必修四三角恒等变换题型归纳梳理
- 格式:docx
- 大小:638.50 KB
- 文档页数:14
必修4 第三章三角恒等变换知识点详解3.1 两角和与差的正弦、余弦和正切公式1. 两角和与差的正弦、余弦、正切公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-2. 倍角公式:()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-3. 正切变形公式tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)3.2 简单的三角恒等变换三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等), (2)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。
三角恒等变换知识点及题型归纳总结(共8页)-本页仅作为预览文档封面,使用时请删除本页-三角恒等变换知识点及题型归纳总结知识点精讲常用三角恒等变形公式 和角公式sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()1tan tan αβαβαβ++=-差角公式sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ--=+倍角公式sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===半角公式sin 22αα== sin 1cos tan.21cos sin a αααα-==+辅助角公式sin cos ),tan (0),ba b ab aαααϕϕ+=+=≠角ϕ的终边过点(,)a b ,特殊地,若sin cos a b αα+=或tan .b aα= 常用的几个公式sin cos );4πααα±=±sin 2sin();3πααα±=±cos 2sin();6πααα±=±题型归纳总结题型1 两角和与差公式的证明 题型归纳及思路提示思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例 证明(1):cos()cos cos sin sin ;C αβαβαβαβ++=-(2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβαβαβ+++=-解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得2221212122()PP OP OP OP OP cos αβ=+-⋅+22[cos cos()][sin sin()]22cos()αβαβαβ⇒--+--=-+22(cos cos sin sin )22cos()αβαβαβ⇒--=-+:cos()cos cos sin sin .C αβαβαβαβ+⇒+=-证法二:利用两点间的距离公式.如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++3(cos(),sin()),P ββ--由231;OAP OP P ∆≅∆得,213.AP PP =故2222(1cos())(0sin())[cos()cos ][sin()sin ],αβαββαβα-++-+=--+--即222222[1cos()]sin ()cos cos 2cos cos sin sin 2sin sin αβαββααββααβ-+++=+-+++化简得cos()cos cos sin sin αβαβαβ+=-(2)sin()[()][()]22cos cos ππαβαβαβ+=+-=+-cos()sin sin()22cos ππαβαβ=---sin sin cos cos αβαβ=+:sin()sin cos sin S cos αβαβαβαβ+⇒+=+ sin(sin cos cos sin (3)tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-sin cos cos sin cos cos cos cos cos cos sin sin cos cos cos cos αβαβαβαβαβαβαβαβ+-tan tan :tan().1tan tan T αβαβαβαβ++⇒+=- 变式1 证明:(1):cos()cos cos sin sin ;C αβαβαβαβ--=+ (2):sin()sin cos sin S cos αβαβαβαβ--=- tan tan (3):tan().1tan tan T αβαβαβαβ---=+题型2 化简求值 思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等.(1)给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角. 一、化同角同函例 已知3cos()45x π+=则2sin 22sin ()1tan x xx -=-7.25A 12.25B 11.25C 18.25D 解析 解法一:化简所求式22sin 22sin 2sin cos 2sin sin 1tan 1cos x x x x xx x x--=--cos 2sin (cos sin )2sin cos .cos sin xx x x x x x x=-=-由3cos()45x π+=得3,225x x -=即cos sin 5x x -=两边平方得 2218cos sin 2sin cos ,25x x x x +-=即1812sin cos .25x x -= 所以72sin cos .25x x =故选A. 解法二:化简所求式2sin 22sin 2sin cos sin 21tan x xx x xx-==-27sin[2()]cos 2()12cos ().424425x x x ππππ=+-=-+=-+=故选A. 评注 解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构造法较为简单. 变式1 若13cos(),cos(),55αβαβ+=-=则tan tan _______.αβ=变式2 若4cos 5α=-,α是第三象限角,则1tan2()1tan 2αα+=- 1.2A - 1.2B .2C .2D -变式3 (2012江西理4)若1tan 4tan θθ+=,则sin 2().θ= 1.5A 1.4B 1.3C 1.2D 二、建立已知角与未知角的联系(通过凑配角建立)将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公式.常见的角的变换有:和、差角,辅助角,倍角,降幂,诱导等. 1.和、差角变换如α可变为()αββ+-;2α可变为()()αβαβ++-;2αβ-可变为()αβα-+ 例 若330,cos ,sin(),255παβπααβ<<<<=+=-则cos β的值为( ). .1A - .1B -或725 24.25C - 24.25D ±分析 建立未知角与已知角的联系,().βαβα=+-解析 解法一:cos cos[()]cos()cos sin()sin .βαβααβααβα=+-=+++因为3(,)22ππαβ+∈所以,则 4cos(),(0,),sin 0,52παβαα+=-∈>4sin 5,α=433424cos ()().555525β=-⨯+-⨯=-解法二:因为(,)2πβπ∈,所示cos (1,0).β∈-故选C.评注 利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧:();();()()βαβαβααβαβαγβγ=+-=--+=-++等.解题时,要注意根据已知角的范围来确定未知角的范围,从而确定所求三角式的符号. 变式1已知sin ),(0,)2πααβαβ=-=∈则().β=.3B π .4C π .6D π变式2 若3335(,),(0,),cos(),sin()44445413πππππαβαβ∈∈-=+=,则 sin()______.αβ+=二、辅助角公式变换 例已知cos()sin 65παα-+=,则7sin()6πα+的值为( )..5A -.5B 4.5C - 4.5D分析 将已知式化简,找到与未知式的联系. 解析由题意,cos cossin sinsin 66ππααα++=3cos sin )2265πααα⇒+=+=,得4sin().65πα+= 所以74sin()sin[()]sin().6665πππαπαα+=++=-+=-故选C. 变式1设6sin14cos14,sin16cos16,,2b c α=+=+=则a,b,c 的大小关系为( ). <b<c <c<a <c<b <a<c变式2设sin15cos15,sin17cos17,b α=+=+则下列各式中正确的是( ).22.2a b A a b +<< 22.2a b B a b +<<5.12A π22.2a b C b a +<< 22.2a b D b a +<<3.倍角,降幂(次)变换例(2012大纲全国理7)已知α为第二象限角,sin cos αα+=则cos 2().α=.A .B - C D分析 利用同角三角函数的基本关系式及二倍角公式求解.解析 解法一:;因为sin cos αα+=所以21(sin cos )3αα+=得22sin cos 3αα=-,即2sin 23α=-.又因为α为第二象限角且sin cos 0αα+=>,则3(2,2)().24k k k Z ππαππ∈++∈所以32(4,4)().2k k k Z παπππ∈++∈故2α为第三象限角,cos 2α==.故选A.解法二:由α为第二象限角,得cos 0,sin 0αα<>,cos sin 0,αα-<且2(cos sin )12sin cos αααα-=-,又sin cos αα+=,则 21(sin cos )12sin cos 3αααα+=+=22sin cos 3αα⇒=-,得25(cos sin )3αα-=,所以cos sin 3αα-=-22cos2cos sin (cos sin )(cos sin )ααααααα=-=+-(==故选A. 变式1 若1sin()63πα-=则2cos()().3πα+= 7.9A - 1.3B - 1.3C 7.9D变式2设α为锐角,若4cos()65πα+=,则7sin(2)12πα+的值省为 .变式3已知312sin(2),sin 513αββ-==-且(,),(,0),22ππαπβ∈∈-求sin α值. 变式4若31sin ,(,),tan()522πααππβ=∈-=,则tan(2)().αβ-= 24.7A - 7.24B - 24.7C 7.24D 变式5已知1sin cos 2αα=+,且(0.)2πα∈,则cos 2_____.sin()4απα=-4.诱导变换例若(sin )3cos 2f x x =-,则(cos )().f x =.3cos 2A x - .3sin 2B x - .3cos 2C x + .3sin 2D x +分析 化同函(cos )(sin())f x f =以便利用已知条件. 解析 解法一:(cos )[sin()]3cos 2()3cos(2)3cos 2.22f x f x x x x πππ=+=-+=-+=+故选C.解法二:22(sin )3cos23(12sin )2sin 2f x x x x =-=--=+则2()22,[1,1]f x x x =+∈-故22(cos )2cos 22cos 13cos2 3.f x x x x =+=-+=+故选C.变式1α是第二象限角,4tan(2)3πα+=-,则tan _______.α= 变式2若5sin(),(0,)4132ππαα-=∈,则cos 2_____.cos()4απα=+最有效训练题1.已知函数()sin ,f x x x =设(),(),()763a fb fc f πππ===,则,,a b c 的大小关系为( ).<b<c B. c<a<b <a<c <c<a2.若1sin()34πα+=,则cos(2)().3πα-= 1.4B - 7.8C - 7.8D3.若1tan 2α=,则cos(2)().2πα+= 4.5A 4.5B - 1.2C 1.2D - 4.已知11tan(),tan 27αββ-==-,且,(0,)αβπ∈,则2().αβ-= .4A π 3.4B π- 5.,44C ππ 35.,,444D πππ-1.4A5.函数sin()(0)y x πϕϕ=+>的部分图像如图4-33所示,设P是图像的最高点,A,B是图像与x 轴的交点,则tan ().APB ∠=A.10 B.8 8.7C 4.7D6.函数sin 3cos 4x y x -=+的最大值是( ).1.2A -1226.15B -- 4.3C - 1226.15D -+ 7.已知tan()34πθ+=,则2sin 22cos ______.θθ-=8.已知,x y 满足1sin sin 31cos cos 5x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,则cos()______.x y += 9.23tan101________.(4cos 102)sin10+=- 10.已知113cos ,cos()714ααβ=-=,且02πβα<<<,则tan 2____,____.αβ== 11.已知函数2()2cos 3sin .2x f x x =- (1)求函数()f x 的最小正周期和值域; (2)若α是第二象限角,且1()33f πα-=,求cos 21cos 2sin 2ααα+-的值.12.已知三点3(3,0),(0,3),(cos ,sin ),(,).22A B C ππααα∈(1)若AC BC =,求角α;(2)若1AC BC ⋅=-,求22sin sin 21tan ααα++的值.。
3.3 几个三角恒等式知识梳理一、万能代换公式:sinα=2tan 12tan22αα+;cosα=2tan 12tan 122αα+-;tanα=2tan 12tan22αα-.二、关于和差化积、积化和差公式的推导 1.积化和差公式推导课本仅推了第一个,下面给出公式的全部推导过程: 由于sin(α+β)=sinαcosβ+cosαsinβ;① sin(α-β)=sinαcosβ-cosαsinβ;② cos(α+β)=cosαcosβ-sinαsinβ;③ cos(α-β)=cosαcosβ+sinαsinβ.④①+②,得sinαcosβ=21[sin(α+β)+sin(α-β)]; ①-②,得cosαsinβ=21[sin(α+β)-sin(α-β)];④+③,得cosαcosβ=21[cos(α+β)+cos(α-β)];④-③,得sinαsinβ=-21[cos (α+β)-cos(α-β)].2.和差化积公式的推导在积化和差公式中,如果“从右往左”看就是和差化积. 令α+β=θ,α-β=φ,则α=2ϕθ+,β=2ϕθ-,代入第一个积化和差公式,可得sinθ+sinφ=2sin 2ϕθ+cos2ϕθ-.同理,可得sinθ-sinφ=2cos2ϕθ+sin2ϕθ-,cosθ+cosφ=2cos 2ϕθ+cos 2ϕθ-,cosθ-cosφ=-2sin 2ϕθ+sin 2ϕθ-.知识导学要学好本节内容,可以以一般的数学(代数)变换思想为指导,加强对三角函数式特点的观察,注意体会三角恒等变换的特殊性.关于和差化积、积化和差,万能代换公式这三组公式要了解它们的推导过程,体会其中用到的换元与方程的思想.课本上虽然不要求记忆,但如果能记住且会用,在解某些题目时将会少绕弯路,起到事半功倍的效果.半角公式虽然不要求记忆,但要熟悉公式的推导和使用,在解题过程中能熟练地进行变形,应用它们可以起到降幂或升幂的重要作用. 疑难突破1.代数式变换与三角变换有何异同?剖析:三角恒等变换与代数恒等变换、圆的几何性质等都有紧密联系,推导两角差的余弦公式的过程比较集中地反映了这种联系,从中体现了丰富的数学思想.从数学变换的角度看,三角恒等变换与代数恒等变换既有相同之处又有各自特点.相同之处在于它们都是运用一定的数学工具对相应的数学式子作“只变其形不变其质”的数学运算,对其结构形式进行变换.由于三角函数式的差异不仅表现在其结构形式上,而且还表现在角及其函数类型上,因此三角恒等变换常常需要先考虑式子中各个角之间的关系,然后以这种关系为依据来选择适当的三角公式进行变换,这是三角恒等变换的主要特点. 2.如何确定半角的正弦、余弦、正切的无理式前的符号?(2)若给出α的范围时,可先求出2的范围,再根据2的范围确定符号. (3)若没有给出决定符号的条件时,则要保留正,负两个符号. 3.半角公式的推导和使用.tan2α还可以用sinα、cosα的有理表达式给出吗?半角仅仅是2α与α之间的关系吗?剖析:(1)半角公式虽然不要求记忆,但要熟悉公式的推导和使用,在解题过程中能熟练地进行变形,特别是sin 22α=2cos 1α-与cos 22α=2cos 1α+.应用它们可以起到降幂或升幂的重要作用,在三角函数的化简、求值、证明过程中有着举足轻重的地位.(2)课本中半角公式给出了无理表达式: sin2α=±2cos 1α-,cos 2α=±2cos 1α+,tan 2α=±ααcos 1cos 1+-. 其中tan 2α还可以用sinα、cosα的有理表达式给出: tan 2α=ααααsin cos 1cos 1sin -=+,推导如下:tan2α=αααααααcos 1sin 2cos 22cos22sin2cos 2sin2+=∙= 或tan 2α=αααααααsin cos 12sin 22cos 2sin 22cos 2sin 2-=∙=, 即tan 2α=ααααsin cos 1cos 1sin -=+.这两个公式将tan2α表示成了sinα、cosα的有理表达式.使用它们在一些计算或化简过程中可避免开方和对根号前符号的判断,非常方便,如计算tan8π可直接化为2222222214sin4cos 1=-=-=-ππ-1,但应注意到tan 2α=ααsin cos 1-的适用范围是α≠kπ(k ∈Z ,而tan2α=ααcos 1sin +与tan 2α=±ααcos 1cos 1+-的适用范围是α≠(2k+1)π(k ∈Z ). (3)对于半角要有广义上的理解 如:4α=21×8α,3α=21×6a ,23α=21×3α,3α=21×32α,6α=21×3α,… 又如:2α=21×α,4α=21×2α,…,12+n α=21×n 2α等.则有sin 212+n α=22cos 1n α-,cos 212+n α=22cos 1n α+,tan 212+n α=n n 2cos 12cos 1αα+-等.。
三角函数知识点总结1、任意角:正角: ;负角: ;零角: ;2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、 叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 .7、弧度制与角度制的换算公式:8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S=9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:.12、同角三角函数的基本关系:(1) ;(2) ;(3) 13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:奇变偶不变,符号看象限. 重要公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=.(2)2222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=).⑶22tan tan 21tan ααα=-.公式的变形:()βαβαβαtan tan 1)tan(tan tan μ•±=±,辅助角公式()22sin cos sin αααϕA +B =A +B +,其中tan ϕB =A. 14、函数sin y x =的图象平移变换变成函数()sin y x ωϕ=A +的图象. 15.函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.16.图像正弦函数、余弦函数和正切函数的图象与性质:三角函数题型分类总结一.求值1、sin330︒= tan690° = o585sin =2、(1)(07全国Ⅰ) α是第四象限角,12cos 13α=,则sin α= (2)(09北京文)若4sin ,tan 05θθ=->,则cos θ= . (3)(09全国卷Ⅱ文)已知△ABC 中,12cot 5A =-,则cos A = . (4) α是第三象限角,21)sin(=-πα,则αcos = )25cos(απ+= 3、(1) (07陕西) 已知5sin ,5α=则44sin cos αα-= . (2)(04全国文)设(0,)2πα∈,若3sin 5α=,则2cos()4πα+= .(3)(06福建)已知3(,),sin ,25παπα∈=则tan()4πα+= 4(07重庆)下列各式中,值为23的是( ) (A )2sin15cos15︒︒ (B )︒-︒15sin 15cos 22(C )115sin 22-︒(D )︒+︒15cos 15sin 22 5. (1)(07福建) sin15cos75cos15sin105+oooo= (2)(06陕西)cos 43cos77sin 43cos167o o o o+= 。
三角恒等变换一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形: sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14. 2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4 =sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3B.2C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157.答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值.解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.第六节 简单的三角恒等变换 考点一 三角函数式的化简[典例] (1)sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( )A .-sin αB .-cos αC .sin αD .cos α(2)化简:sin (2α+β)sin α-2cos(α+β).[解] (1)选D 原式=-sin 2α·cos 2α2cos 2α(-sin α)=-2sin αcos α·cos 2α2cos 2α(-sin α)=cos α.(2)原式=sin (2α+β)-2sin αcos (α+β)sin α=sin[α+(α+β)]-2sin αcos (α+β)sin α=sin αcos (α+β)+cos αsin (α+β)-2sin αcos (α+β)sin α=cos αsin (α+β)-sin αcos (α+β)sin α=sin[(α+β)-α]sin α=sin βsin α.[解题技法] [题组训练]1.化简:sin 2α-2cos 2αsin ⎝⎛⎭⎫α-π4=________.解析:原式=2sin αcos α-2cos 2α22(sin α-cos α)=22cos α.答案:22cos α2.化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π4-α.解:原式=cos 2α2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=cos 2αsin ⎝⎛⎭⎫π2-2α=cos 2αcos 2α=1.考点二 三角函数式的求值考法(一) 给角求值 [典例]cos 10°(1+3tan 10°)cos 50°的值是________.[解析] 原式=cos 10°+3sin 10°cos 50°=2sin (10°+30°)cos 50°=2sin 40°sin 40°=2.[答案] 2[解题技法] 三角函数给角求值问题的解题策略一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换转化为求特殊角的三角函数值问题,另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.考法(二) 给值求值[典例] 已知sin ⎝⎛⎭⎫α+π4=210,α∈⎝⎛⎭⎫π2,π. 求:(1)cos α的值; (2)sin ⎝⎛⎭⎫2α-π4的值. [解] (1)由sin ⎝⎛⎭⎫α+π4=210, 得sin αcos π4+cos αsin π4=210,化简得sin α+cos α=15,①又sin 2α+cos 2α=1,且α∈⎝⎛⎭⎫π2,π② 由①②解得cos α=-35.(2)∵α∈⎝⎛⎭⎫π2,π,cos α=-35,∴sin α=45, ∴cos 2α=1-2sin 2α=-725,sin 2α=2sin αcos α=-2425,∴sin ⎝⎛⎭⎫2α-π4=sin 2αcos π4-cos 2αsin π4=-17250.[解题技法] 三角函数给值求值问题的基本步骤 (1)先化简所求式子或已知条件;(2)观察已知条件与所求式子之间的联系(从三角函数的名及角入手); (3)将已知条件代入所求式子,化简求值. 考法(三) 给值求角 [典例] 若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4C.5π4或7π4D.5π4或9π4[解析] ∵α∈⎣⎡⎦⎤π4,π,∴2α∈⎣⎡⎦⎤π2,2π, ∵sin 2α=55,∴2α∈⎣⎡⎦⎤π2,π. ∴α∈⎣⎡⎦⎤π4,π2且cos 2α=-255. 又∵sin(β-α)=1010,β∈⎣⎡⎦⎤π,3π2, ∴β-α∈⎣⎡⎦⎤π2,5π4,cos(β-α)=-31010, ∴cos(α+β)=cos [(β-α)+2α] =cos(β-α)cos 2α-sin(β-α)sin 2α =⎝⎛⎭⎫-31010×⎝⎛⎭⎫-255-1010×55=22,又∵α+β∈⎣⎡⎦⎤5π4,2π,∴α+β=7π4. [答案] A[解题技法] 三角函数给值求角问题的解题策略 (1)根据已知条件,选取合适的三角函数求值. ①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数.若角的范围是⎝⎛⎭⎫0,π2,选正、余弦函数皆可;若角的范围是(0,π),选余弦函数较好;若角的范围是⎝⎛⎭⎫-π2,π2,选正弦函数较好. (2)注意讨论所求角的范围,及解题过程中角的范围.[题组训练]1.求值:cos 20°cos 35°1-sin 20°=( )A .1B .2 C.2D.3解析:选C 原式=cos 20°cos 35°|sin 10°-cos 10°|=cos 210°-sin 210°cos 35°(cos 10°-sin 10°)=cos 10°+sin 10°cos 35°=2⎝⎛⎭⎫22cos 10°+22sin 10°cos 35°=2cos (45°-10°)cos 35°=2cos 35°cos 35°= 2.2.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 法一:因为sin α+cos α=33,所以(sin α+cos α)2=13,即2sin αcos α=-23,即sin 2α=-23. 又因为α为第二象限角且sin α+cos α=33>0, 所以sin α>0,cos α<0,cos α-sin α<0,cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α- sin α)<0.所以cos 2α=-1-sin 22α=-1-⎝⎛⎭⎫-232=-53. 法二:由cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α),且α为第二象限角,得cos α-sin α<0,因为sin α+cos α=33, 所以(sin α+cos α)2=13=1+2sin αcos α,得2sin αcos α=-23,从而(cos α-sin α)2=1-2sin αcos α=53,则cos α-sin α=-153,所以cos 2α=33×⎝⎛⎭⎫-153=-53.3.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A.3π4 B.π4或3π4C.π4D .2k π+π4(k ∈Z)解析:选C 由sin α=55,cos β=31010,且α,β为锐角, 可知cos α=255,sin β=1010,故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.考点三 三角恒等变换的综合应用[典例] (2018·北京高考)已知函数f (x )=sin 2x +3sin x cos x . (1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32,求m 的最小值. [解] (1)因为f (x )=sin 2x +3sin x cos x =12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎫2x -π6+12. 由题意知-π3≤x ≤m ,所以-5π6≤2x -π6≤2m -π6.要使f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32, 即sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤-π3,m 上的最大值为1, 所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3.[解题技法]三角恒等变换综合应用的解题思路(1)将f (x )化为a sin x +b cos x 的形式; (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x ;(3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角); (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; (5)反思回顾,查看关键点、易错点和答题规范.[题组训练]1.已知ω>0,函数f (x )=sin ωx cos ωx +3cos 2ωx -32的最小正周期为π,则下列结论正确的是( )A .函数f (x )的图象关于直线x =π3对称B .函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递增C .将函数f (x )的图象向右平移π6个单位长度可得函数g (x )=cos 2x 的图象D .当x ∈⎣⎡⎦⎤0,π2时,函数f (x )的最大值为1,最小值为-32 解析:选D 因为f (x )=sin ωx cos ωx +3cos 2ωx -32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎫2ωx +π3,所以T =2π2ω=π,所以ω=1,所以f (x )=sin ⎝⎛⎭⎫2x +π3.对于A ,因为f ⎝⎛⎭⎫π3=0,所以不正确;对于B ,当x ∈⎣⎡⎦⎤π12,7π12时,2x +π3∈⎣⎡⎦⎤π2,3π2,所以函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递减,故不正确;对于C ,将函数f (x )的图象向右平移π6个单位长度所得图象对应的函数y=f ⎝⎛⎭⎫x -π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=sin 2x ,所以不正确;对于D ,当x ∈⎣⎡⎦⎤0,π2时,2x +π3∈⎣⎡⎦⎤π3,4π3,所以f (x )∈⎣⎡⎦⎤-32,1,故正确.故选D. 2.已知函数f (x )=4sin x cos ⎝⎛⎭⎫x -π3- 3. (1)求函数f (x )的单调区间;(2)求函数f (x )图象的对称轴和对称中心.解:(1)f (x )=4sin x cos ⎝⎛⎭⎫x -π3-3 =4sin x ⎝⎛⎭⎫12cos x +32sin x -3=2sin x cos x +23sin 2x -3 =sin 2x +3(1-cos 2x )-3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3. 令2k π-π2≤2x -π3≤2k π+π2(k ∈Z),得k π-π12≤x ≤k π+5π12(k ∈Z),所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z). 令2k π+π2≤2x -π3≤2k π+3π2(k ∈Z),得k π+5π12≤x ≤k π+11π12(k ∈Z),所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z). (2)令2x -π3=k π+π2(k ∈Z),得x =k π2+5π12(k ∈Z),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z).令2x -π3=k π(k ∈Z),得x =k π2+π6(k ∈Z),所以函数f (x )的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z).[课时跟踪检测]A 级1.已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则tan α=( ) A .1 B .-1 C.12D .0解析:选B ∵sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, ∴12cos α-32sin α=32cos α-12sin α, 即⎝⎛⎭⎫32-12sin α=⎝⎛⎭⎫12-32cos α,∴tan α=sin αcos α=-1.2.化简:cos 40°cos 25°1-sin 40°=( )A .1 B.3 C.2D .2解析:选C 原式=cos 220°-sin 220°cos 25°(cos 20°-sin 20°)=cos 20°+sin 20°cos 25°=2cos 25°cos 25°= 2.3.(2018·唐山五校联考)已知α是第三象限的角,且tan α=2,则sin ⎝⎛⎭⎫α+π4=( ) A .-1010B.1010C .-31010D.31010解析:选C 因为α是第三象限的角,tan α=2,所以⎩⎨⎧sin αcos α=2,sin 2α+cos 2α=1,所以cos α=-55,sin α=-255,则sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-255×22-55×22=-31010. 4.(2019·咸宁模拟)已知tan(α+β)=2,tan β=3,则sin 2α=( ) A.725 B.1425C .-725D .-1425解析:选C 由题意知tan α=tan [(α+β)-β]=tan (α+β)-tan β1+tan (α+β)tan β=-17,所以sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=-725.5.已知cos ⎝⎛⎭⎫2π3-2θ=-79,则sin ⎝⎛⎭⎫π6+θ的值为( ) A.13 B .±13C .-19D.19解析:选B ∵cos ⎝⎛⎭⎫2π3-2θ=-79, ∴cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+2θ=-cos ⎝⎛⎭⎫π3+2θ =-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6+θ=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π6+θ=-79, 解得sin 2⎝⎛⎭⎫π6+θ=19,∴sin ⎝⎛⎭⎫π6+θ=±13. 6.若sin(α-β)sin β-cos(α-β)cos β=45,且α为第二象限角,则tan ⎝⎛⎭⎫α+π4=( ) A .7B.17 C .-7 D .-17解析:选B ∵sin(α-β)sin β-cos(α-β)cos β=45,即-cos(α-β+β)=-cos α=45, ∴cos α=-45.又∵α为第二象限角,∴tan α=-34,∴tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=17. 7.化简:2sin (π-α)+sin 2αcos 2α2=________. 解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α) =4sin α(1+cos α)1+cos α=4sin α. 答案:4sin α8.(2018·洛阳第一次统考)已知sin α+cos α=52,则cos 4α=________. 解析:由sin α+cos α=52,得sin 2α+cos 2α+2sin αcos α=1+sin 2α=54,所以sin 2α=14,从而cos 4α=1-2sin 22α=1-2×⎝⎛⎭⎫142=78. 答案:789.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________.解析:由已知可得tan α+tan β1-tan αtan β=3, 即tan(α+β)= 3.又因为α+β∈(0,π),所以α+β=π3.答案:π310.函数y =sin x cos ⎝⎛⎭⎫x +π3的最小正周期是________. 解析:y =sin x cos ⎝⎛⎭⎫x +π3=12sin x cos x -32sin 2x =14sin 2x -32·1-cos 2x 2=12sin ⎝⎛⎭⎫2x +π3-34,故函数f (x )的最小正周期T =2π2=π. 答案:π11.化简:(1)3tan 12°-3sin 12°(4cos 212°-2); (2)cos 2α1tan α2-tan α2.解:(1)原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12°=3sin 12°-3cos 12°2sin 12°cos 12°cos 24° =23(sin 12°cos 60°-cos 12°sin 60°)sin 24°cos 24° =43sin (12°-60°)sin 48°=-4 3. (2)法一:原式=cos 2αcos α2sin α2-sin α2cos α2=cos 2 αcos 2 α2-sin 2 α2sin α2cos α2 =cos 2αsin α2cos α2cos 2 α2-sin 2 α2=cos 2αsin α2cos α2cos α =sin α2cos α2cos α=12sin αcos α=14sin 2α. 法二:原式=cos 2αtan α21-tan 2 α2=12cos 2α·2tan α21-tan 2 α2=12cos 2α·tan α=12cos αsin α=14sin 2α. 12.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解:(1)因为f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x =sin ⎝⎛⎭⎫2x -π3+32, 所以函数f (x )的最小正周期为T =π.由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得-π12+k π≤x ≤5π12+k π,k ∈Z , 所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z. (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1,f (x )∈⎣⎡⎦⎤0,1+32. 故f (x )的值域为⎣⎡⎦⎤0,1+32. B 级1.(2018·大庆中学期末)已知tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,且3π<α<7π2,则cos α+sin α=( ) A.3 B.2 C .-2 D .-3解析:选C ∵tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,∴tan α+1tan α=k ,tan α·1tan α=k 2-3. ∵3π<α<7π2,∴k >0,∴k =2, ∴tan α=1,∴α=3π+π4, 则cos α=-22,sin α=-22,∴cos α+sin α=- 2. 2.在△ABC 中,sin(C -A )=1,sin B =13,则sin A =________. 解析:∵sin(C -A )=1,∴C -A =90°,即C =90°+A ,∵sin B =13,∴sin B =sin(A +C )=sin(90°+2A )=cos 2A =13, 即1-2sin 2A =13,∴sin A =33. 答案:333.已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边经过点P (-3,3).(1)求sin 2α-tan α的值;(2)若函数f (x )=cos(x -α)cos α-sin(x -α)sin α,求函数g (x )=3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,2π3上的值域. 解:(1)∵角α的终边经过点P (-3,3),∴sin α=12,cos α=-32,tan α=-33. ∴sin 2α-tan α=2sin αcos α-tan α=-32+33=-36. (2)∵f (x )=cos(x -α)cos α-sin(x -α)sin α=cos x ,∴g (x )=3cos ⎝⎛⎭⎫π2-2x -2cos 2x =3sin 2x -1-cos 2x =2sin ⎝⎛⎭⎫2x -π6-1. ∵0≤x ≤2π3, ∴-π6≤2x -π6≤7π6. ∴-12≤sin ⎝⎛⎭⎫2x -π6≤1, ∴-2≤2sin ⎝⎛⎭⎫2x -π6-1≤1, 故函数g (x )=3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,2π3上的值域是[-2,1].。
高中数学必修4知识点总结:第三章三角恒等变换高中数学必修4知识点总结第三章三角恒等变换24、两角和与差的正弦、余弦和正切公式:⑴cococoinin;⑵cococoinin;⑶inincocoin;⑷inincocoin;⑸tantantan(tantantan1tantan);1tantantantan(tantantan1tantan).1tantan⑹tan25、二倍角的正弦、余弦和正切公式:⑴in22inco.1in2in2co22incoinco2⑵co2co2in22co2112in2,1co2in2升幂公式1co2co222co211co22,in.降幂公式co222⑶tan22tan.21tan万能公式:αα2tan1tan22;coα2inααα1tan21tan222:26、半角公式α1coαα1coαco;in2222α1coαin1coααtan21coα1coαinα(后两个不用判断符号,更加好用)B27、合一变形把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的Ain形式。
inco22in,其中tan.28、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①2是的二倍;4是2的二倍;是的二倍;是的二倍;22430o;co;②1545306045;问:in12122ooooo③;④424;⑤244;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。
如在三角函数中正余弦是基础,通常化切为弦,变异名为同名。
(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的代换变形有:1incotancotin90tan45(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。
三角恒等变换各种题型归纳分析三角恒等变换基础知识及题型分类汇总一、知识点:一)公式回顾:cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta $,简记为C($\alpha\pm\beta$)sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,简记为S($\alpha\pm\beta$)sin2\alpha=2\sin\alpha\cos\alpha$,简记为S2cos2\alpha=\cos^2\alpha-\sin^2\alpha$,简记为C2tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}$,其中$\alpha\neq\frac{k\pi}{2}$,简记为T2二)公式的变式1\pm\cos2\alpha=2\cos^2\alpha$,简记为1±C2frac{1\pm\cos\alpha}{2}=\sin^2\frac{\alpha}{2}$,简记为S2/2sin\alpha\pm\sin\beta=2\sin\frac{\alpha\pm\beta}{2}\cos\frac {\alpha\mp\beta}{2}$,简记为S±Scos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\al pha-\beta}{2}$,简记为C+Ccos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}$,简记为C-Ctan\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}$,简记为T1辅助角(合一)公式:begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(\pi+\alpha)=-\sin\alpha\\\cos(\pi+\alpha)=-\cos\alpha\end{cases}$begin{cases}\sin(-\alpha)=-\sin\alpha\\\cos(-\alpha)=\cos\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}-\alpha)=\cos\alpha\\\cos(\frac{\pi}{2}-\alpha)=\sin\alpha\end{cases}$begin{cases}\sin(\frac{\pi}{2}+\alpha)=\cos\alpha\\\cos(\frac {\pi}{2}+\alpha)=-\sin\alpha\end{cases}$begin{cases}\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\end{cases}$二典例剖析:基础题型例1:已知$\sin2\alpha=\frac{5\pi}{13}$,$\alpha\in\left(0,\frac{\pi}{2}\right)$,求$\sin4\alpha$,$\cos4\alpha$,$\tan4\alpha$。
三角恒等变换题型归纳梳理一、知识点总结:1、同角三角函数的基本关系式 :①22sin cos 1θθ+=,②tan θ=θθcos sin , 2、正弦、余弦的诱导公式(奇变偶不变,符号看象限) 3、和角与差角公式sin()sin cos cos sin αβαβαβ±=± cos()cos cos sin sin αβαβαβ±=tan tan tan()1tan tan αβαβαβ±±=. ααααcos sin 21)cos (sin 2±=±ϕ由点(,)a b 的象限决定,tan baϕ=). 4、二倍角公式及降幂公式sin 2sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-. 221cos 21cos 2sin ,cos 22αααα-+== 5、三角函数的周期公式函数sin()y x ωϕ=+, (A,ω,ϕ为常数,且A ≠0)的周期2||T πω=; 函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 二、重难点题型突破:1、两角和与差的余弦公式的应用cos()cos cos sin sin αβαβαβ±=例1.(1)(2019·山东高一期末)( )A B . C .D . 10208020cos cos cos sin ︒-︒︒=1212-【解析】由诱导公式,所以选择A (2).已知为锐角,为第三象限角,且,,则的值为( )A .B .C .D .【解析】为锐角,且,.为第三象限角,且,,.故选A. 【变式训练】(1)(2020·四川成都市·棠湖中学高一月考)cos80cos 200sin100sin340+=( )A .12B .2C .12-D【详解】()()()cos80cos 200sin100sin340cos80cos 18020sin 18080sin 36020+=++--()cos80cos 20sin80sin 20cos80cos 20sin80sin 20=--=-+()1cos 8020cos602=--=-=-.故选:C.(2)(2018·徐汇区·上海中学高三月考)1cos(2)9αβ-=-,2sin(2)3αβ-=,且α、02πβ⎛⎫∈ ⎪⎝⎭,,则()cos αβ+=________102080201020sin1020cos cos cos sin cos cos sin︒-︒︒=︒-︒︒1020sin1020cos(1020)cos302cos cos sin ︒-︒︒=︒+︒=︒=αβ12cos 13α=3sin 5β=-()cos αβ-6365-3365-63653365α12cos 13α=5sin 13α∴==β3sin 5β=-4cos 5β∴==-()12453cos cos cos sin sin 135135αβαβαβ⎛⎫⎛⎫∴-=+=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭6365=-【详解】由,0,2παβ⎛⎫∈ ⎪⎝⎭,可得:2,2παβπ⎛⎫-∈-⎪⎝⎭,2,2παβπ⎛⎫-∈- ⎪⎝⎭,又1cos(2)09αβ-=-<,2sin(2)03αβ-=>,所以2,2παβπ⎛⎫-∈ ⎪⎝⎭,20,2παβ⎛⎫-∈ ⎪⎝⎭,sin(2)αβ-=,cos(2)αβ-=,又因为(2)(2)αβαβαβ+=---,所以 ()[]cos cos (2)(2)αβαβαβ+=---cos(2)cos(2)sin(2)sin(2)αβαβαβαβ=--+--1293=-+=. 二、两角和与差的正弦公式的应用sin()sin cos cos sin αβαβαβ±=±例2.(1)(2021·江苏高一)sin11cos19cos11cos71︒︒+︒︒的值为( )A B .12C D 【详解】sin11cos19cos11cos71︒︒+︒︒sin11cos19cos11sin19=︒︒+︒︒()1sin 1119sin 302=︒+︒=︒=.故选:B. (2)(2020·湖南省平江县第一中学高三月考)若,αβ为锐角,且满足4cos 5α=,5cos()13αβ+=,则sin β的值为( )A .1665-B .3365C .5665D .6365【详解】因为,αβ为锐角,且4cos 5α=,5cos()13αβ+=, 所以312sin ,sin()513ααβ=+=,所以故sin sin[()]βαβα=+-124533313513565=⨯-⨯=,故选:B.【变式训练】.(1)(2020·全国高一课时练习)sin152sin 30cos15+=__.【详解】sin152sin 30sin152sin(4515)cos15cos15++-=sin15cos15sin151cos15+-==.答案为:1. (2)(2021·浙江宁波市·高一期末)已知35sin ,cos ,0,,,51322ππαβαβπ⎛⎫⎛⎫==-∈∈ ⎪ ⎪⎝⎭⎝⎭,则()sin αβ+=________.【详解】30,,sin 25παα⎛⎫∈= ⎪⎝⎭,则4cos 5α=,5,,cos 213πβπβ⎛⎫∈=- ⎪⎝⎭,则12sin 13β= ()3541233sin sin cos cos sin 51351365αβαβαβ⎛⎫+=+=⨯-+⨯= ⎪⎝⎭,故答案为:3365三、 两角和与差的正切公式的应用tan tan tan()1tan tan αβαβαβ±±=例3.(1)(2020·全国高一单元测试)已知角α的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(3,4)P --,则tan 4πα⎛⎫+⎪⎝⎭的值为( ) A .247-B .7-C .247D .1731【详解】由题意,利用任意角的三角函数的定义可得44tan 33α-==-, 所以41tan 13tan 7441tan 13πααα++⎛⎫+===- ⎪-⎝⎭-.故选:B . (2).已知,,那么( )()2tan 5αβ+=1tan 44πβ⎛⎫-= ⎪⎝⎭tan 4πα⎛⎫+= ⎪⎝⎭A .B .C .D .【解析】因为,所以,故选:C【变式训练】(1)(2019·山东菏泽市·高一期中)已知α,β为锐角,3sin 5α=,12cos 13β=,则()tan αβ+的值为( )A .5633B .1663C .3356D .6316【详解】因为α,β为锐角,3sin 5α=,12cos 13β=,所以4cos 5α=,5sin 13β=.所以3tan 4α=,5tan 12β=. 所以()tan tan tan 1tan tan αβαβαβ++==-⋅5633.故选:A.(2)(2020·上海)()()()()1tan11tan 21tan31tan 44︒︒︒︒++++的值为( ). A .222B .232C .112D .122【详解】因为()tan1tan 44tan 45tan 14411tan1tan 44+=+==-,所以tan1tan 441tan1tan 44+=-,所以()()1tan11tan 441tan1tan 44tan1tan 44︒︒︒︒++=+++11tan1tan 44tan1tan 442︒=+-+=.同理:()()()()1tan 21tan 431tan31tan 42︒︒︒︒++=++()()1tan 221tan 232︒︒==++=所以,()()()()1tan11tan 21tan31tan 44︒︒︒︒++++13181322322518()44ππααββ⎛⎫+=+-- ⎪⎝⎭()()()tan tan 34tan tan 44221tan tan 4παββππααββπαββ⎛⎫+-- ⎪⎡⎤⎛⎫⎛⎫⎝⎭+=+--== ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦++- ⎪⎝⎭()()()()()()1tan11tan 441tan 21tan 431tan 221tan 23︒︒︒︒︒︒⎡⎤⎡⎤⎡⎤=++⋅++++⎣⎦⎣⎦⎣⎦222=.故选:A.四、二倍角公式的应用sin 2sin cos ααα=;2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-;221cos 21cos 2sin ,cos 22αααα-+== 例4.(1)(2020·昆明市官渡区第一中学高一开学考试)已知cos 4πα⎛⎫+= ⎪⎝⎭,则sin 2α=( ) A .45B .25C .45±D .25±【详解】cos 4πα⎛⎫+= ⎪⎝⎭,24cos 2=2cos 1245ππαα⎛⎫⎛⎫∴++-=- ⎪ ⎪⎝⎭⎝⎭,即4sin 25α-=-, 所以4sin 25α=.故选:A . (2).(2020·黑龙江双鸭山市·双鸭山一中高一期末(文))已知tan 34πα⎛⎫+=⎪⎝⎭,则tan2α=( ) A .34-B .43-C .34D .43【详解】tantan 1tan 4tan 341tan 1tan tan 4παπααπαα++⎛⎫+=== ⎪-⎝⎭-,解得1tan 2α=, 因此,22122tan 42tan 21tan 3112ααα⨯===-⎛⎫- ⎪⎝⎭.故选:D 【变式训练】(1)(2020·新疆生产建设兵团第五师高级中学高一开学考试)已知α是锐角,1sin 233πα⎛⎫+= ⎪⎝⎭,则cos 12πα⎛⎫- ⎪⎝⎭的值是( )A .3B .3-C .3D .3-【详解】设12x πα=-,则12x πα=-,则1sin 2sin 2sin 2cos 2312323x x x ππππα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 02πα<<,5121212πππα∴-<-<,即51212x ππ-<<,所以,cos 0x >,21cos 22cos 13x x ∴=-=,22cos 3x ∴=,因此,cos 3x =.故选:A. (2)(2020·江西高三月考(文))已知3tan 65πα⎛⎫+=- ⎪⎝⎭,则sin 23πα⎛⎫+= ⎪⎝⎭( )A .817B .817-C .1517D .1517-【详解】设6παθ+=,则223παθ+=,3tan tan 65παθ⎛⎫+==- ⎪⎝⎭,2222sin cos 2tan 15sin 22sin cos cos sin 1tan 17θθθθθθθθθ∴====-++.故选:D. 五、辅助公式的应用例5.(1)(2020·恩施清江外国语学校高二期末)函数())cos()2f x x x ππ=-+-的单调增区间为( ) A .5[2,2],66k k k Z ππππ-++∈ B .2[2,2],33k k k Z ππππ-++∈ C .5[2,2],66k k k Z ππππ-++∈ D .2[2,2],33k k k Z ππππ-++∈【详解】())cos()2f x x x ππ=-+-cos x x =-2sin()6x π=-令22262k x k πππππ-+≤-≤+,解得:22233k x k ππππ-+≤≤+ 所以函数()f x 的单调递增区间为:2[2,2],33k k k Z ππππ-++∈,故选:D(2)(2020·全国高三专题练习(理))已知向量()sin cos a x x x =-,()sin ,cos b x x =,函数()f x a b =⋅.(1)求()f x 的单调递增区间;(2)当50,12x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.【详解】(1)向量()sin cos a x x x =-,()sin ,cos b x x =,()()222sin cos cos cos sin cos f x a b x x x x x x x x∴=⋅=+-=+-2cos 22sin 26x x x π⎛⎫=-=- ⎪⎝⎭,解不等式()222262k x k k Z πππππ-≤-≤+∈,得()63k x k k Z ππππ-≤≤+∈.因此,函数()y f x =的单调递增区间为(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦; (2)当50,12x π⎡⎤∈⎢⎥⎣⎦时,22,663x πππ⎡⎤-∈-⎢⎥⎣⎦,则1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭,()12f x ∴-≤≤. 因此,函数()y f x =在区间50,12π⎡⎤⎢⎥⎣⎦上的值域为[]1,2-.【变式训练】(1)(2020·忻州实验中学校月考)函数21()sin cos )2f x x x x =+-最小正周期为( ) A .2B .1C .2πD .π【详解】21sin 21cos 21()sin cos )2222x x f x x x x +⎫=+-=+-⎪⎭1sin 22sin 2223x x x π⎛⎫=+=+ ⎪⎝⎭,22T ππ∴==.故选:D(2)(2020·邵阳市第二中学高三其他模拟(文))已知函数()sin (0)f x x x ωωω=>的图象关于直线8x π=对称,则ω的最小值为( )A .13B .23C .43D .83【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈,0ω>,当0k =时,ω取得最小值43.故选:C. 三、课后训练1.(2020·莆田第七中学高二期中)sin 45cos15cos 45sin15⋅+⋅的值为( )A .B .12-C .12D .2【详解】3sin 45cos15cos 45sin15sin(4515)sin 60⋅+⋅=+==,故选:D.2.(2020·蚌埠第一中学高三期中)已知sin α=,()sin 10αβ-=-,,αβ均为锐角,角β等于( )A .5π12B .π3C .π4D .π6【详解】因为,αβ均为锐角,所以22ππαβ-<-<.又()sin αβ-=,所以()cos αβ-=.又sin α=,所以cos α=. 所以()()()sin sin sin cos cos sin βααβααβααβ⎡⎤=--=---⎣⎦=5105102⎛⎫=--= ⎪ ⎪⎝⎭.所以π4β=.故选:C . 3.(2020·全国高二)已知α、β为锐角,3cos 5α=,()1tan 3βα-=,则tan β=( ) A .139B .913C .3D .13【详解】α为锐角,则24sin 1cos 5αα,所以,sin 4tan cos 3ααα==, ()()()14tan tan 33tan tan 3141tan tan 133βααββααβαα+-+∴=-+===⎡⎤⎣⎦---⨯.故选:C. 4.(2020·广西桂林十八中高三月考(文))已知α22sin αα=,则cos2α等于( )A .23B .29C .13-D .49-【详解】因为cos 2sin ααα=,sin 0α≠,所以cos α=, 所以221cos22cos1133αα=-=-=-.故选:C. 5.(2020·林芝市第二高级中学高一期末)计算sin15sin30sin75的值等于()AB C .18D .14【详解】原式111sin15cos15sin30248===.故选C 6.(2021·全国高三专题练习)要得到函数2sin 2y x x =+-2sin 2y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位【详解】依题意2ππsin 22sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C.7.(2020·邵阳市第二中学高三其他模拟(文))已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( )A .13B .23C .43D .83【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>,当0k =时,ω取得最小值43.故选:C.8.(2020·杭州市西湖高级中学高一月考)在ABC ∆中,若()sin sin sin 2A B C C +-=,则ABC ∆的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 【详解】()sin sin sin 2A B C C +-=,()()sin sin sin 2B C B C C ∴++-=,化简得sin cos sin cos B C C C =,即()cos sin sin 0C B C -=.cos 0C ∴=或sin sin 0B C -=,即2C π=或b c =.因此,ABC ∆为等腰三角形或直角三角形.故选:D.9.(2019·河北邢台市·邢台一中高一期末)已知()tan αβ1+=,()tan αβ7-=,则tan2β=______.【详解】()()()()()()tan tan 173tan2tan 1tan tan 1174αβαββαβαβαβαβ+---⎡⎤=+--===-⎣⎦++-+⨯,故答案为34- 10.(2020·浙江高一单元测试)已知15sin 17α=,5cos 13β=-,且 ,2παπ⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos()αβ+,sin()αβ-.【详解】∵15sin 17α=,∴ 8cos 17α==±,∵ ,2παπ⎛⎫∈ ⎪⎝⎭,∴ 8cos 17α=-,∵ 5cos 13β=-,∴ 12sin 13β==±,∵ ,2πβπ⎛⎫∈ ⎪⎝⎭,∴ 12sin 13β=, ∴ 851512cos()cos cos sin sin ()140()17131713221αβαβαβ+=-=-⨯---⨯=; 155812sin()sin cos cos sin ()()1713121227113αβαβαβ-=-=⨯---⨯=. 11.(2020·长沙市·湖南师大附中高二月考)设函数()ππsin sin 62f x x x ωω⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,其中03ω<<,已知π06f ⎛⎫= ⎪⎝⎭. (1)求()f x 的最小正周期;(2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将整个图象向左平移π4个单位,得到函数()y g x =的图象,求()g x 在区间π3π,44⎡⎤-⎢⎥⎣⎦上的最小值.【详解】(1)因为()ππ1sin sin sin cos cos 6222f x x x x x x ωωωωω⎛⎫⎛⎫=-+-=-- ⎪ ⎪⎝⎭⎝⎭,所以()3cos 223f x x x x πωωω⎛⎫=-=- ⎪⎝⎭,因为π06f ⎛⎫= ⎪⎝⎭,所以0663f πππω⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以,63k k Z ππωπ-=∈, 所以62,k k Z ω=+∈,又03ω<<,所以2ω=,所以22T ππ==;(2)因为()23f x x π⎛⎫=- ⎪⎝⎭,将()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变)可得3y x π⎛⎫=- ⎪⎝⎭,将3y x π⎛⎫=- ⎪⎝⎭图象向左平移π4个单位可得()4312g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为π3π,44x ⎡∈⎤-⎢⎥⎣⎦,所以π2π,1233x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以()min 332g x π⎛⎫=-=- ⎪⎝⎭,此时4πx =-, 所以()g x 的最小值为32-.12.(2020·天津南开区·南开中学高三月考)已知函数2()sin cos cos 22f x x x x x ⎛⎫=-+ ⎪ ⎪⎝⎭,x ∈R .(Ⅰ)求函数()f x 的最小正周期及单调递增区间;(Ⅱ)若α为锐角且7129f πα⎛⎫+=- ⎪⎝⎭,β满足()3cos 5αβ-=,求sin β.【详解】(Ⅰ)()22sin cos 22f x x x x x =-+1sin 2cos 222x x =+sin 23x π⎛⎫=+ ⎪⎝⎭. 所以()f x 的最小正周期T π=,令222232k x k πππππ-≤+≤+,k Z ∈,解得51212x k k ππππ-+≤≤,k Z ∈,所以函数()f x 的单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. (Ⅱ)由(Ⅰ)得7sin 2cos 21229f ππααα⎛⎫⎛⎫+=+==- ⎪ ⎪⎝⎭⎝⎭, 227cos 22cos 112sin 9ααα=-=-=-因为α为锐角,所以1cos 3α=,sin 3α=, 又因为()3cos 5αβ-=,所以()4sin 5αβ-=±,所以()()()sin sin sin cos cos sin βααβααβααβ=--=⋅--⋅-=⎡⎤⎣⎦。