1.3+频率,概率;1.4+古典概型
- 格式:ppt
- 大小:1.03 MB
- 文档页数:25
概率的基本概念与计算方法概率是数学中重要的概念之一,用以描述事件发生的可能性。
在日常生活和各个学科领域,概率都扮演着重要的角色。
本文将介绍概率的基本概念以及常用的计算方法。
一、概率的基本概念1.1 事件与样本空间在概率论中,事件指的是可能发生的某种结果或者一组结果。
样本空间是指所有可能结果的集合,通常用Ω表示。
1.2 事件的概率事件的概率是指该事件发生的可能性大小,用P(A)表示。
概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。
1.3 古典概型古典概型适用于所有等可能发生的情况,如掷骰子、抽牌等。
当样本空间Ω中的事件数为n时,事件A发生的概率可以用下式计算:P(A) = m / n,其中m表示事件A所包含的有利结果的个数。
1.4 几何概型几何概型适用于空间上的事件,如点、线、面等。
当事件A为几何图形时,可以通过几何方法计算其概率。
二、概率的计算方法2.1 加法法则加法法则是计算两个事件之并集的概率的方法。
设事件A和事件B为样本空间Ω中的两个事件,则其并集为A∪B。
根据加法法则,事件A和事件B的概率之和等于事件A∪B的概率,即P(A∪B) = P(A) +P(B) - P(A∩B)。
2.2 乘法法则乘法法则用来计算两个事件同时发生的概率。
设事件A和事件B为样本空间Ω中的两个事件,则事件A和事件B同时发生的概率可以通过以下公式计算:P(A∩B) = P(A) * P(B|A),其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。
2.3 条件概率条件概率用于计算在某一条件下事件发生的概率。
设事件A和事件B为样本空间Ω中的两个事件,其中P(B)≠0,事件A在事件B发生的条件下发生的概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B)。
2.4 独立事件与互斥事件独立事件指的是两个事件的发生与否相互独立,即事件A的发生不影响事件B的发生。
当事件A和事件B为独立事件时,P(B|A) = P(B)。
高一数学古典概型试题答案及解析1.某射手射击一次击中10环,9环,8环的概率分别为0.3,0.3,0.2,则他射击一次命中8环或9环的概率为.【答案】0.5【解析】射击一次命中8环或9环的概率为.【考点】(1)互斥事件的概率;(2)概率的加法公式.2.在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级.某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为的考生有人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为的人数;(Ⅱ)若等级分别对应分,分,分,分,分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为.在至少一科成绩为的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为的概率.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)先求考场人数,再由频率求“阅读与表达”科目中成绩为的人数,注意这里不是频率分布直方图,纵轴就表示频率;(Ⅱ)根据期望公式即可算得平均分;(Ⅲ)通过枚举法算得概率,注意有四名考生得到,得到的有个人次,注意这两者的区别,否则易犯错误.试题解析:(Ⅰ)设该考场有个考生,而“数学与逻辑”科目中成绩等级为的考生有人,频率由,得该考场有人 2分所以该考场考生中“阅读与表达”科目中成绩等级为的人数为4分(Ⅱ)该考场考生“数学与逻辑”科目的平均分为7分[(Ⅲ)“数学与逻辑”考试中得的有人,“阅读与表达”考试中得的也有人,因为两科考试中,又恰有两人的两科成绩等级均为,所以还有人只有一个科目得分为,设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是的同学,则在至少一科成绩等级为的考生中,随机抽取两人进行访谈,基本事件空间为{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁},有个基本事件设“随机抽取两人进行访谈,这两人的两科成绩等级均为”为事件,所以事件中包含的基本事件有个,则. 12分【考点】统计中的分布及古典概型中的概率计算.3.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是_________(结果用数值表示).【答案】.【解析】列举出从已知五个数字中随机取出三数字后剩下的两个数字的所有可能情况:(1.2 )(1.3)(1.4)(1.5)(2.3)(2.4)(2.5)(3.4)(3.5)(4.5)一共有10种情况,剩下两个数为奇数有:(1.3)(1.5)(3.5)共3种情况,则概率为,故应填入: .【考点】古典概率.4.(原创)口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为()A.B.C.D.【答案】C【解析】从5个球中随机抽取两个球,共有种取法.满足两球编号之和大于5的情况有(2,4),(3,4)共2种取法.所以取出的两个球的编号之和大于5的概率为.【考点】1、古典概型及其概率计算公式;2、组合及组合数公式.5.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:方差,为数据的平均数)【答案】(1);(2);(3).【解析】(1)由题意根据平均数的计算公式分别求出的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差和,再根据它们的平均值相等,可得方差较小的发挥更稳定一些;(3)用列举法求得所有的基本事件的个数,找出其中满足该车间“质量合格”的基本事件的个数,即可求得该车间“质量合格”的概率.试题解析:解:(1)由题意得,解得,再由,解得;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差:,,并由,可得两组技工水平基本相当,乙组更稳定些.(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检查,设两人加工的合格零件数分别为,则所有的有(7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,而满足的基本事件有(7,8)、(7,9)、(7,10)、(8,8)、(8,9),共计5个基本事件,故满足的基本事件个数为,所以该车间“质量合格”的概率为.【考点】1、古典概型及其概率计算公式;2、平均数与方差.6.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依次类推,则从第十组中随机抽取一个数恰为3的倍数的概率为 .【答案】【解析】由题可知前9组数据共有,第10组共有10数,且第一个为46,其中为3的倍数的数为:48,51,54,故概率为.【考点】古典概型.7.记a,b分别是投掷两次骰子所得的数字,则方程有两个不同实根的概率为()A.B.C.D.【答案】B【解析】记分别是投掷两次骰子所得的数字,总事件一共种;方程有两个不同实根则,∴当时,;当时,;当时,;当时,,共9种情况,所以概率为.【考点】古典概型.8.连续抛掷2颗骰子,则出现朝上的点数之和等于6的概率为( ).A.B.C.D.【答案】A【解析】连续抛掷2棵骰子所有基本事件总数为36,其中朝上的点数之和等于6的基本事件有共5中,所以所求概率为。
简述概率的四种确定方法
概率是数学中的一个重要分支,它研究的是随机事件发生的可能性大小。
在实际应用中,我们需要确定概率的大小,这就需要使用概率的
四种确定方法。
第一种方法是古典概型法。
这种方法适用于随机事件的样本空间是有
限的情况。
例如,掷一枚硬币的样本空间为{正面,反面},掷一颗骰子的样本空间为{1,2,3,4,5,6}。
在古典概型法中,我们可以通过
样本空间中有利事件的个数除以样本空间中总事件的个数来确定概率。
第二种方法是几何概型法。
这种方法适用于随机事件的样本空间是连
续的情况。
例如,一个圆形的面积为πr²,那么一个随机点落在圆形内的概率就是圆形面积与总面积的比值。
第三种方法是频率概率法。
这种方法适用于随机事件的样本空间是无
限的情况。
例如,我们可以通过大量的实验来确定一个事件发生的概率。
在频率概率法中,我们可以通过事件发生的次数除以实验总次数
来确定概率。
第四种方法是主观概率法。
这种方法适用于随机事件的概率无法通过
实验或计算得到的情况。
例如,一个人对于某个事件发生的可能性的
主观判断。
在主观概率法中,我们可以通过个人的主观判断来确定概率。
总之,概率的四种确定方法分别是古典概型法、几何概型法、频率概率法和主观概率法。
在实际应用中,我们需要根据具体情况选择合适的方法来确定概率的大小。
第1.4节 古典概率模型一、 古典概型(等可能概型)(Classical probability)1.定义:“概型”是指某种概率模型。
“古典概型”是一种最简单、最直观的概率模型。
如果做某个随机试验E 时,只有有限个事件n A A A ,,,21 可能发生,且事件n A A A ,,,21 满足下面三条:(1)n A A A ,,,21 发生的可能性相等(等可能性);(2)在任意一次试验中n A A A ,,,21 至少有一个发生(完备性);(3)在任意一次试验中n A A A ,,,21 至多有一个发生(互不相容性)。
具有上述特性的概型称为古典概型(Classical probability)或等可能概型。
n A A A ,,,21 称为基本事件(Basic events)。
2.计算公式:等可能概型中事件概率的计算:设在古典概型中,试验E 共有n 个基本事件,事件A 包含了m 个基本事件,则事件A 的概率为n m A P )(3.例题:Example 1 一袋中有8个大小形状相同的球,其中5个黑色球,三个白色球。
现从袋中随机地取出两个球,求取出的两球都是黑色球的概率。
Solution 从8个球中取出两个,不同的取法有28C 种。
若以A 表示事件{取出的两球是黑球},那么使事件A 发生的取法为25C 种,从而=)(A P 25C /28C =5/14Example 2 在箱中装有100个产品,其中有3个次品,为检查产品质量,从这箱产品中任意抽5个,求抽得5个产品中恰有一个次品的概率。
Solution 从100个产品中任意抽取5个产品,共有5100C 种抽取方法,事件A ={有1个次品,4个正品}的取法共有49713C C 种取法,故得事件A 的概率为=)(A P 138.0510049713≈C C CExample 3 将N 个球随机地放入n 个盒子中)(N n >,求:(1)每个盒子最多有一个球的概率;(2)某指定的盒子中恰有m (N m <)个球的概率。
数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。