数与代数思维导图
- 格式:pdf
- 大小:111.70 KB
- 文档页数:1
初中数学7-9年级教材知识体系梳理思维导图
初中数学(7~9年级)课程标准
一、数与代数
在本学段中,学生将学习实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力。
在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景;应避免繁琐的运算。
二、空间与图形
在本学段中,学生将探索基本图形(直线形、圆)的基本性质及其相互关系,进一步丰富对空间图形的认识和感受,学习平移、旋转、对称的基本性质,欣赏并体验变换在现实生活中的广泛应用,学习运用坐标系确定物体位置的方法,发展空间观念。
推理与论证的学习从以下几个方面展开:在探索图形性质、与他人合作交流等活动过程中,发展合情推理,进一步学习有条理地思考与表达;在积累了一定的活动经验与掌握了一定的图形性质的基础上,从几个基本的事实出发,证明一些有关三角形、四边形的基本性质,从而体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想。
在教学中,应注重所学内容与现实生活的联系,注重使学生经历观察、操作、推理、想像等探索过程;应注重对证明本身的理解,而不追求证明的数量和技巧。
证明的要求控制在《标准》所规定的范围内。
三、统计与概率
四、综合与实践
思维导图。
一、数与代数1.1分数乘法1.1.1分数乘法算式的意义(1)一个数乘分数表示求这个数的几分之几是多少,求一个数的几分之几是多少用乘法计算。
比如3×53表示3个53相加的和是多少,也可以表示3的53是多少? 典型例题:①把一根3米长的绳子平均分成8份。
每份占总长的( )( ),每份长( )米;两份长( )米,相当于1米的( )( )②填空:甲数是乙数的35 。
( )×35=( );1.1.2分数乘法计算法则(1)分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再计算。
(2)分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,过程中能约分的要约分。
注意:任何整数都可以看作为分母是1的分数,因而分数乘整数与分数乘分数计算方法本质是一样的。
(3)分数连乘:用分子相乘的积作为分子,用分母相乘的积作为分母,过程中能约分的要约分。
注意:约分时要一组一组约,一组约分后,再约下一组。
典型例题:①计算:49×421219×8 (132+725)×25 13×25×(225+213)②一个数是56,它的47是();120千米的23是()。
③红花有100朵,黄花的朵数是红花的五分之二,黄花有多少朵?④男生有 30 人,女生比男生多五分之一,女生比男生多多少人?女生有多少人?⑤小明看一本书,已经看了72页,剩下的是已看的34,这本书共有多少页?⑥一堆煤共有10吨,第一天用去25,第二天比第一天多用去14吨,两天共用去多少吨?⑦小明阅读一本80页的科学书,第一天看了全书的15少2页,小明第二天从第几页开始看起?1.1.3倒数的认识(1)乘积是1的两个数互为倒数。
(2)1的倒数是1,0没有倒数。
(3)一个数乘真分数(比1小的数)积比原数小;一个数乘比1大的假分数(比1大的数)积比原数大。
小学数学六年级上册各单元思维导图第一部分:数的认识一、整数1. 自然数:0、1、2、3、4、5、6、7、8、9、10……2. 整数:自然数和它们的相反数3. 整数的分类:正整数、0、负整数二、分数1. 分数的意义:表示一个整体被平均分成若干份,其中的一份或几份2. 分数的表示:分子/分母3. 分数的分类:真分数、假分数、带分数三、小数1. 小数的意义:表示一个整体被平均分成若干份,其中的一份或几份,用小数点表示2. 小数的表示:整数部分和小数部分3. 小数的分类:有限小数、无限小数第二部分:数的运算一、加法1. 整数加法:相同符号的整数相加,异号整数相加2. 分数加法:同分母分数相加,异分母分数相加3. 小数加法:小数点对齐,逐位相加二、减法1. 整数减法:相同符号的整数相减,异号整数相减2. 分数减法:同分母分数相减,异分母分数相减3. 小数减法:小数点对齐,逐位相减三、乘法1. 整数乘法:相同符号的整数相乘,异号整数相乘2. 分数乘法:分子相乘,分母相乘3. 小数乘法:小数点对齐,逐位相乘四、除法1. 整数除法:相同符号的整数相除,异号整数相除2. 分数除法:分子相除,分母相除3. 小数除法:小数点对齐,逐位相除第三部分:数的性质一、数的性质1. 整数的性质:奇数、偶数、质数、合数2. 分数的性质:分子分母同乘(除)一个数,分数的值不变3. 小数的性质:小数点向左(右)移动一位,小数的值缩小(扩大)10倍二、数的运算定律1. 加法交换律:a + b = b + a2. 加法结合律:(a + b) + c = a + (b + c)3. 乘法交换律:a × b = b × a4. 乘法结合律:(a × b) × c = a × (b × c)5. 乘法分配律:a × (b + c) = a × b + a × c三、数的运算顺序1. 先算乘除,后算加减2. 同级运算,从左到右依次计算3. 括号内的运算优先级最高第四部分:数的应用一、整数应用1. 计算长度、面积、体积等2. 解决实际问题,如购物、分配、比较等二、分数应用1. 计算比例、比率等2. 解决实际问题,如分物品、分配资源等三、小数应用1. 计算长度、面积、体积等2. 解决实际问题,如购物、分配、比较等第五部分:几何图形一、平面图形1. 线段、射线、直线:线段是有限长的直线,射线有一个端点,直线无限长2. 角:由两条射线共同确定的图形,有一个顶点和两条边3. 三角形:由三条线段围成的图形,有三个角和三个边4. 四边形:由四条线段围成的图形,有四个角和四个边5. 圆:平面内到一个固定点距离相等的所有点组成的图形二、立体图形1. 长方体:由六个长方形围成的立体图形,有六个面、十二条边和八个顶点2. 正方体:由六个正方形围成的立体图形,有六个面、十二条边和八个顶点3. 圆柱:由两个底面和一个侧面围成的立体图形,底面是圆形4. 圆锥:由一个底面和一个侧面围成的立体图形,底面是圆形5. 球:由一个点向外无限延伸,到该点的距离相等的所有点组成的立体图形第六部分:几何图形的性质一、平面图形的性质1. 线段的性质:线段有长度,线段之间可以比较大小2. 角的性质:角有度数,角之间可以比较大小3. 三角形的性质:三角形的内角和为180度,等腰三角形的底角相等,直角三角形的勾股定理4. 四边形的性质:四边形的内角和为360度,矩形、正方形的对角线互相平分5. 圆的性质:圆的周长与直径的比例是圆周率,圆的面积与半径的平方成正比二、立体图形的性质1. 长方体的性质:长方体的体积等于长、宽、高的乘积2. 正方体的性质:正方体的体积等于边长的立方3. 圆柱的性质:圆柱的体积等于底面积乘以高4. 圆锥的性质:圆锥的体积等于底面积乘以高除以35. 球的性质:球的体积等于半径的立方乘以4/3π第七部分:几何图形的测量一、长度测量1. 线段长度:使用直尺或卷尺进行测量2. 角度测量:使用量角器进行测量二、面积测量1. 平面图形面积:根据公式计算,如长方形面积=长×宽,圆面积=πr²2. 立体图形表面积:根据公式计算,如长方体表面积=2(长×宽+长×高+宽×高)三、体积测量1. 立体图形体积:根据公式计算,如长方体体积=长×宽×高,圆柱体积=底面积×高2. 容器体积:使用量筒或量杯进行测量第八部分:数学应用与拓展一、数学在生活中的应用1. 购物:计算价格、找零等2. 测量:计算长度、面积、体积等3. 分配:分配物品、资源等二、数学在科学中的应用1. 物理学:计算速度、加速度、力等2. 化学:计算物质的量、浓度等3. 生物:计算种群数量、增长率等三、数学在艺术中的应用1. 音乐:计算音高、节奏等2. 绘画:计算比例、透视等3. 建筑设计:计算结构、空间等第九部分:数学问题解决策略一、问题解决步骤1. 理解问题:仔细阅读题目,明确已知条件和求解目标2. 制定计划:根据问题类型和条件,选择合适的解决方法3. 执行计划:按照计划进行计算和推导4. 检查结果:验证计算过程和结果的正确性二、常见问题解决方法1. 图形法:通过绘制图形,直观地表示问题条件,便于理解和解决2. 列表法:将问题条件列成表格,便于分析和比较3. 代数法:使用代数表达式和方程,进行符号运算和推导4. 逻辑推理法:根据已知条件和数学规律,进行逻辑推理和证明第十部分:数学思维培养一、培养逻辑思维能力1. 通过解决数学问题,锻炼逻辑推理和证明能力2. 学习数学定义、定理和公式,理解其背后的逻辑关系二、培养空间想象能力1. 学习几何知识,通过绘制图形和想象空间关系,培养空间想象力2. 参与数学建模活动,将实际问题转化为数学模型,提高空间想象能力三、培养数学建模能力1. 学习数学建模方法,将实际问题转化为数学问题2. 参与数学建模竞赛和活动,提高数学建模能力第十一部分:数学学习资源一、教材和辅导书1. 选择适合自己水平的教材和辅导书,进行系统学习2. 利用辅导书中的例题和习题,巩固所学知识二、在线资源和应用程序1. 利用在线教育平台和数学学习网站,获取丰富的学习资源2. 数学学习应用程序,进行互动式学习和练习三、数学竞赛和活动1. 参与数学竞赛,提高数学水平和竞争意识2. 参加数学讲座、研讨会等活动,拓宽数学视野。
六年级数学上册思维导图第一部分:数与代数1. 数的认识整数自然数负整数整数的性质(奇数、偶数、质数、合数)分数真分数、假分数、带分数分数的性质(约分、通分)小数小数的性质(四舍五入、大小比较)2. 代数代数式单项式、多项式代数式的运算(加减乘除)方程一元一次方程方程的解法(移项、合并同类项)第二部分:空间与图形1. 几何图形线段、射线、直线角锐角、直角、钝角、周角角的性质(对顶角、邻补角)三角形三角形的分类(等边、等腰、直角、锐角、钝角)三角形的性质(内角和、外角和)四边形平行四边形、矩形、菱形、正方形四边形的性质(对角线、周长、面积)圆圆的性质(半径、直径、周长、面积)2. 空间图形立体图形长方体、正方体、圆柱、圆锥立体图形的性质(表面积、体积)视图正视图、侧视图、俯视图第三部分:统计与概率1. 统计数据的收集与整理调查表、统计表数据的表示条形统计图、折线统计图、扇形统计图数据的分析平均数、中位数、众数2. 概率概率的定义事件发生的可能性概率的计算简单事件、复合事件第四部分:综合与实践1. 数学综合数学问题解决应用题、探索题数学活动数学游戏、数学实验2. 数学实践数学与生活数学在生活中的应用数学与技术数学在科技中的应用六年级数学上册思维导图第一部分:数与代数1. 数的认识整数自然数负整数整数的性质(奇数、偶数、质数、合数)分数真分数、假分数、带分数分数的性质(约分、通分)小数小数的性质(四舍五入、大小比较)2. 代数代数式单项式、多项式代数式的运算(加减乘除)方程一元一次方程方程的解法(移项、合并同类项)第二部分:空间与图形1. 几何图形线段、射线、直线角锐角、直角、钝角、周角角的性质(对顶角、邻补角)三角形三角形的分类(等边、等腰、直角、锐角、钝角)三角形的性质(内角和、外角和)四边形平行四边形、矩形、菱形、正方形四边形的性质(对角线、周长、面积)圆圆的性质(半径、直径、周长、面积)2. 空间图形立体图形长方体、正方体、圆柱、圆锥立体图形的性质(表面积、体积)视图正视图、侧视图、俯视图第三部分:统计与概率1. 统计数据的收集与整理调查表、统计表数据的表示条形统计图、折线统计图、扇形统计图数据的分析平均数、中位数、众数2. 概率概率的定义事件发生的可能性概率的计算简单事件、复合事件第四部分:综合与实践1. 数学综合数学问题解决应用题、探索题数学活动数学游戏、数学实验2. 数学实践数学与生活数学在生活中的应用数学与技术数学在科技中的应用第五部分:数学文化1. 数学史古代数学家毕达哥拉斯、欧几里得、阿基米德数学发展几何学、代数学、概率论2. 数学趣闻趣味数学问题数独、魔方数学谜题算术谜题、几何谜题第六部分:数学思维1. 逻辑思维条件推理假设、演绎、归纳逻辑运算与、或、非2. 创新思维数学建模实际问题转化为数学问题数学创造数学猜想、数学证明六年级数学上册思维导图第七部分:数学与艺术1. 数学与音乐音乐中的数学音阶与比例、节奏与分数音乐创作音乐与数学的结合2. 数学与美术艺术中的数学黄金分割、对称性艺术创作几何图形在艺术中的应用第八部分:数学与游戏1. 数学游戏逻辑游戏猜数字、解谜题策略游戏象棋、围棋中的数学策略2. 数学竞赛数学奥林匹克竞赛题目、解题技巧数学竞赛准备竞赛策略、心理调整第九部分:数学与科技1. 数学与计算机算法编程基础、算法设计数据处理数据库、数据分析2. 数学与工程工程设计数学在工程中的应用工程计算工程问题中的数学模型第十部分:数学与社会1. 数学与经济经济模型经济学中的数学应用财务计算利息、投资、保险2. 数学与政策政策分析数学在政策制定中的应用公共服务数学在公共服务中的角色第十一部分:数学与自然1. 数学与物理物理定律牛顿定律、能量守恒数学工具微积分、向量分析2. 数学与生物生物统计数据分析、概率模型生物计算数学在生物研究中的应用第十二部分:数学与未来机器学习数学在机器学习中的应用神经网络、深度学习2. 数学与可持续发展环境模型数学在环境保护中的应用可持续发展数学在可持续发展策略中的角色。
初中数学七年级上册思维导图一、数与代数1. 实数有理数整数正整数、负整数、0分数正分数、负分数无理数不能表示为两个整数比的数无理数的近似值2. 代数式代数式的概念代数式的化简代数式的求值3. 方程与不等式一元一次方程方程的解法方程的应用一元一次不等式不等式的解法不等式的应用二、几何1. 平面几何点、线、面角锐角、直角、钝角角的度量多边形三角形等腰三角形、等边三角形、直角三角形四边形矩形、正方形、平行四边形、梯形圆圆的性质圆的周长、面积2. 空间几何立体图形长方体、正方体、圆柱、圆锥、球立体图形的表面积、体积三、统计与概率1. 统计数据的收集与整理数据的表示表格、条形图、折线图、扇形图数据的分析平均数、中位数、众数2. 概率概率的概念概率的计算概率的应用四、数学思维方法1. 分类讨论法2. 类比法3. 归纳法4. 反证法五、数学应用与建模1. 数学在实际生活中的应用金融领域利息计算、复利计算工程领域测量、绘图、计算科学研究数据分析、实验设计2. 数学建模建模的基本步骤提出问题、建立模型、求解模型、验证模型常见的数学模型线性模型、非线性模型、概率模型六、数学思维导图的制作与应用1. 思维导图的制作方法确定中心主题画出分支填充内容修饰美化2. 思维导图的应用场景学习规划项目管理决策分析七、数学与科技的发展1. 数学在科技领域的重要性计算机科学算法设计、数据结构机器学习、深度学习物理学量子力学、相对论2. 数学与其他学科的交叉融合数学与生物学遗传算法、神经网络数学与经济学博弈论、优化理论八、数学教育的创新与改革1. 数学教育的现状与问题教学方法单一学生兴趣不高创新能力培养不足2. 数学教育的创新策略案例教学法项目式学习翻转课堂在线教育3. 数学教育的改革方向注重学生个性化发展培养学生的数学思维提高学生的数学应用能力初中数学七年级上册思维导图一、数的认识1. 整数自然数:0, 1, 2, 3,正整数:1, 2, 3,负整数:1, 2, 3,整数:自然数和负整数的统称2. 分数真分数:分子小于分母的分数假分数:分子大于或等于分母的分数分数的基本性质:分子分母同时乘以或除以同一个非零整数,分数的值不变3. 小数小数的表示方法:整数部分和小数部分小数的性质:小数点向右移动一位,相当于乘以10;小数点向左移动一位,相当于除以10二、数的运算1. 整数的运算加法:将两个整数相加减法:将一个整数从另一个整数中减去乘法:将两个整数相乘除法:将一个整数除以另一个非零整数2. 分数的运算加法:将两个分数的分子相加,分母保持不变减法:将一个分数的分子从另一个分数的分子中减去,分母保持不变乘法:将两个分数的分子相乘,分母相乘除法:将一个分数的分子乘以另一个分数的分母,分母乘以另一个分数的分子3. 小数的运算加法:将两个小数的小数部分相加,整数部分相加减法:将一个小数的小数部分从另一个小数的小数部分中减去,整数部分相减乘法:将两个小数相乘除法:将一个小数除以另一个非零小数三、方程与不等式1. 方程一元一次方程:ax + b = 0(a, b为常数,x为未知数)方程的解:使方程成立的未知数的值2. 不等式一元一次不等式:ax + b > 0 或 ax + b < 0(a, b为常数,x 为未知数)不等式的解集:满足不等式的未知数的值的集合四、函数与图形1. 函数定义:函数是一种特殊的关系,每个输入值对应唯一的输出值表示方法:函数关系可以用函数表达式、函数图像、函数表格等方式表示2. 图形直线:一次函数的图像抛物线:二次函数的图像双曲线:反比例函数的图像五、统计与概率1. 统计数据的收集与整理:收集数据、整理数据、制作统计图表数据的分析与解释:分析数据、得出结论、解释结论2. 概率概率的定义:某个事件发生的可能性概率的计算:根据事件发生的次数和总次数计算概率初中数学七年级上册思维导图六、几何图形的认识1. 点、线、面点:没有长度、宽度和高度的几何元素线:只有长度没有宽度和高度的几何元素面:具有长度和宽度的几何元素2. 平面图形三角形:由三条线段组成的闭合图形四边形:由四条线段组成的闭合图形圆:由一个点到平面上所有点的距离相等的点的集合3. 空间图形立方体:由六个正方形面组成的立体图形圆柱:由两个平行圆面和一个侧面组成的立体图形圆锥:由一个圆面和一个侧面组成的立体图形七、几何图形的性质1. 三角形的性质内角和定理:三角形的内角和等于180度等腰三角形的性质:底角相等,底边上的高、中线、角平分线互相重合直角三角形的性质:直角边上的高、中线、角平分线互相重合2. 四边形的性质平行四边形的性质:对边平行且相等,对角相等,对角线互相平分矩形的性质:四个角都是直角,对边平行且相等,对角线互相平分且相等菱形的性质:四个角都是直角,对边平行且相等,对角线互相垂直平分3. 圆的性质圆的周长公式:C = 2πr(r为圆的半径)圆的面积公式:A = πr²圆的性质:圆心到圆上任意一点的距离都相等八、几何图形的计算1. 三角形的计算三角形的周长:三条边的长度之和三角形的面积:底乘以高除以22. 四边形的计算四边形的周长:四条边的长度之和四边形的面积:根据不同类型的四边形使用相应的公式计算3. 圆的计算圆的周长:2πr圆的面积:πr²九、综合应用1. 实际问题运用所学的数学知识解决实际问题,如计算面积、周长、体积等培养学生的应用意识和解决问题的能力2. 数学建模将实际问题抽象成数学模型,运用数学知识解决问题培养学生的建模能力和创新能力3. 数学探究通过探究活动,让学生发现数学规律,提高学生的探究能力和思维能力初中数学七年级上册思维导图十、数学思维与方法1. 逻辑推理通过观察、分析、归纳等方法,培养学生的逻辑思维能力帮助学生理解数学概念、性质、定理之间的关系2. 数学建模将实际问题抽象成数学模型,运用数学知识解决问题培养学生的建模能力和创新能力3. 数学探究通过探究活动,让学生发现数学规律,提高学生的探究能力和思维能力十一、数学素养与能力1. 数感培养学生对数的敏感性,能够快速、准确地理解和处理数学信息2. 空间观念培养学生对几何图形的认识和空间想象能力,提高学生的空间思维能力3. 解决问题的能力培养学生运用数学知识解决实际问题的能力,提高学生的应用意识和实践能力4. 创新能力培养学生的创新思维,鼓励学生尝试不同的解题方法和思路5. 合作与交流能力培养学生与他人合作交流的能力,提高学生的团队协作能力和沟通能力初中数学七年级上册思维导图一、数与代数1. 实数有理数整数正整数、负整数、0分数正分数、负分数无理数不能表示为两个整数比的数无理数的近似值2. 代数式代数式的概念代数式的化简代数式的求值3. 方程与不等式一元一次方程方程的解法方程的应用一元一次不等式不等式的解法不等式的应用二、几何1. 平面几何点、线、面角锐角、直角、钝角角的度量多边形三角形等腰三角形、等边三角形、直角三角形四边形矩形、正方形、平行四边形、梯形多边形的内角和定理2. 空间几何立体图形正方体、长方体、圆柱、圆锥、球立体图形的表面积与体积三、统计与概率1. 数据的收集与整理数据的收集方法数据的整理方法2. 数据的描述平均数、中位数、众数极差、方差、标准差3. 概率概率的基本概念概率的计算方法概率的应用四、数学思维方法1. 归纳法从具体到一般从特殊到一般2. 类比法通过相似性进行推理3. 反证法假设结论不成立,推出矛盾,从而证明结论成立4. 构造法通过构造实例来解决问题五、数学建模1. 建模的基本步骤确定问题建立模型求解模型验证模型2. 常见的数学模型线性模型二次模型指数模型3. 数学建模的应用在实际生活中的应用在科学研究中的应用初中数学七年级上册思维导图六、数学实验与探究1. 实验的设计与实施确定实验目的设计实验方案实施实验并记录数据分析实验结果2. 探究的方法与技巧观察法实验法归纳法类比法3. 数学实验与探究的应用解决实际问题深化数学理解培养创新思维七、数学文化1. 数学发展史古代数学近现代数学2. 数学家的故事中国数学家外国数学家3. 数学与生活的关系数学在科技发展中的作用数学在日常生活中的应用八、数学学习方法1. 课堂学习专心听讲积极思考勇于提问2. 自主学习制定学习计划完成课后作业复习巩固3. 合作学习与同学交流讨论分享学习资源相互帮助、共同进步九、数学素养的培养1. 数学思维逻辑思维抽象思维空间思维2. 数学能力计算能力推理能力解决问题的能力3. 数学品质耐心细心持之以恒初中数学七年级上册思维导图十、数学竞赛与拓展1. 数学竞赛简介数学竞赛的类型数学竞赛的级别数学竞赛的报名时间及方式2. 数学竞赛的备考策略基础知识的巩固解题技巧的提升模拟试题的训练3. 数学竞赛的意义激发学习兴趣培养竞争意识提高数学能力十一、数学与科技1. 数学在科技领域的作用计算机科学数据分析2. 数学在工程技术中的应用建筑设计机械制造通信技术3. 数学在生活中的创新数学与艺术数学与体育数学与游戏十二、数学教育改革与发展1. 新课程标准的实施课程目标的调整教学内容的更新教学方法的改革2. 数学教育技术的发展信息技术与数学教育的融合在线教育平台的建设虚拟现实技术在数学教学中的应用3. 数学教育的国际交流与合作国际数学竞赛的参与数学教育研究的合作数学教师培训的国际交流初中数学七年级上册思维导图一、数与代数1. 整数加减法加法:将两个数合并成一个数的运算。
整数的计数单位质数质因数整数的读法和写法合数分解质因数整数整数的读写和近似数 1整数的大小比较最大公因数正整数因数公因数互质数整数的分类0 自然数整数负整数倍数公倍数最小公倍数2,3,5的倍数的特征小数的意义小数的数位和计数单位小数的读法和写法小数的性质小数小数点移动引起小数大小的变化纯小数按整数部分分带小数纯循环小数小数的分类有限小数循环小数按小数部分分无限小数混循环小数数无限不循环小数分数的意义真分数←互化带分数分数的分类假分数−−→分数的读法和写法分数与除法的关系约分最简分数分数分数的基本性质通分分数的大小比较分数与小数的互化百分数的意义百分数百分数的读法和写法成数、折扣、税率、利率百分数与分数、小数的互化正、负数数的运算⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧→→⎪⎩⎪⎨⎧−−→−−−→−规律和、差、积、商的变化减法、除法的运算性质分配率乘法交换律、结合律、加法交换律、结合律运算定律、性质混合运算的顺序关系加减乘除各部分之间的法则除法乘法减法加法意义四则运算逆运算逆运算 常见的量⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧名数改写的方法基本概念名数的改写分人民币单位:元、角、秒年、月、日、时、分、时间单位克质量单位:吨、千克、容积单位:升、毫升方分米、立方厘米体积单位:立方米、立米米、平方厘米、平方毫公顷、平方米、平方分面积单位:平方千米、、毫米千米、米、分米、厘米长度单位计量单位量::式与方程⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧定义新运算解方程解方程方程的解方程等式的性质等式概念简易方程将数值代入式子求值表示计算公式表示运算定律表示数量关系用字母表示数式与方程比和比例⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧→正比例和反比例比例尺解比例、组比例比例的基本性质比例的意义比例的认识按比例分配化简比、求比值比的基本性质比与除法、分数的关系的名称比的读、写法及各部分比的意义比的认识比和比例。
初中数学八年级上册思维导图一、数的开方1. 平方根:如果一个正数x的平方等于a,那么x是a的平方根,记作x=√a。
正数a的平方根有两个,它们互为相反数,分别记作+√a 和√a。
0的平方根是0,负数没有平方根。
2. 立方根:如果一个数x的立方等于a,那么x是a的立方根,记作x=³√a。
每个实数都有唯一的立方根。
3. 开方运算:开方运算是求一个数的平方根或立方根的运算。
对于正数a,开方运算可以表示为√a或³√a。
二、实数1. 实数的概念:实数包括有理数和无理数。
有理数是可以表示为两个整数比的数,无理数是不能表示为两个整数比的数。
2. 实数的分类:实数可以分为正实数、负实数和0。
正实数是大于0的实数,负实数是小于0的实数,0既不是正实数也不是负实数。
3. 实数的运算:实数可以进行加法、减法、乘法和除法运算。
在运算过程中,需要遵循实数的运算规律,如交换律、结合律和分配律。
三、勾股定理1. 勾股定理的内容:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。
即a²+b²=c²,其中a、b是直角边,c是斜边。
2. 勾股定理的应用:勾股定理可以用来解决直角三角形中的边长问题,也可以用来解决一些与直角三角形相关的实际问题。
3. 勾股定理的证明:勾股定理的证明有多种方法,其中一种常见的证明方法是使用几何图形的面积关系。
四、一次函数1. 一次函数的概念:一次函数是指函数的图像是一条直线,其一般形式为y=kx+b,其中k是斜率,b是截距。
2. 一次函数的性质:一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
3. 一次函数的应用:一次函数可以用来描述一些线性关系,如物体的速度与时间的关系、正比例关系等。
五、不等式1. 不等式的概念:不等式是表示两个数之间大小关系的数学表达式,如a>b、a<b、a≥b、a≤b等。
2. 不等式的性质:不等式可以进行加减、乘除运算,但在乘除运算中需要注意符号的变化。
数与代数思维导图三年级数学古今中外,数学都是一门备受重视的学科,它能帮助人们从理论上探讨问题,并从而获得解决问题的方法。
三年级的数学课程可以帮助学生建立起基本的数学概念和思维,以帮助他们更好地理解未来的数学知识。
每一年的数学课程都以数学思维导图的形式呈现,思维导图是一种形式较为灵活的学习方法,它具有良好的信息处理能力,可以帮助学生更加轻松地理解和掌握数学基本概念。
结合图形和语言,以导图的形式来展示概念,有助于学生更好地理解和掌握数学概念,并且能够避免不必要的混淆。
思维导图教学法通过采用主题事件、图表或叙述来展现它的教学内容,而学生也可以在它的范围内主动地辩护、发表自己的观点。
这种教学方法有助于学生建立起自己的思维网络,从而能够有效掌握三年级数学知识。
思维导图教学法在三年级数学课程中也有着重要的应用,它能够很好地激发学生的思维,帮助他们更好地理解数学概念。
为了让学生更好地理解数学概念,学校针对思维导图而建立了三大阶段的教学框架,分别是“图形-语言-算式”。
首先,教师应该向学生介绍所学习的概念,并向他们提出问题,让学生能够通过讨论以图形的形式展示出来。
这一步有助于学生形成自己的思维模型,从而更好地理解数学概念。
接下来,学生应该通过思维导图并根据老师给出的指导,将图形表达出来,用语言来表达自己讨论出来的数学概念意义,也就是说,学生必须学会把问题表述出来,以及把问题表述为数学语言。
在这个过程中,学生不仅要学会使用合适的数学术语,还要熟练掌握数学的关系,使用正确的语句组织出数学关系。
最后,学生要学会从图形和语言中掌握算式,以及如何使用算式解决数学问题。
算式可以使学生的思维变得更加清晰,也有助于学生更好地理解数学概念。
总之,通过思维导图的形式来教学,可以帮助学生更好地理解和掌握三年级数学概念。
思维导图教学法不仅可以增强学生数学思维能力,而且可以培养学生的独立思考能力,最大程度地激发他们的学习热情,以便日后拓展更高的数学要求。
七年级数学[上册]思维导图第一章:数与代数1.1 实数1.1.1 实数的概念1.1.2 实数的分类1.1.3 实数的性质1.1.4 实数的运算1.2 代数式1.2.1 代数式的概念1.2.2 代数式的分类1.2.3 代数式的运算1.3 方程与不等式1.3.1 方程的概念1.3.2 一元一次方程1.3.3 不等式的概念1.3.4 一元一次不等式第二章:几何初步2.1 点、线、面2.1.1 点的概念2.1.2 线的概念2.1.3 面的概念2.2 平面图形2.2.1 线段2.2.2 角2.2.3 三角形2.2.4 四边形2.2.5 圆2.3 空间图形2.3.1 长方体2.3.2 正方体2.3.3 球第三章:统计与概率3.1 统计3.1.1 数据的收集与整理3.1.2 数据的表示3.1.3 数据的分析3.2 概率3.2.1 概率的概念3.2.2 概率的计算3.2.3 概率的运用第四章:数学思维与方法4.1 逻辑思维4.2 抽象思维4.3 创新思维4.4 数学方法七年级数学[上册]思维导图第五章:函数及其图像5.1 函数的概念5.2 函数的表示方法5.3 函数的性质5.4 函数图像的绘制第六章:数列与数列极限6.1 数列的概念6.2 等差数列与等比数列6.3 数列的求和6.4 数列极限的概念第七章:数学建模与实际问题7.1 数学建模的概念7.2 数学建模的方法7.3 实际问题的解决第八章:数学文化8.1 数学发展的历史8.2 数学家的故事8.3 数学文化的传播第九章:数学竞赛与挑战9.1 数学竞赛的种类9.2 数学竞赛的准备9.3 数学竞赛的挑战第十章:数学与生活10.1 数学在生活中的应用10.2 数学与科技的发展10.3 数学与艺术的结合七年级数学[上册]思维导图第十一章:数学与自然科学11.1 数学与物理的关系11.2 数学与化学的关系11.3 数学与生物的关系第十二章:数学与社会科学12.1 数学与经济学的关系12.2 数学与心理学的关系12.3 数学与历史的关系第十三章:数学与信息技术13.1 数学与计算机科学的关系13.2 数学与网络技术的关系第十四章:数学教育与发展14.1 数学教育的重要性14.2 数学教育的现状14.3 数学教育的发展趋势第十五章:数学与个人成长15.1 数学与思维能力15.2 数学与创新能力15.3 数学与人格培养第十六章:数学与团队合作16.1 数学与沟通能力16.2 数学与协作能力16.3 数学与领导力。
初中三年数学知识点总结思维导图初中三年的数学学习涵盖了广泛的知识点,从基础的算术运算到复杂的几何图形,再到函数和统计学,这些知识点构成了数学学科的坚实基础。
以下是初中数学知识点的总结思维导图:1. 数与代数- 有理数:包括整数、分数、小数和负数的概念,以及它们的加减乘除运算。
- 无理数:了解无理数的定义,如圆周率π和自然对数的底数e。
- 代数式:学习代数表达式的简化,包括合并同类项和分配律的应用。
- 一元一次方程:解方程的基本步骤,如移项、合并同类项和化简。
- 二元一次方程组:通过代入法或消元法求解方程组。
- 不等式:不等式的基本性质和解法,包括一元一次不等式和不等式组。
- 函数:一次函数、二次函数、反比例函数等的基本性质和图像。
2. 几何- 线段、射线和直线:了解它们的定义和性质。
- 角:锐角、直角、钝角和周角的概念及其度量。
- 三角形:三角形的分类,如等边、等腰、直角三角形,以及三角形的内角和定理。
- 四边形:平行四边形、矩形、菱形、正方形的性质和判定。
- 圆:圆的基本概念,如圆心、半径、直径,以及圆周率π。
- 多边形:正多边形的性质,如正五边形、正六边形等。
- 相似与全等:相似图形和全等图形的判定方法。
- 几何变换:平移、旋转和轴对称等变换的性质和应用。
3. 统计与概率- 数据收集:了解数据的收集方法,如调查、实验等。
- 数据整理:数据的分类、排序和图表表示,如条形图、折线图和饼图。
- 描述统计:平均数、中位数、众数、方差和标准差等统计量的计算。
- 概率:事件的确定性和不确定性,以及概率的计算方法。
- 随机变量:离散型和连续型随机变量的概念及其分布。
通过以上的思维导图,我们可以清晰地看到初中数学的主要知识点,这些知识点不仅为高中数学打下坚实的基础,而且在日常生活中也有着广泛的应用。
掌握这些知识点,对于提高数学素养和解决实际问题都具有重要意义。