直接序列扩频系统matlab仿真
- 格式:doc
- 大小:284.50 KB
- 文档页数:8
基于matlab的直序扩频通信系统的仿真摘要根据扩频理论,用MATLAB对直接序列扩频通信系统进行了仿真。
根据香农定理和科捷尔尼科夫潜在抗干扰理论,通过MATLAB的仿真平台对直扩通信系统进行了仿真,建立了扩频通信系统仿真模型,详细讲述了各个模块的设计,接收端同步捕获过程采用数字匹配滤波器的原理。
在给定的仿真条件下,对仿真程序进行了运行测试,得到了预期的仿真结果。
关键词:直接序列扩频;通信;MATLABDirect sequence spread spectrum communication system basedon matlab simulationAbstractIn this paper, based on the spread spectrum theory, I use MATLAB to simulate the direct sequence spread spectrum.According to the shannon theorem and jie's nico's potential interference theory, direct sequence spread spectrum is simulated by the simulation platform which is offered by MATLAB. And it tells the story of the design of various modules in detail. The receiver synchronization capture process adopts the principle of digital matched filter. In a given simulation conditions, I run the test simulation program and get the expectant simulation results.Key Words:direct sequence spread spectrum, communication, MATLAB目录1绪论31.1 扩频通信的概述31.2扩频通信的发展与应用32 直接序列扩频通信52.1理论基础52.2扩频通信系统的指标62.3扩频通信的种类72.4直接序列扩频通信系统72.5 扩频序列122.6 扩频序列的同步捕获162.6.1 扩频序列的伪码同步162.6.2 扩频序列的同步捕获173 直接扩频系统MATLAB仿真263.1 直接扩频MATLAB仿真组成框图263.2 m序列发生器263.3 高斯噪声263.4干扰和解扩判决273.5仿真结果分析273.6实验心得29附录29参考文献32致331 绪论1.1 扩频通信的概述扩频通信与光纤通信、卫星通信一同被誉为进入信息时代的三大高技术通信传输方式,它是指发送的信息被展宽到一个很宽的频带上,在接收端通过相关接收,将信号恢复到信息带宽的一种系统[1]。
直接序列扩频系统抗同频干扰的MATLAB仿真Simulation of DSSS System with Co-Channel Interference byMATLAB陈吉文,郭伟(西安电子科技大学机电工程学院,陕西西安710071)Chen Ji-wen, Guo Wei(Mechanical-electronic Engineering Institue,Xi’dian University, Shanxi Xi’an 710071)摘要:文中介绍了同频干扰和扩展频谱通信技术,利用MATLAB提供的可视化工具Simulink建立了同频干扰下直接序列扩频通信系统的模型,详细说明了各模块的设计。
在给定仿真条件下,运行了仿真模型,得到了预期的仿真结果,验证了该系统的可行性以及在实际工程中的应用价值。
关键词:同频干扰;直接序列扩频系统; MATLAB;仿真中图分类号:TN914.4 文献标识码:B 文章编号:Abstract:The theory of the Co-Channel Interference and spread spectrum communication technology were introduced in this paper, the simulation model of DSSS (Direct Sequence Spread Spectrum) communication system with Co-Channel Interference was built by using SIMULINK,a visible tool provided by MATLAB, and each module was introduced in detail. With the designed simulation conditions, the simulation model was run and the anticipant results were gained, by which the feasibility and application value in actual engineering of the system was verified.Key words:Co-Channel Interference;DSSS; MATLAB; simulationCLC number: Document code: B Article ID:1 引言在实际的工程应用中有时需要改进传统的扩频系统,重新设计符合工程要求的扩频系统。
1、生成m序列及m序列性质实验产生7位m序列,频率100Hz,模拟线性反馈移位寄存器序列,原理图如下:clear all;clc;X1=0;X2=0;X3=1;m=350; %重复50遍的7位单极性m序列for i=1:mY3=X3; Y2=X2; Y1=X1;X3=Y2; X2=Y1;X1=xor(Y3,Y1);L(i)=Y1;endfor i=1:mM(i)=1-2*L(i); %将单极性m序列变为双极性m序列endk=1:1:m;figure(1)subplot(3,1,1) %做m序列图stem(k-1,M);axis([0,7,-1,1]);xlabel('k');ylabel('M序列');title('移位寄存器产生的双极性7位M序列') ;subplot(3,1,2)ym=fft(M,4096);magm=abs(ym); %求双极性m序列频谱fm=(1:2048)*200/2048;plot(fm,magm(1:2048)*2/4096);if x_rand(i)>=0.5 %大于等于0.5的取1,小于0.5的取0x(i)=1;a=a+1;else x(i)=0;endendt=0:N-1;figure(2) %做信息码图subplot(2,1,1)stem(t,x);title('扩频前待发送二进制信息序列');tt=0:349;subplot(2,1,2)l=1:7*N;y(l)=0;for i=1:Nk=7*i-6;y(k)=x(i);k=k+1;y(k)=x(i);k=k+1;y(k)=x(i);k=k+1;y(k)=x(i);k=k+1;y(k)=x(i);k =k+1;y(k)=x(i);k=k+1;y(k)=x(i);ends(l)=0;for i=1:350 %扩频后,码率变为100/7*7=100Hzs(i)=xor(L(i),y(i));endtt=0:7*N-1;stem(tt,s);axis([0,350,0,1]);title('扩频后的待发送序列码');N=400000;ybb=fft(s_bpskb,N); %无扩频信号BPSK调制频谱magb=abs(ybb);fbb=(1:N/2)*100000/N;subplot(2,1,1)plot(fbb,magb(1:N/2)*2/N);axis([1700,2300,0,0.8]);title('扩频前调制信号频谱');xlabel('Hz');subplot(2,1,2)yb=fft(s_bpsk,N); %扩频信号BPSK调制频谱mag=abs(yb);fb=(1:N/2)*100000/N;plot(fb,mag(1:N/2)*2/N);axis([1700,2300,0,0.8]);title('扩频后调制信号频谱');xlabel('Hz');title('扩频后经加噪过信道后的信号与原信号时域波形对比'); xlabel('t');axis([0.0675,0.0725,-1.2,1.2]);subplot(2,2,2)ybba=fft(s_bpskba,N); %无扩频调制信号经信道后频谱分析magba=abs(ybba);plot(fbb,magba(1:N/2)*2/N);title('扩频前经信道调制信号频谱');axis([1700,2300,0,0.8]);xlabel('Hz');subplot(2,2,4)yba=fft(s_bpska,N); %扩频调制信号经信道后频谱分析maga=abs(yba);fb=(1:N/2)*100000/N;plot(fb,maga(1:N/2)*2/N);axis([1700,2300,0,0.8]);xlabel('Hz');title('扩频后经信道调制信号频谱');幅,符合高斯白噪声的原理。
.摘要本课题在研究DS -CDMA系统理论的基础上,利用MATLAB对其进行仿真,根据系统功能和指标要求,对信源编码/ 译码、扩频/ 解扩、QPSK(Quadrature Reference Phase Shift Keying ,四相相移键控) 调制/ 解调等模块进行了设计,并设置了相对应的参数,给出整个通信系统的仿真程序。
然后改变用户数,利用子程序仿真,根据图形所示误码率的优劣,分析得出导致系统误码率性能下降的主要原因是多址接入带来的干扰。
并在此基础上改变扩频码的类型,重新利用程序仿真,由仿真结果得出信号的误码率降低,改善了因多址接入给系统带来的干扰,提高了系统的抗干扰能力。
关键词:直扩系统;CDMA ;扩频;QPSK调制解调目录第一章绪论 (4)1.1 课题背景及目的 (4)1.2 国内外研究状况 (4)1.3 课题研究的内容 (4)1.4 课题研究方法 (5)第二章基础知识 (6)2.1 扩频通信系统简述 (6)2.1.1扩频通信系统的基本原理 (6)2.1.2扩频通信系统的分类 (7)2.2直接序列扩频通信系统 (8)2.2.1直接序列扩频通信系统的基本调制方式 (9)2.2.2直扩通信系统中的扩频码类型及仿真分析 (9)第三章系统仿真与分析 (12)3.1 系统仿真 (12)3.1.1单用户用m序列扩频后经过AWGN信道的仿真 (12)3.1.2多用户用m序列扩频后经过AWGN信道的仿真 (13)3.2 选用不同的扩频码仿真 (14)3.2.1 用户用Gold序列扩频后经过AWGN信道的仿真 (14)3.2.2 用户用正交Gold序列扩频后经过AWGN信道的仿真 (15)引言CDMA通信系统是利用给不同的用户分配不同的扩频编码,实现多用户同时在同一频率互不干扰进行通信,即码分多址通信。
使用扩频编码,会将原始信号的频谱带宽扩展,因此,对这种调制方式的通信,又称为扩频通信。
扩频通信具有较强的抗干扰能力和隐蔽性,并能同时实现多址通信,目前已经成功应用在第三代移动通信系统中。
序列扩频和解扩通信是数字通信中的重要技术之一,通过扩频技术可以实现信息的加密传输和抗干扰能力的提高。
Matlab是一种强大的科学计算软件,它提供了丰富的工具和函数,非常适合用来实现序列扩频和解扩通信系统的模拟和仿真。
本文将通过实际的代码示例,介绍如何使用Matlab实现直接序列扩频和解扩通信系统。
一、直接序列扩频通信系统在直接序列扩频通信系统中,发送端的数据序列经过扩频码序列的点对点乘积,实现信号的扩频。
接收端利用相同的扩频码序列对接收到的信号进行点对点乘积,实现信号的解扩。
以下是Matlab代码示例:1. 生成随机的发送数据序列```matlabN = 1000; 数据序列长度data = randi([0,1],1,N); 生成随机的0/1序列```2. 生成随机的扩频码序列```matlabchip_seq = 2 * randi([0,1],1,N) - 1; 生成随机的±1序列作为扩频码```3. 进行数据序列和扩频码序列的点对点乘积```matlabspread_data = data .* chip_seq; 数据序列点对点乘以扩频码序列```4. 绘制发送端的信号波形```matlabt = 0 : 1/N : 1-1/N; 时间序列subplot(3,1,1);plot(t,data);title('原始数据序列');subplot(3,1,2);plot(t,chip_seq);title('扩频码序列');subplot(3,1,3);plot(t,spread_data);title('扩频后的信号波形');```二、直接序列解扩通信系统在直接序列解扩通信系统中,接收端利用与发送端相同的扩频码序列对接收到的信号进行解扩。
以下是Matlab代码示例:1. 接收到的扩频信号经过与扩频码序列的点对点乘积```matlabreceived_data = spread_data .* chip_seq; 接收到的信号点对点乘以扩频码序列```2. 进行积分处理得到解扩后的数据序列```matlabintegrated_data = sum(reshape(received_data,[],10)); 对接收数据进行10倍超采样和积分处理output_data = integrated_data > 0; 得到解扩后的数据序列```3. 绘制接收端的信号波形和解扩后的数据序列```matlabsubplot(2,1,1);plot(t,received_data);title('接收到的信号波形');subplot(2,1,2);stem(output_data);title('解扩后的数据序列');```通过以上代码示例,我们实现了直接序列扩频和解扩通信系统的Matlab仿真。
基于matlab的直接序列扩频通信系统仿真基于MATLAB的直接序列扩频通信系统仿真1.实验原理:直接序列扩频(DSSS)是直接利用具有高码率的扩频码系列采用各种调制方式在发端与扩展信号的频谱,而在收端,用相同的扩频码序去进行解扩,把扩展宽的扩频信号还原成原始的信息。
它是一种数字调制方法,具体说,就是将信源与一定的PN码(伪噪声码)进行摸二加。
例如说在发射端将"1"用11000100110,而将"0"用00110010110去代替,这个过程就实现了扩频,而在接收机处只要把收到的序列是11000100110就恢复成"1"是00110010110就恢复成"0",这就是解扩。
这样信源速率就被提高了11倍,同时也使处理增益达到 10DB以上,从而有效地提高了整机倍噪比。
1.1 直扩系统模型直接序列扩频系统是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端用与发送端相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信号。
对干扰信号而言,与伪随机码不相关,在接收端被扩展,使落入信号通频带内的干扰信号功率大大降低,从而提高了相关的输出信噪比,达到了抗干扰的目的。
直扩系统一般采用频率调制或相位调制的方式来进行数据调制,在码分多址通信中,其调制多采用BPSK、DPSK、QPSK、MPSK 等方式,本实验中采取BPSK方式。
直扩系统的组成如图1所示,与信源输出的信号a(t)是码元持续时间为Ta的信息流,伪随机码产生器产生伪随机码c(t),每个伪随机码的码元宽度为Tc (Tc<<Ta)。
将信息码与伪随机码进行相乘或模二加,产生一速率与伪随机码速率相同的扩频序列,这时信息带宽已经被展宽(如图2b),然后用扩频序列去调制载波,则信号频谱被搬移到射频上(如图2c )。
在接收端,接收到的信号经混频后,用与发射同步的伪随机码对中频信号进行相关解扩,将信号的频带恢复为信息的频带,然后再进行解调,恢复出所传送的信息a(t)。
基于直接扩频序列技术的BPSK系统的仿真设计报告摘要:本文首先介绍了直接序列扩频系统的模型,然后概要阐述了常用的伪随机码以及扩频技术的优点,最后利用MATLAB对BPSK直扩系统进行了仿真。
关键词:直接序列扩频;伪随机码;BPSK;仿真1 引言扩频技术是扩展频谱通信(SSC—Spread Spectrum Communication)的简称,它是随着在军事通信中的应用发展起来的,由于其具有其它一般通信方式不具备的抗于扰强,抗多径衰落好,保密性好等一系列的优点,因此近年来它在民用通信中的应用也开始越来越受到人们的重视。
这次主要研究扩频通信系统中常用直接扩频序列技术的BPSK系统调制方式。
2 直接序列扩频系统直接序列扩频系统又称为直接序列调制系统或伪噪声系统(PN系统),简称为直扩系统,是目前应用较为广泛的一种扩展频谱系统。
人们对直扩系统的研究最早,如美军的国防卫星通信系统(AN-VSC-28)、全球定位系统(GPS)、航天飞机通信用的跟踪和数据中继卫星系统(TDRSS)等都是直扩技术应用的实例。
2.1直扩系统模型直接序列扩频系统是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端用与发送端相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信号。
对干扰信号而言,与伪随机码不相关,在接收端被扩展,使落入信号通频带内的干扰信号功率大大降低,从而提高了相关的输出信噪比,达到了抗干扰的目的。
直扩系统一般采用频率调制或相位调制的方式来进行数据调制,在码分多址通信中,其调制多采用BPSK、DPSK、QPSK、MPSK等方式。
直扩系统的组成如图1所示,与信源输出的信号a(t)是码元持续时间为Ta的信息流,伪随机码产生器产生伪随机码c(t),每个伪随机码的码元宽度为Tc (Tc<<Ta)。
将信息码与伪随机码进行相乘或模二加,产生一速率与伪随机码速率相同的扩频序列,这时信息带宽已经被展宽(如图2b),然后用扩频序列去调制载波,则信号频谱被搬移到射频上(如图2c )。
直接序列扩频通信系统仿真一、实验的背景及内容1、直接扩频通信的背景扩频通信,即扩展频谱通信(Spread Spectrum Communication),它和光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。
有关扩频通信技术的观点是在1941年由好莱坞女演员Hedy Lamarr和钢琴家George Antheil提出的。
基于对鱼雷控制的安全无线通信的思路,他们申请了美国专利#2.292.387[1]。
不幸的是,当时该技术并没有引起美国军方的重视,直到十九世纪八十年代才引起关注,将它用于敌对环境中的无线通信系统。
解决了短距离数据收发信机、如:卫星定位系统(GPS)、移动通信系统、WLAN(IEEE802.11a, IEEE802.11b, IEE802.11g)和蓝牙技术等使用的关键问题。
扩频技术也为提高无线电频率的利用率(无线电频谱是有限的因此也是一种昂贵的资源)提供帮助。
扩频通信技术自50年代中期美国军方便开始研究,一直为军事通信所独占,广泛使用于军事通信、电子对抗以及导航、测量等各个领域。
直到80年代初才被使用于民用通信领域。
为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术现已广泛使用于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等等的系统中。
2、实验的内容及意义本次实验主要研究了直接序列扩频系统,建立了直接序列扩频系统的matlab仿真模型,在信道中存在高斯白噪声和干扰的情况下,对系统的在不同扩频增益下的误码率性能进行了仿真及分析。
近年来,随着超大规模集成电路技术、微处理器技术的飞速发展,以及一些新型元器件的使用,扩频通信在技术上已迈上了一个新的台阶,不仅在军事通信中占有重要地位,而且正迅速地渗透到了个人通信和计算机通信等民用领域,成为新世纪最有潜力的通信技术之一因此研究扩频通信具有很深远的意义。
本人通过此次实验,进行深入地研究学习扩频通信技术及对它进行仿真使用,将所学的知识进行归纳和总结,从而巩固通信专业基础知识,为以后的个人学习和工作打下基础。
二、直接扩频通信简介1、直接扩频通信的理论基础扩频通信可简单表述如下:“扩频通信技术是一种信息传输方式,其信号所占有的频带宽度远大于所传信息必需的最小带宽;频带的扩展是通过一个独立的码序列来完成,用编码及调制的方法来实现的,和所传信息数据无关;在接收端则用同样的码进行相关同步接收、解扩及恢复所传信息数据”。
扩频通信是将待传送的信息数据被伪随机编码(扩频序列:Spread Sequence)调制,实现频谱扩展后再传输;接收端则采用相同的编码进行解调及相关处理,恢复原始信息数据。
扩频通信的可行性是从香农公式引申而来,其内容如式(2-1)所示。
2log (1+S/N)C W 式(2-1)其中,C 为系统信道容量(bit/s );W 为系统信道带宽;N 为噪声功率S 为信号功率。
由上式可以看出,可以从两种途径提高信道容量C ,即加大带宽W 或提高信噪比S/N 。
也就是说当信道容量C 一定时,信道带宽W 和信噪比S/N 是可以互换的,增加带宽可以降低对信噪比的要求,可以使有用信号的功率接近甚至湮没在噪声功率之下。
扩频通信就是通过增加带宽来换取较低的信噪比,这就是扩频通信的基本思想和理论依据。
当信噪比无法提高时,可以加大带宽,达到提高信道容量的目的。
扩频是一种宽带技术,由于扩频占用更宽的频带,看起来是浪费有限的频率资源,然而所占用的频带可以通过多用户共享频带得到补偿。
扩频通信的方式有很多种,例如直接序列扩频、跳频扩频、跳时扩频等。
本文将对直接序列扩频进行详细的分析和仿真。
2、直接扩频系统组成直接序列扩频的原理是,在发射端把有用信号和伪随机序列相乘(或者模二加),使信号的频谱展宽到一个很宽的范围,然后用扩展后的序列去调制载波。
在接收端,把接收到的信号用相同的伪随机序列相乘,有用信号和伪随机码相关,相乘后恢复为扩频前的信号。
直接序列扩频系统的组成原理框图如图2-1所示。
由图2-1可知,输入的数据信息为d(t)(设基带带宽为B 1),由伪随机编码(如m 序列)调制成基带带宽为B 2的宽带信号,由于扩频信号带宽大于数据信号带宽,所以信号扩展的带宽由伪随机码控制,而和数据信号无关。
经扩频调制的信号再经射频调制后即可发送。
图2-1 直扩系统的原理框图接收端收到发送来的信号,经混频得到中频信号后,首先通过同步电路捕捉并跟踪发端伪码的准确相位,由此产生和发端伪码相位完全一致的伪随机码作为扩频解扩的本地扩频码,再和中频信号进行相关解扩,恢复出扩频前的窄带信号,而在解扩处理中,干扰和噪声和伪随机码不相关故被扩展,通过滤波使之受到抑制,这样就可在较高的解扩输出信噪比条件下进行信息解调解码,最终获得信息数据。
三、直接扩频系统matlab 仿真1、直接扩频matlab 仿真组成框图直接序列扩频的matlab 仿真组成框图如图3-1所示。
图3-1 直接扩频仿真组成框图由图3-1可以看出,在发送端,信码为m(t),其码元宽度为p T ,伪随机码为p (t),其码元宽度为b T ,进行模2运算后,得到g(t)=m(t)p(t)⊕,码元宽度称为扩频出来增益,表示为式(3-1)。
10lgbp T G T = 式(3-1)由于有p T <<b T ,所以信码的频谱被展宽了,信号在传输的过程中经过AWGN 信道,被叠加了高斯白噪声,同时还受到了干扰信号的影响,最终得到的信号()c t 包括“有用信号+高斯白噪声+干扰”。
接收端收到此信号后,经过解扩电路,得到'()()()()()()()g t c t p t c t p t p t c t =⊕=⊕⊕=,对'()g t 进行码元判决,即可得到原始的输入信号。
2、m 序列发生器本次直接序列扩频通信中的伪随机序列为m 序列,m 序列是最长线性移位寄存器的简称。
图3-2示出的是由n 级移位寄存器构成的码序列发生器示意图。
图3-2 m序列发生器在本次matlab 设计中,PN 码发生器为6级m 序列产生器,本原多项式为1+x+x 4,寄存器初始值设置为[1 1 1 0 0 0],根据m 序列发生器示意图就可以编写出m 序列。
3、高斯噪声信道传输模块是指传输的信号经过AWGN 信道时,不可避免地叠加了高斯白噪声信号,在本次设计中,对高斯白噪声信号的处理,是使用信号信噪比,根据SigSNR 10lg N=,在已知信号功率谱的条件下,可以得出信道噪声的功率谱密度函数Sig N SNR ⎛⎫= ⎪⎝⎭^2,则相关,再和信号相加,即可得到信道传输的信号。
用户是由rand()函数产生的随机码,并经过处理之后成为码值为1和-1变化的码序列,为了保证仿真的准确性,取5000个码元作为每次发送的信号,同时为了接收电路接收的方便,将信号的码值变换为0和1,再将信号重复G 次,得到即将扩频的信号。
PN 码发生器为6级m 序列产生器,本原多项式为1+x+x 4,寄存器初始值设置为[1 1 1 0 0 0],通过G 次输出,和原信号码进行模二运算,即可得到扩频增益为G 的扩频码输出。
4、干扰仿真时,每个扩频chip 被叠加一个0sin()A n ω的干扰,干扰幅值A 取1和3,0ω取1,n=1,2…随着扩频chip 的序号而改变。
在信道传播的信号在接收端处被加上一个形式为sin(n)的干扰信号。
5、解扩判决接收端收到信号后,采用和发送端相同的PN 序列,通过模二运算之后便可还原出输入信号。
但由于受到高斯白噪声和干扰信号的影响,此时的信号是码值为处在-G 和+G 之间的信号,必须通过码元判决,将大于0的码元判为1,小于0的码元判为-1,即原始信号。
误码率判决模块的程序框图如图3-3所示,接收端收到的信号和发送端发送的信号进行码元的逐个比较,如果码元相同,则不作任何操作,如果码元不同,则误码信号寄存器error 加1P=error/L 即为在一四、仿真结果分析(1)误码率在数字通信中,误码率是一项主要的性能指标。
在实际测量数字通信系统的误码率时,一般测量结果和信源送出信号的统计特性有关。
通常认为二进制信号中0和1是以等概率随机出现的,所以测量误码率时最理想的信源应是随机信号发生器。
扩频序列通过终端机和信道后,输出仍为扩频序列。
在接收端,本地产生一个同步的扩频码,和收码序列逐位相乘再求规格化内积,再和发送端信源码进行比较,一旦有错,误码计数器加一。
误码率的数学表达式如式(4-1)所示。
100%eE S =⨯ 式(4-1)其中S 是信码个数,e 是误码个数,E 就是误码率。
(2)信噪比测量通信系统的性能时,常常要使用噪声发生器,由它给出具有所要求的统计特性和频率特性的噪声,并且可以随意控制其强度,以便得到不同信噪比条件下的系统性能。
在实际测量中,往往需要用到带限高斯白噪声。
本实验中的噪声主要是我们自己添加到信道的高斯加性白噪声AWNG ,它独立于信源信号。
信噪比计算是数学表达式如式(4-2)所示。
222210log 10log 10log )s s sn n s r E SNR E σσ===σ(σ-σ 式(4-2) 其中s E 为信码发射功率,n E 为噪声功率,s σ为信源码,r σ为信宿码,计算结果单位图3-3 误码率判决模块程序框图为dB。
图4-1就是经过matlab仿真之后的图形,分别为10,30,50倍的扩频增益下的误码率和信噪比的变化曲线。
图4-1 扩频增益和误码率关系曲线由图4-1可以看出,在相同扩频增益的条件下,系统的误码率随着系统信噪比的增加呈现出对数形状的减小;在相同信噪比的情况下,系统的误码率随着系统扩频增益的增大呈现出直线型的下降,即系统的误码率和系统的扩频增益和信噪比呈负相关,当系统的扩频增益足够大时,系统的误码率可以达到0。
五、实验心得此次实验设计我投入了很大的热情和精力,也是这次课程设计所带来的一个不错的经历。
无论是查找资料还是matlab编写,调试程序都经过了不懈的努力,同时也发现了自己在学习中存在的很多问题,例如高斯白噪声的形成之类的,还有就是对matlab很多它自己自带的函数库的使用的熟悉程度。
软件设计,系统流程图很重要。
画好框图后就开始一步一步编程了,编一个模块,调试一个模块。
这样可以排除很多错误。
通过此次实验设计,我巩固了“信号和系统”、“通信原理”和“通信”等课程所学内容,初步了解和掌握现代移动通信系统的基本组成、基本原理、组网技术及典型通信系统(GSM数字、CDMA码分多址移动电话系统)的设计、调试,理解其工作原理。
为今后从事通信系统工程,移动通信,全球个人通信和多媒体通信打下一个良好的基础。