤1,∴T n ≤1+122+132+…+1n 2<1+11×2+12×3+…+1(n -1)n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =2-1n <2,∴r ≥2,即r 的最小值为2. 12.等差数列{a n }的公差为2,a 2,a 4,a 8分别等于等比数列{b n }的第2项、第3项、第4项. (1)求数列{a n }和{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+…+c na n =b n +1,求数列{c n }的前2 020项的和.【解析】(1)依题意得b 23=b 2b 4, 所以(a 1+6)2=(a 1+2)(a 1+14),所以a 21+12a 1+36=a 21+16a 1+28,解得a 1=2.∴a n =2n .设等比数列{b n }的公比为q ,所以q =b 3b 2=a 4a 2=84=2,又b 2=a 2=4,∴b n =4×2n -2=2n . (2)由(1)知,a n =2n ,b n =2n . 因为c 1a 1+c 2a 2+…+c n -1a n -1+c n a n =2n +1①当n ≥2时,c 1a 1+c 2a 2+…+c n -1a n -1=2n ②由①-②得,c n a n =2n ,即c n =n ·2n +1,又当n =1时,c 1=a 1b 2=23不满足上式,∴c n =⎩⎪⎨⎪⎧8,n =1,n ·2n +1,n ≥2.故S 2 020=8+2×23+3×24+…+2 020×22 021 =4+1×22+2×23+3×24+…+2 020×22 021设T 2 020=1×22+2×23+3×24+…+2 019×22 020+2 020×22 021③, 则2T 2 020=1×23+2×24+3×25+…+2 019×22 021+2 020×22 022④, 由③-④得:-T 2 020=22+23+24+…+22 021-2 020×22 022 =22(1-22 020)1-2-2 020×22 022=-4-2 019×22 022,所以T 2 020=2 019×22 022+4, 所以S 2 020=T 2 020+4=2 019×22 022+8.。
高考数学二轮复习专题过关检测—数列一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·内蒙古包头一模)在数列{a n }中,a 1=2,a n+1-a n -2=0,则a 5+a 6+…+a 14=( ) A.180B.190C.160D.1202.(2021·北京朝阳期末)已知等比数列{a n }的各项均为正数,且a 3=9,则log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=( ) A.52B.53C.10D.153.(2021·湖北荆州中学月考)设等比数列{a n }的前n 项和为S n ,若S10S 5=12,则S15S 5=( )A.12B.13C.23D.344.(2021·北京师大附属中学模拟)我国明代著名乐律学家明宗室王子朱载堉在《律学新说》中提出十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个c 1键的8个白键与5个黑键(如图),从左至右依次为:c ,#c ,d ,#d ,e ,f ,#f ,g ,#g ,a ,#a ,b ,c 1的音频恰成一个公比为√212的等比数列的原理,也即高音c 1的频率正好是中音c 的2倍.已知标准音a 的频率为440 Hz,则频率为220√2 Hz 的音名是( )A.dB.fC.eD.#d5.(2021·四川成都二诊)已知数列{a n}的前n项和S n=n2,设数列{1a n a n+1}的前n项和为T n,则T20的值为()A.1939B.3839C.2041D.40416.(2021·河南新乡二模)一百零八塔位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为()A.39B.45C.48D.517.(2021·陕西西安铁一中月考)在1到100的整数中,除去所有可以表示为2n(n∈N*)的整数,则其余整数的和是()A.3 928B.4 024C.4 920D.4 9248.已知函数f(n)={n2,n为奇数,-n2,n为偶数,且a n=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10 200二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·辽宁沈阳三模)已知等比数列{a n}的前n项和S n=4n-1+t,则()A.首项a1不确定B.公比q=4C.a2=3D.t=-1410.(2021·山东临沂模拟)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是()A.a5=1B.S n的最小值为S3C.S1=S6D.S n存在最大值11.已知数列{a n}是等差数列,其前30项和为390,a1=5,b n=2a n,对于数列{a n},{b n},下列选项正确的是() A.b10=8b5 B.{b n}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=20919312.(2021·广东广州一模)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……第n(n∈N*)次得到数列1,x1,x2,x3,…,x k,2.记a n=1+x1+x2+…+x k+2,数列{a n}的前n项和为S n,则()A.k+1=2nB.a n+1=3a n-3C.a n =32(n 2+3n )D.S n =34(3n+1+2n-3) 三、填空题:本题共4小题,每小题5分,共20分.13.(2021·山西太原检测)在等差数列{a n }中,若a 2,a 2 020为方程x 2-10x+16=0的两根,则a 1+a 1 011+a 2 021等于 .14.(2021·江苏如东检测)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则数列{log 2a n }的前n 项和T n = .15.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 .16.(2021·新高考Ⅰ,16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm,10 dm ×6 dm,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n 次,那么∑k=1nS k =dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021·海南海口模拟)已知正项等比数列{a n },a 4=116,a 5a 7=256. (1)求数列{a n }的通项公式; (2)求数列{|log 2a n |}的前n 项和.18.(12分)(2021·全国甲,理18)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.19.(12分)(2021·山东济宁二模)已知数列{a n}是正项等比数列,满足a3是2a1,3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;(2)若b n=(-1)n log2a2n+1,求数列{b n}的前n项和T n.20.(12分)(2021·山东临沂一模)在①S nn =a n+12,②a n+1a n=2S n,③a n2+a n=2S n这三个条件中任选一个,补充在下面的问题中,并解答该问题.已知正项数列{a n}的前n项和为S n,a1=1,且满足.(1)求a n;(2)若b n=(a n+1)·2a n,求数列{b n}的前n项和T n.21.(12分)(2021·山东泰安一中月考)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年更换1万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数F (n );(2)若该市计划用7年的时间完成全部更换,求a 的最小值.22.(12分)(2021·广东广州检测)已知数列{a n }满足a 1=23,且当n ≥2时,a 1a 2…a n-1=2a n-2.(1)求证:数列{11−a n}是等差数列,并求数列{a n }的通项公式;(2)记T n =12a 1a 2…a n ,S n =T 12+T 22+…+T n 2,求证:当n ∈N *时,a n+1-23<S n .答案及解析1.B 解析 因为a n+1-a n =2,a 1=2,所以数列{a n }是首项为2,公差为2的等差数列.所以a n =2+(n-1)×2=2n.设{a n }的前n 项和为S n ,则S n =n(2+2n)2=n 2+n.所以a 5+a 6+…+a 14=S 14-S 4=190.2.C 解析 因为等比数列{a n }的各项均为正数,且a 3=9,所以log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=log 3(a 1a 2a 3a 4a 5)=log 3(a 35)=log 3(95)=log 3(310)=10.3.D 解析 由题意可知S 5,S 10-S 5,S 15-S 10成等比数列.∵S 10S 5=12,∴设S 5=2k ,S 10=k ,k ≠0,∴S 10-S 5=-k ,∴S 15-S 10=k2,∴S 15=3k2,∴S 15S 5=3k22k =34. 4.D 解析 因为a 的音频是数列的第10项,440=220√2×212=220√2×(2112)10−4,所以频率为220√2 Hz 是该数列的第4项,其音名是#d.5.C 解析 当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1.而a 1=1也符合a n =2n-1,所以a n =2n-1.所以1an a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),所以T n =12(1−13+13-15+⋯+12n-1-12n+1)=121-12n+1=n2n+1,所以T 20=202×20+1=2041. 6.D 解析 设该数列为{a n },依题意,可知a 5,a 6,…成等差数列,且公差为2,a 5=5.设塔群共有n 层,则1+3+3+5+5(n-4)+(n-4)(n-5)2×2=108,解得n=12.故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.7.D 解析 由2n ∈[1,100],n ∈N *,可得n=1,2,3,4,5,6,所以21+22+23+24+25+26=2×(1−26)1−2=126.又1+2+3+ (100)100×1012=5 050,所以在1到100的整数中,除去所有可以表示为2n (n ∈N *)的整数,其余整数的和为5 050-126=4 924.8.B 解析 由已知得当n 为奇数时,a n =n 2-(n+1)2=-2n-1,当n 为偶数时,a n =-n 2+(n+1)2=2n+1.所以a 1+a 2+a 3+…+a 100=-3+5-7+…+201=(-3+5)+(-7+9)+…+(-199+201)=2×50=100.9.BCD 解析 当n=1时,a 1=S 1=1+t ,当n ≥2时,a n =S n -S n-1=(4n-1+t )-(4n-2+t )=3×4n-2.由数列{a n }为等比数列,可知a 1必定符合a n =3×4n-2, 所以1+t=34,即t=-14.所以数列{a n }的通项公式为a n =3×4n-2,a 2=3, 数列{a n }的公比q=4.故选BCD . 10.AC 解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A,a 5=-3+4×1=1,故A 正确.对于选项B,a n =-3+n-1=n-4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0,所以S n 的最小值为S 3或S 4,故B 错误.对于选项C,S6-S1=a2+a3+a4+a5+a6=5a4,又因为a4=0,所以S6-S1=0,即S1=S6,故C正确.对于选项D,因为S n=-3n+n(n-1)2=n2-7n2,所以S n无最大值,故D错误.11.BD解析设{a n}的公差为d,由已知得30×5+30×29d2=390,解得d=1629.∴a n=a1+(n-1)d=16n+12929.∵b n=2a n,∴b n+1b n =2a n+12a n=2a n+1-a n=2d,故数列{b n}是等比数列,B选项正确.∵5d=5×1629=8029≠3,∴b10b5=(2d)5=25d≠23,∴b10≠8b5,A选项错误.∵a30=a1+29d=5+16=21,∴a1b30=5×221>105,C选项错误.∵a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,∴a3+a5+a7a2+a4+a6=3a53a4=a5a4=209193,D选项正确.12.ABD解析由题意,可知第1次得到数列1,3,2,此时k=1,第2次得到数列1,4,3,5,2,此时k=3,第3次得到数列1,5,4,7,3,8,5,7,2,此时k=7,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k=15,……第n次得到数列1,x1,x2,x3,…,x k,2,此时k=2n-1,所以k+1=2n,故A项正确.当n=1时,a 1=1+3+2=6,当n=2时,a 2=a 1+2a 1-3=3a 1-3,当n=3时,a 3=a 2+2a 2-3=3a 2-3,……所以a n+1=3a n -3,故B 项正确. 由a n+1=3a n -3,得a n+1-32=3(a n -32),又a 1-32=92,所以{a n -32}是首项为92,公比为3的等比数列,所以a n -32=92×3n-1=3n+12,即a n =3n+12+32,故C 项错误.S n =(322+32)+(332+32)+…+(3n+12+32)=343n+1+2n-3,故D 项正确.13.15 解析 因为a 2,a 2 020为方程x 2-10x+16=0的两根,所以a 2+a 2 020=10.又{a n }为等差数列,所以a 1+a 2 021=a 2+a 2 020=2a 1 011=10,即a 1 011=5. 所以a 1+a 1 011+a 2 021=3a 1 011=15. 14.n(n+1)2解析 因为S n =2a n -2,所以当n ≥2时,S n-1=2a n-1-2,两式相减,得a n =2a n -2a n-1,即a n =2a n-1.当n=1时,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,所以a n =2n . 所以log 2a n =n ,所以T n =n(n+1)2.15.3n 2-2n 解析 数列{2n-1}的项均为奇数,数列{3n-2}的所有奇数项均为奇数,所有偶数项均为偶数,并且显然{3n-2}中的所有奇数均能在{2n-1}中找到,所以{2n-1}与{3n-2}的所有公共项就是{3n-2}的所有奇数项,这些项从小到大排列得到的新数列{a n }是以1为首项,以6为公差的等差数列.所以{a n }的前n 项和为S n =n×1+n(n-1)2×6=3n 2-2n.16.5 240(3−n+32n) 解析 对折3次共可以得到52 dm ×12 dm,5 dm ×6 dm,10 dm ×3 dm,20dm ×32dm 四种规格的图形,面积之和S 3=4×30=120 dm 2;对折4次共可以得到54 dm ×12 dm,52dm ×6 dm,5 dm ×3 dm,10 dm ×32dm,20 dm ×34dm 五种规格的图形,S 4=5×15=75 dm 2.可以归纳对折n 次可得n+1种规格的图形,S n =(n+1)·2402ndm 2.则∑k=1nS k =S 1+S 2+…+S n =240221+322+423+…+n+12n . 记T n =221+322+423+…+n+12n , ① 则12T n =222+323+…+n2n +n+12n+1.②①与②式相减,得T n -12T n =12T n =221+122+123+…+12n −n+12n+1=32−n+32n+1. 故T n =3-n+32n .故∑k=1nS k =240·T n =240(3−n+32n).17.解 (1)设正项等比数列{a n }的公比为q (q>0).由等比数列的性质可得a 5a 7=a 62=256,因为a n >0,所以a 6=16.所以q 2=a6a 4=256,即q=16.所以a n =a 6q n-6=16×16n-6=16n-5. (2)由(1)可知log 2a n =log 216n-5=4n-20,设b n =|log 2a n |=|4n-20|,数列{b n }的前n 项和为T n . ①当n ≤5,且n ∈N *时,T n =n(16+20-4n)2=18n-2n 2;②当n ≥6,且n ∈N *时,T n =T 5+(4+4n-20)(n-5)2=18×5-2×52+(2n-8)(n-5)=2n 2-18n+80.综上所述,T n={18n-2n2,n≤5,且n∈N*,2n2-18n+80,n≥6,且n∈N*.18.证明若选①②⇒③,设数列{a n}的公差为d1,数列{√S n}的公差为d2.∵当n∈N*时,a n>0,∴d1>0,d2>0.∴S n=na1+n(n-1)d12=d12n2+(a1-d12)n.又√S n=√S1+(n-1)d2,∴S n=a1+d22(n-1)2+2√a1d2(n-1)=d22n2+(2√a1d2-2d22)n+d22-2√a1d2+a1,∴d12=d22,a1-d12=2√a1d2-2d22,d22-2√a1d2+a1=0,∴d22=d12,d2=√a1,即d1=2a1,∴a2=a1+d1=3a1.若选①③⇒②,设等差数列{a n}的公差为d.因为a2=3a1,所以a1+d=3a1,则d=2a1,所以S n=na1+n(n-1)2d=na1+n(n-1)a1=n2a1,所以√S n−√S n-1=n√a1-(n-1)√a1=√a1.所以{√S n}是首项为√a1,公差为√a1的等差数列.若选②③⇒①,设数列{√S n}的公差为d,则√S2−√S1=d,即√a1+a2−√a1=d.∵a2=3a1,∴√4a1−√a1=d,即d=√a1,∴√S n=√S1+(n-1)d=√a1+(n-1)√a1=n√a1,即S n =n 2a 1,当n ≥2时,a n =S n -S n-1=n 2a 1-(n-1)2a 1=(2n-1)a 1, 当n=1时,a 1符合式子a n =(2n-1)a 1,∴a n =(2n-1)a 1,n ∈N *,∴a n+1-a n =2a 1, 即数列{a n }是等差数列.19.解 (1)设正项等比数列{a n }的公比为q (q>0).因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q-2=0,解得q=2或q=-12(舍去).所以a 4=a 1q 3=8a 1=16,解得a 1=2.所以a n =2×2n-1=2n . (2)由(1)可知a 2n+1=22n+1,所以b n =(-1)n log 2a 2n+1=(-1)n log 222n+1=(-1)n (2n+1), 所以T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n (2n+1), -T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n+1·(2n+1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n]-(-1)n+1(2n+1)=-3+2×1−(−1)n-12+(-1)n (2n+1)=-3+1-(-1)n-1+(-1)n (2n+1)=-2+(2n+2)(-1)n ,所以T n =(n+1)(-1)n -1. 20.解 (1)若选①,则2S n =na n+1.当n=1时,2S 1=a 2,又S 1=a 1=1,所以a 2=2. 当n ≥2时,2S n-1=(n-1)a n ,所以2a n =na n+1-(n-1)a n ,即(n+1)a n =na n+1,所以an+1n+1=a n n(n ≥2).又a 22=1,所以当n ≥2时,an n =1,即a n =n.又a 1=1符合上式,所以a n =n.若选②,则当n=1时,2S 1=a 2a 1,可得a 2=2. 当n ≥2时,2S n-1=a n a n-1,可得2a n =a n a n+1-a n a n-1. 由a n >0,得a n+1-a n-1=2.又a 1=1,a 2=2,所以{a 2n }是首项为2,公差为2的等差数列,{a 2n-1}是首项为1,公差为2的等差数列,所以a n =n.若选③,因为a n 2+a n =2S n ,所以当n ≥2时,a n-12+a n-1=2S n-1,两式相减得a n 2+a n -a n-12-a n-1=2a n ,即(a n +a n-1)(a n -a n-1-1)=0.由a n >0,得a n -a n-1-1=0,即a n -a n-1=1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n.(2)由(1)知b n =(n+1)·2n ,所以T n =2×2+3×22+4×23+…+(n+1)·2n , 2T n =2×22+3×23+4×24+…+(n+1)·2n+1, 两式相减,得-T n =4+22+23+ (2)-(n+1)·2n+1=4+4(1−2n-1)1−2-(n+1)·2n+1=4-4+2n+1-(n+1)·2n+1=-n·2n+1,所以T n =n·2n+1.21.解 (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量,依题意,数列{a n }是首项为128,公比为1+50%=32的等比数列,数列{b n }是首项为400,公差为a 的等差数列.所以数列{a n }的前n 项和S n =128×[1−(32)n ]1−32=256[(32)n-1],数列{b n }的前n 项和T n =400n+n(n-1)2a.所以经过n 年,该市被更换的公交车总数F (n )=S n +T n =256[(32)n-1]+400n+n(n-1)2a.(2)若用7年的时间完成全部更换,则F (7)≥10 000, 即256[(32)7-1]+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥3 08221.又a ∈N *,所以a 的最小值为147.22.证明 (1)因为当n ≥2时,a 1a 2…a n-1=2a n-2,所以a 1a 2…a n =2an+1-2,两式相除,可得a n =1a n+1-11a n-1,所以11−a n=a n+11−a n+1=11−an+1-1,所以11−an+1−11−a n=1(n ≥2).又a 1=23,所以a 2=34,11−a 1=3,11−a 2=4,所以11−a 2−11−a 1=1,所以11−an+1−11−a n=1(n ∈N *),所以数列{11−a n}是首项为3,公差为1的等差数列.所以11−a n=3+(n-1)×1=n+2,所以a n =n+1n+2.(2)因为T n =12a 1a 2…a n =12×23×34×…×n+1n+2=1n+2,所以T n 2=1(n+2)2>1(n+2)(n+3)=1n+2−1n+3,所以S n=T12+T22+…+T n2>13−14+14−15+…+1n+2−1n+3=13−1n+3=1-1n+3−23=n+2 n+3−23=a n+1-23,所以当n∈N*时,a n+1-23<S n.。
专题8 等差数列与等比数列1.等差数列必记结论(1)若项数为偶数2n,则S 2n =n(a 1+a 2n )=n(a n +a n+1); S 偶-S 奇=nd;=.(2)若项数为奇数2n-1,则 S 2n-1=(2n-1)a n ; S 奇-S 偶=a n ; =.2.等比数列必记结论(1)a k ,a k+m ,a k+2m ,…仍是等比数列,公比为q m (k,m∈N *).考向一 等差数列基本量的计算【典例】 (2020·全国Ⅱ卷)记S n 为等差数列的前n 项和.若a 1=-2,a 2+a 6=2①,则=________.① 根据基本量列方程② 前n 项和公式求解考向二 等比数列基本量的计算【典例】(2020·全国Ⅰ卷)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( ) A.12 B.24 C.30 D.321.在公比为的等比数列中,若sin=,则cos的值是A.-B.C.D.2.数列{a n}中,a1=2,a2=1,则+=(n∈N*),则a10等于( )A.-5B.-C.5D.3.若数列{x n}满足lg x n+1=1+lg x n(n∈N+),且x1+x2+x3+…+x100=100,则lg(x101+x102+…+x200)的值为A.102B.101C.100D.994.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是 ( )A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同(2)若数列{a n}的项数为2n,则=q;(3)若项数为2n+1,则=q.1.数列中的方程思想无论是等差数列中的a1,n,d,a n,S n,还是等比数列中的a1,n,q,a n,S n,一般可以“知三求二”,通过列方程(组)求关键量a1和d(q),问题可迎刃而解2.数列中的函数思想数列是一种特殊C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短5.数列满足:a n+1=λa n-1,若数列是等比数列,则λ的值是( )A.1B.2C.D.-16.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)·…·(x-a8),则f′(0)= A.26 B.29 C.212 D.2157.已知数阵中,每行的三个数依次成等比数列,每列的三个数也依次成等比数列,若a22=2,则该数阵中九个数的积为A.36B.256C.512D.1 0248.已知数列{a n}是等比数列,数列{b n}是等差数列,若a1·a6·a11=-3,b1+b6+b11=7π,则tan的值是A.1B.C.-D.-的函数,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.1.弄错首项致错如T10中,数列{b n}的首项为b1,不是.2.忽略数列与函数的区别致错如T13一定要注意自变量n是正整数.3.忽略题目中的隐含条件而致错如T11要注意b2的符号已经确定,且b2<0,忽视了这一隐含条件,就容易出现错误.9.已知每项均大于零的数列中,首项a1=1且前n项和S n满足S n-S n-1=2(n∈N*且n≥2),则a81=A.641B.640C.639D.63810.若数列满足:++…+=2n,则数列的前n项和S n为A.2n+1B.2n-4C.2n+2-2D.2n+2-411.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则=______12.已知数列满足a1=2,-=2,若b n=,则数列的前n项和S n=________.13.已知数列满足a1=1,a n=l o c n(n≥2),当n≥2时,b n=n,且点是直线y=x+1上的点,则数列的通项公式为________;令y=a1·a2·a3·…·a k,则当k在区间[1,2019]内时,使y的值为正整数的所有k值之和为________.专题8 等差数列与等比数列///真题再研析·提升审题力///考向一【解析】设等差数列的公差为d.因为是等差数列,且a 1=-2,a2+a6=2,根据等差数列通项公式:a n=a1+d,可得a1+d+a1+5d=2,即-2+d++5d=2,整理可得:6d=6,解得:d=1.根据等差数列前n项和公式:S n=na1+d,n∈N*,可得:S10=10×+=-20+45=25,所以S10=25. 答案:25考向二D 设等比数列的公比为q,则a 1+a2+a3=a1=1,a 2+a3+a4=a1q+a1q2+a1q3=a1q=q=2,因此,a 6+a7+a8=a1q5+a1q6+a1q7=a1q5=q5=32.///高考演兵场·检验考试力///1.B 由等比数列的通项公式可知:a2a5=(a1a4)q2=2(a1a4),cos= 1-2sin2(a 1a4)=1-2×=.2.D 因为+=(n∈N*),所以是等差数列,又因为a1=2,a2=1,所以=,-=,所以是首项为,公差为的等差数列,所以=,a n=,所以a10=.3.A 由lg x n+1=1+lg x n,得=10,所以数列是公比为10的等比数列,又x101=x1·q100,x102=x2·q100,…,x200=x100·q100,所以x101+x102+…+x200=q100(x1+x2+…+x100)=10100·100=10102,所以lg=102.4.D 由题意可知夏至到冬至的晷长构成等差数列{a n},其中a1=15寸,a13=135寸,公差为d寸,则135=15+12d,解得d=10(寸),同理可知由冬至到夏至的晷长构成等差数列{b n},其中b1=135,b13=15,公差d=-10(单位都为寸).故选项A正确;因为春分的晷长为b7,所以b7=b1+6d=135-60=75,因为秋分的晷长为a7,所以a7=a1+6d=15+60=75,所以B正确;因为立冬的晷长为a10,所以a10=a1+9d=15+90=105,即立冬的晷长为一丈五寸,C正确;因为立春的晷长,立秋的晷长分别为b4,a4,所以a4=a1+3d=15+30=45,b4=b1+3d=135-30=105,所以b4>a4,故D错误.故选D.5.B 数列为等比数列⇒==q,即:λa n-2=qa n-q,由上式恒成立,可知:⇒λ=2.6.Cf′(x)=[x(x-a1)(x-a2)·…·(x-a8)]′=x′[(x-a1)(x-a2)·…·(x-a8)]+x[(x-a1)(x-a2)·…·(x-a8)]′=[(x-a1)(x-a2)·…·(x-a8)]+x[(x-a1)(x-a2)·…·(x-a8)]′,所以f′(0)=a1a2 (8)又a1a8=a2a7=a3a6=a4a5,所以f′(0)=(a1a8)4=84=212,故选C.7.C 依题意可得a 11a13=,a21a23=,a31a33=,a12a32=,因为a22=2,所以a11a12a13a21a22a23a31a32a33=(a 11a13)a12(a21a23)a22(a31a33)a32===29=512.8.D 在等差数列{b n}中,由b1+b6+b11=7π,得3b6=7π,b6=,所以b3+b9=2b6=,在等比数列{a n}中,由a1a6a11=-3,得=-3,a6=-,所以1-a 4a8=1-=1-(-)2=-2,则tan=tan=tan=tan=-.9.B 因为S n-S n-1=2,所以-=2,即{}为等差数列,首项为1,公差为2,所以=1+2(n-1)=2n-1所以S n=(2n-1)2,因此a81=S81-S80=1612-1592=640.10.D 对任意的n∈N*,++…+=2n.当n=1时,=2,可得b1=4;当n≥2时,由++…++=2n,可得++…+=2,两式相减得=2,所以b n=2n+1.又b 1=4符合b n=2n+1,所以b n=2n+1,所以==2,所以,数列为等比数列,且公比为2,首项b 1=4,因此,S n==2n+2-4.11.【解析】因为-1,a1,a2,-4成等差数列,设公差为d,则a 2-a1=d=[(-4)-(-1)]=-1,因为-1,b1,b2,b3,-4成等比数列,所以=(-1)×(-4)=4,所以b2=±2.若设公比为q,则b2=(-1)q2,所以b2<0.所以b2=-2,所以==.答案:12.【解析】由题意知为公差是2的等差数列,所以=+(n-1)×2=2n,所以a n=2n2,所以b n=22n,所以S n==.答案:13.【解析】因为当n≥2时,b n=n,且点是直线y=x+1上的点,所以当n≥2时,有a n=log n(n+1)(n≥2),所以a n=所以y=1×log23×log34×…×log k(k+1)=1×××…×==log2(k+1),令log2(k+1)=m得k+1=2m,所以k=2m-1,所以当k在[1,2 019]内时,即1≤2m-1≤2 019,得1≤m≤10,m∈N*,所以使y的值为正整数的所有k值之和为++…+=-10=-10=2 036.答案:a n= 2 036关闭Word文档返回原板块。
原创精品资源学科网独家享有版权,侵权必究!专题12 数列解答题1.(海南省2021届高三第二次模拟)已知公比大于0的等比数列{}n a 的前n 项和为n S ,24a =,15a +是2S 和3a 的等差中项.(1)求数列{}n a 的通项公式; (2)若n nnb a =,求数列{}n b 的前n 项和n T . 2.(河北省保定市定州中学2021届高三模拟)设数列{}n a 的前n 项和为n S ,()2*11,22n n a S na n n n N ==-+∈.(1)求证:数列{}n a 为等差数列,并分别写出n a 和n S 关于n 的表达式; (2)是否存在自然数n ,使得3212112423n nS S S S n+++++=?若存在,求出n 的值;若不存在,请说明理由; (3)设()()*27n n c n N n a =∈+,()*123n n T c c c c n N =++++∈,若不等式()32n mT m Z >∈对*n N ∈恒成立,求m 的最大值.3.(湖北省2021年高三联合测评)设数列{}n a 的前n 项和为n S ,且*32,()n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)不等式*31,()n S n N >∈,求n 的最小值.4.(湖北省黄冈市2021届高三联考)已知等差数列{}n a 的前n 项和为2n S pn n q =++,p ,q ∈R ,n +∈N ,且36a =.数列{}n b 满足22log n n a b =. (1)求p 、q 的值; (2)设数列(){}(1)nn n a b -+的前2n 项和为2nT,证明:23n T >.5.(湖北省荆州市2021届高三质检)己知{}n a 为等比数列,前n 项和为()n S n N *∈,且12n nSt +=+,数列{}n b 满足11b =,数列(){}1n n n bb a +-的前n 项和为223n n -.原创精品资源学科网独家享有版权,侵权必究!(1)求t 的值:(2)求数列{}n b 的通项公式.6.(湖北省随州市一中2021届高三模拟)等差数列{}n a 中,2412a a +=,且2342,,2a a a +-成等比数列. (1)求数列{}n a 的通项公式. (2)若212n n nb a a =+,数列{}n b 的前n 项和为n S ,求证:41n S <. 7.(湖北省随州市一中2021届高三模拟)已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)令n n b na =,求数列{}n b 的前n 项和n T ; (3)记()()3210nn nn c a λλ=-⋅-≠,是否存在实数λ使得对任意的*n N ∈,恒有1n n c c +>?若存在,求出λ的取值范围;若不存在,说明理由.8.(湖南省永州市2021届高三联考)已知数列{}n a 的前n 项和为n S ,3256a =,1316n n a S +=+. (1)求n a ; (2)若21log n n b a =,数列2{}n n b b +的前n 项和为n T ,证明:548n T <. 9.(湖南省长沙市一中2021届高三模拟)在①424S S =,221n n a a =+;②14n n a a n ++=;③0n a >,()241n n S a =+.从这三个条件中任选一个填入下面的横线上并解答.已知数列{}n a 是等差数列其前n 项和为n S ,*n ∈N ,若_________.(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)对任意的*m ∈N ,将{}n a 中落入区间()22,2mm内项的个数记为{}mb ,求数列{}mb 的通项公式和数列{}m b 的前m 项和m T .10.(江苏省常州市2021届四校联考)已知等差数列{}n a 和等比数列{}n b 满足13a =,12b =,2221a b =-,原创精品资源学科网独家享有版权,侵权必究!333a b =+.(1)求{}n a 和{}n b 的通项公式;(2)将{}n a 和{}n b 中的所有项按从小到大的顺序排列组成新数列{}n c ,求数列{}n c 的前100项和100S . 11.(江苏省南京市二十九中2021届高三模拟)已知数列{}n a 是一个公差大于零的等差数列,且3655a a =,2716a a +=,数列{}n b 的前n 项和为n S ,且22=-n n S b .(1)求数列{}n a ,{}n b 的通项公式; (2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T ; (3)设43n n c b n =+-,是否存在正整数i ,(2)j i j <<,使2c ,i c ,j c 成等差数列,若存在,求出所有的正整数i ,j ,若不存在,请说明理由.12.(江苏省宿迁中学2021届高三模拟)在①424S S =,221n n a a =+;②14n n a a n ++=;③0n a >,()241n n S a =+.从这三个条件中任选一个填入下面的横线上并解答.已知数列{}n a 是等差数列其前n 项和为n S ,*n ∈N ,若_________.(注:如果选择多个条件分别解答,按第一个解答计分.)(1)求数列{}n a 的通项公式;(2)对任意的*m ∈N ,将{}n a 中落入区间()22,2mm内项的个数记为{}mb ,求数列{}mb 的通项公式和数列{}m b 的前m 项和m T .13.(江苏省盐城中学2021届高三质检)已知数列{}n a 的前n 项和n S 12(2,)n n n S S n -=≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S 及通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .原创精品资源学科网独家享有版权,侵权必究!14.(山东省百所名校2021届高三联考)在①1120(2)n n n a a a n +--+=≥且151,25a S ==,②235,n a S n tn ==+,③121,3a a ==,且122,,n n n S S S ++-成等差数列这三个条件中任选一个,补充在下面问题中,并作答.问题:设数列{}n a 的前n 项和为n S ,_________.若11n n n b a a +=,求数列{}n b 的前n 项和为n T . 15.(山东省济南市莱芜一中2021届高三模拟)已知{}n a 为等差数列,前n 项和为*()n S n N ∈,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列2{}n n a b 的前n 项和*()n N ∈.16.(山东省新高考2021届高三联考)已知等差数列{}n a 的公差为正数,11a =,前n 项和为n S ,数列{}n b 为等比数列,12b =,且2352b S a +=,2324b S = (1)求数列{}n a 、{}n b 的通项公式 (2)令sin2n n n a c b π=,求数列{}n c 的前100项的和100T 17.(山东省新高考2021届高三联考)已知数列{}n a 的前n 项和为n S ,且满足*112,2()n n a S a n N +==-∈,{}n b 满足22b a =,且*12311112()23n n b b b b b n N n+++++=-∈ (1)求{}n a 和{}n b 的通项公式 (2)若设122log (1)1n nn n a c b -=--,求数列{}n c 的前n 项和n T18.(山东省淄博市2021届高三零模)已知数列{}n a 是单调递增的等比数列,且各项均为正数,其前n 项和为n S ,1581⋅=a a ,2S ,3a ,43-a S 成等差数列.(1)求数列{}n a 的通项公式;原创精品资源学科网独家享有版权,侵权必究!(2)若______,求{}n n a b ⋅的前n 项和n P ,并求n P 的最小值.从以下所给的三个条件中任选一个,补充到上面问题的横线上,并解答此问题. ①数列{}n b 满足:112b =,132+=⋅+n n nb b n (n *∈N ); ②数列{}n b 的前n 项和2n T n =(n *∈N ); ③数列{}n b 的前n 项和n T 满足:65-=nn T b (n *∈N ).注:如果选择多个条件分别解答,只按第一个解答计分.19.(山东师范大学附属中学2021届高三测试)在①121n n S S +=+,②214a =,③112n n S a +=-这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,满足__________,__________;又知正项等差数列{}n b 满足12b =,且1b ,21b -,3b 成等比数列. (1)求{}n a 和{}n b 的通项公式;(2)若n n n c a b =,求数列{}n c 的前n 项和n T .20.(山东师范大学附属中学2021届高三测试)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T 且0n a >,263n n n S a a =+.(1)求数列{}n a 的通项公式; (2)记()()122121nn n a n a a b +=--,若n k T >恒成立,求k 的最小值.21.(重庆市八中2021届高三检测)已知数列{}n a 的前n 项和为n S ,122n n S +=-,数列{}n b 满足:12b =,326b b -=,数列n b n ⎧⎫⎨⎬⎩⎭为等差数列.(1)求{}n a 与{}n b 的通项公式; (2)设()11nnnnc a b -=+,数列{}n c 的前n 项和为n T .若对于任意n *∈N 均有k n T T ≤,求正整数k 的值. 22.(重庆市南开中学2021届高三质检)已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,满足原创精品资源学科网独家享有版权,侵权必究!535S =,且1a ,4a ,13a 成等比数列.(1)求数列{}n a 的通项公式; (2)若241n n b a =-,数列{}nb 的前n 项和为n T ,实数λ使得13n nT S λ++≤对任意*n N ∈恒成立,求λ的取值范围.。