当前位置:文档之家› 石墨电极电火花加工性能的影响因素分析

石墨电极电火花加工性能的影响因素分析

石墨电极电火花加工性能的影响因素分析
石墨电极电火花加工性能的影响因素分析

石墨电极电火花加工性能的影响因素分析

影响石墨电极电火花加工性能的因素很多,各因素的合理配合对电火花加工特性有重要的影响。分析了主轴性能、脉冲电源及智能控制、工作液、电参数和加工极性选择等对石墨电极加工性能的影响,为生产实践提供了理论依据。

在电火花加工中如何正确选用石墨材料,并达到最佳的使用效果,不仅需考虑石墨电极材料牌号,同时要考虑加工参数及其机床性能等因素。影响石墨电极电火花加工性能(加工速度、加工表面粗糙度和电极损耗)的因素主要有机械系统性能、脉冲电源、控制系统、加工面积、放电参数、工件材料、工作液、电极形状、冲液方式等。本文根据国内外的有关研究着重从电火花机床、放电加工参数和加工材料等方面进行系统的分析和论述。

1 机床特性对石墨电极加工性能的影响

1.1 主轴性能的影响

主轴是电火花成形机的一个关键部件,它控制工件与工具电极之间的放电间隙。主轴的抬刀速度、传动速度和摇动方式直接影响生产率、表面粗糙度和加工稳定性等工艺指标。目前已普遍采用步进电动机、直流电动机或交流伺服电动机驱动主轴。

1.1.1 抬头排屑

主轴抬刀对于改善深槽(型腔)窄缝等微细加工的排屑,防止积碳和二次放电等现象有明显影响。发展高速抬刀是必然趋势。目前交流伺服电机驱动,抬刀速度一般可达3~5m/min[1]。日本Sadick公司AQ35L主轴采用直线电机控制,传动机构简单,不用滚珠丝杠,没有传动间隙,能实现高速度、高加速度移动,满足了EDM加工高速响应的要求。最大驱动力高达3000N,快进速度可达100m/min,最大加速度达到1g以上,能及时排除电蚀产物消除集中放电、二次放电。间隙不均匀性等得到极大的抑制,特别是对加工深槽窄缝能产生良好的效果[2]。例如:用端面面积为1mm×38mm、斜度1°的石墨片电极加工钢,深度达70mm,免冲液,粗加工用时2h10min,精加工用时1h30min,总共用3h40min,提高了加工速度。瑞士

Charmilles公司的ROBOFORM 35P机床,不但提高了主轴运动速度,还提高了坐标轴的运动速度,使电极交换时间节省35%。用截面20mm×20mm的电极,无冲液加工100mm深的型腔,加工时间仅为5h,表面粗糙度达到R max10μm。Makino EDNC系列抬刀速度在小型机床上是

2m/min,在大型机床上是10m/min。

1.1.2 主轴摇动

主轴的摇动功能可使加工表面均匀,得到高精度和高质量的加工表面。目前已有多种摇动方式,除了圆形和方形摇动外,还有六角、半圆柱、半球、三维射线、三维圆弧等摇动轨迹,遇到其他任意形状,可根据一个完整的轮廓建立所需的摇动方式。日本Mitsubishi EA系列电火花机床新开发的Orbit Pro摇动功能,电极以恒定运动进行加工,跟踪目标形状,实现高稳定加工;而常规摇动加工,沿目标形状一点一点连续加工,电极移动不平滑,变速移动,加工不稳定,两者对比如图1所示。

1.2 脉冲电源及智能化控制的影响

脉冲电源对电火花加工的生产率、表面质量、加工速度、电极损耗等都有很大的影响。

模糊控制(FC、FLC)电源是利用CNC系统对间隙量、间隙电压、瞬时放电状况等参数进行检测,通过专家系统进行比较判别,对电参数与伺服系统进行控制的一种脉冲电源。它一般可提高加工速度20%~30%,降低了电极损耗,在深槽、筋、多型腔、大面积的加工中效果尤为明显[3]。FP脉冲电源是为控制加工屑而设计的脉冲电源,可防止短路时加工屑的集中,它通过对加工电流的控制,改善加工表面的质量,并且能够显著地降低电极损耗[4]。Mitsubishi最新型的电火花加工机床采用全新FPⅡ电源,它有PS电路何α-SC电路。PS 电路提供一个稳定的超短脉冲讯号,放电脉冲的最佳控制防止了短路现象,实现稳定的无光泽表面精加工,排除了精加工表面的波纹和凹陷现象。α-SC电路大幅度降低了小面积精加工(表面粗糙度为R max4~10μm)的电极损耗。

Makino EDNC系列电火花加工机床采用P-脉冲2,加工稳定,尤其适合使用石墨电极加工,可消除不规则放电现象,实现HQSF(High Quality Surface Finishing)(图2)。采用人工智能(IES)自动控制放电过程,通过专家系统实现旋转补偿、检测等多种功能。高灵敏度放电伺服技术可进行无冲液放电,由于在无冲液放电时,电火花间隙变化不大,可实现稳定可靠的精加工。并且可以10m/min(EDGE2型)的速度进行主轴快速跳跃,排除气体和残渣,能在无冲液的状况下加工深窄腔[5]。

1.3 工作液的影响

根据实际生产经验,使用石墨电极进行电火花加工时,宜采用专用的合成型火花油或混粉工作液。重要品牌有:美国Hirschmann Engineering公司生产的Ionoplus牌工作液,意大利Common Weahh Oil公司生产的EDM244,以及ESSO,FUSHS,BP,CASTROL工作液等。高质量的工作液可降低石墨电极损耗,获得良好的加工表面精度。混粉工作液通过添加硅、铝、钨、铬、钛等导电粉末,可改变工作液性能,提高精加工的稳定性,用于大面积精加工时,可减少抛光工时或无需抛光。日本石油公司生产的ED混粉工作液,适合大面积的塑料模具、大型石墨电极及筋条加工,能实现均匀、稳定的放电。实施镜面电火花成形加工时,可使精加工时间缩短20%~30%。日本Makino采用μSC添加剂的工作液,可过滤,可粗、精加工共用一套工作液系统,在加工时分散放电,可提高表面质量,有利于控制间隙,提高加工速度。如图3所示μSC工作液与普通工作液相比可获得稳定的精度和较低的表面粗糙度值,特别是电极尺寸较大时,效果更明显[5]。

2 电参数对石墨电极放电加工性能的影响

2.1 脉冲宽度的影响

脉冲宽度决定脉冲能量。使用不同的工件材料、加工极性、电极材料时脉冲宽度对放电加工特性的影响也不同。如图4、图5所示,脉冲宽度越大,电极损耗越小。采用负极性加工工具钢时,当脉冲宽度为250μs时,电极出现负损耗,采用正极性加工电极损耗较大。加工铜合金时不论采用正极性或负极性加工电极损耗都比较大。随着脉冲宽度的增大,蚀除金属材料就越多,产生的蚀坑越深越宽,加工速度提高,工件的表面粗糙度较大。因此粗加工时,脉冲宽度可以选择大一些,减小电极损耗,提高加工速度。不同的石墨电极牌号脉冲宽度对电极损耗的影响也不同,石墨颗粒越小,相同脉冲宽度条件下电极损耗越小。

2.2 峰值电流的影响

电极材料为POCO的EDM-3石墨,工件材料为工具钢,采用正极性加工,脉冲宽度为

40μs,峰值电流分别为50A和25A,测得的加工速度、电极损耗和表面粗糙度如表1所示。由表1可看出。峰值电流变小,加工速度下降,而表面粗糙度减小。石墨电极与铜电极相比,

因有极好的耐热性,可加大电流值,提高生产效率。粗加工时,可以用较大电流(几百安培)。但是在一定加工面积条件下,有一个极限,超过这个极限,会造成加工不稳定,电极和工件会产生拉弧烧伤,生产率反而降低。微细电极承受不住过强的电流,容易受损。石墨电极正极性加工时,电流密度通常设为10~12A/cm2;负极性加工时,电流密度通常设为

6~8A/cm2[ 6~7]。

2.3 电极与工件的边侧间距关系

电火花加工时放电间隙在不断变化,间隙的大小影响着加工精度,对复杂形状的加工表面影响尤其严重。如使用东洋炭素ISO-63材料,表面粗糙度达到Rα10μm时,放电面积不同,边侧间距也不同。放电面积越大,相应的边侧间距也应变大;相同的加工面积粗加工的边侧间距大于精加工的边侧间距。随着加工深度的增加,边侧间距有时也要相应的增加,如图6所示,以保持良好的排屑。

2.4 工件材料对加工极性选择的影响

对不同的工件材料应选择不同的加工极性,因为加工极性直接影响加工效果(电极损耗、加工速度和表面粗糙度)。以铜合金MS-46(Cu、Ni、Al、Zn的质量分数分别为68%、14%、10%、6%)为例,粗加工时,主要考虑电极损耗和加工速度,采用大脉冲宽度,如图4a、4b所示,正、负极性加工电极损耗相差不大,但正极性加工速度快,因此应选择正极性加工。精加工时,主要考虑电极损耗和加工表面质量,如图4a、4c所示,当缩短脉冲宽度,负极性加工的电极损耗明显比正极性加工小的多,并且表面粗糙度也小,因此精加工时应选择负极性加工。如图5所示,加工工具钢时,粗加工和铜合金一样,要采用正极性加工,而精加工时,采用正、负极性加工电极损耗相差不大,表面粗糙度也基本相同,故精加工时两者皆可。

表2 钛合金放电加工实验结果

加工极性加工深

/mm

电极损

/ %

加工速度

/(mm3/min)

单边间

/mm

正极性 3.0 72.86 1.440 0.10

负极性 3.0 6.50 49.195 0.19

采用石墨电极,在脉冲宽度为100μs,脉冲间隔480μs,峰值电流90A的条件下,改变加工极性,对钛合金进行放电加工实验,结果如表2[8]所示,采用负极性加工时,其各项工艺指标均比正极性加工好,因此对于钛合金应选用负极性加工。同样,对不锈钢、铝合金等的放电加工特性均受加工极性的影响,加工极性选择如表3所示。

表3 加工极性选择

工件材料粗加工精加工

工具钢+±

不锈钢+±

铝合金-±

钛合金--

铜合金+-

3 结束语

影响石墨电极电火花加工性能的因素很多,本文对主要影响因素进行了分析和总结,在生产实际中有一定的指导意义。

高效率石墨火花机数控电火花机得高精度的实惠!

高效率石墨火花机数控电火花机在精密微细,石墨放电,汽车模具,家电模具,深型腔等加工方面独具行业高效率领先优势! 在镙牙薄片,齿轮盲孔,蜗杆骨位, 深型腔,接插件,硬质合金等方面具有行业绝对优势水平。而本高精度数控火花机价格仅为进口牛头火花机的1/2,性价比最高!

1、完善完美的服务:提供免费样件试加工、免费操作人员培训、免费安装调试及免费工艺支持服务,欢迎您们来厂实地考察工厂实力!

2、上海木也机电有限公司---精密电火花机床了解详情谢先生-139********

3、立即就拨打电话,你将获得免费工艺方案超值服务,还将获得最高性价比的价格优惠!

4、或复制此网址到地址栏https://www.doczj.com/doc/4b12294411.html, 直接登陆了解详情

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

电火花成形加工工具电极的设计与制造

(1)铸铁电极的电极损耗和加工稳定性均较一般,容易起弧,生产率不及铜电极。但是,它的来源丰富、价格低廉、并且机械加工性能好,因此电极的尺寸精度,几何形状精度及表面粗糙度等都容易保证。因此,铸铁是一种较常用的电极材料,多用于穿孔加工。 (2)钢电极的加工稳定性较差、电极损耗较大、生产率也较低、但是来源丰富、价格便宜、具有良好的机械加工性能。钢电极还有其独特的优点,即把电极和凸模做成一体,实质上就是将凸模加长,加长的部分就用作电极。电火花加工后,把损耗部分切除掉,余下部分可做凸模使用。这种方法使电极的制造工时减少到了最低程度。所以钢为常用的电极材料之一,多用于一般的穿孔加工。 (3)纯铜电极在加工过程中稳定性好、生产率高、但损耗较大、来源少、价格较贵。由于其韧性大,机械加工性能差、磨削加工困难,其加工精度较低。由于磨削困难,使得难以将电极与凸模连接在一起加工,电极与凸模分别制造使凸模与凹模配合间隙不易均匀。对于电火花型腔加工来说,纯铜电极适用对小型腔及高精度型腔的加工。纯铜电极与其他材料电极相比,在电火花加工中能使模具

达到最细表面粗糙度。 (4)黄铜电极在加工过程中稳定性好、生产率高、与纯铜电极相比价格较低、机械加工性能尚好,但其磨削性能不如钢和铸铁。而黄铜电极的损耗最大。因此,黄铜电极一般用在对加工表面粗糙度较低,尺寸、形状精度要求较高及形状复杂的小孔穿孔加工。 (5)石墨电极的电极损耗小、加工稳定性尚好、易于加工、生产率最高、其价格与铜大体相同,但机械强度较差,尖角处易崩裂。石墨是电火花型腔加工的常用电极材料,适用于大、中、小型腔。由于石墨的热胀系数小,所以,最适于大电极的穿孔加工。 (6)铜钨合金和银钨合金的加工稳定性均很好,电极损耗也均很小,它们的电加工性能优越,而机械加工性能尚好,其磨削性比铜好。但其价格较高,比铜的价格高40倍。因此,主要用于模具中高精度的深孔、直壁孔等的穿孔加工和加工面积小且高精度的型腔加工,以及硬质合金模具的加工。而银钨合金的价格更高,约为铜的100倍,所以它的使用受到限制,一般只用于硬质合金模具的加工。 当用同一种电极材料加工不同材料的模具时,加工情况也会有一定的差异,即使同是钢件也会因其成分不同而对加工有所影响,在实际生产中应根据具体情况选用电极材料。 3电极的结构形式 电极的结构形式应根据模具型孔或型腔的尺寸大小,复杂程度及电极的加工工艺性等来确定,常用的电极结构有下列几种形式: (1)整体电极 整体电极就是用一整块电极材料加工出的完整电极,这是型孔或型腔加工中最常用的电极结构形式,图4.2.4所示即为型腔加工用整体电极的结构形式。当电极面积较大时,可在电极上开一些孔,或者挖空以减轻重量。 对于穿孔加工,有时为了提高生产率和加工精度,降低表面粗糙度,可以采用阶梯式整体电极。所谓阶梯式整体电极就是在原有的电极上适当增长,而增长部分

CNC加工中心刀具的选择与切削用量的确定

CNC加工中心刀具的选择与切削用量 的确定 收藏此信息打印该信息添加:佚名来源:未知 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用C AD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 1.数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。 根据刀具结构可分为: 1)整体式; 2)镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种; 3)特殊型式,如复合式刀具,减震式刀具等。

根据制造刀具所用的材料可分为: 1)高速钢刀具; 2)硬质合金刀具; 3)金刚石刀具; 4)其他材料刀具,如立方氮化硼刀具,陶瓷刀具等 从切削工艺上可分为 : 1)车削刀具,分外圆、内孔、螺纹、切割刀具等多种; 2)钻削刀具,包括钻头、铰刀、丝锥等; 3)镗削刀具; 4)铣削刀具等。 为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: 1)刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; 2)互换性好,便于快速换刀; 3)寿命高,切削性能稳定、可靠; 4)刀具的尺寸便于调整,以减少换刀调整时间; 5)刀具应能可靠地断屑或卷屑,以利于切屑的排除; 6)系列化,标准化,以利于编程和刀具管理。 2.数控加工刀具的选择

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨电极

石墨电极 石墨电极(graphite electrode) 以石油焦、沥青焦为颗粒料,煤沥青为黏结剂,经过}昆捏、成型、焙烧、石墨化和机械加工而制成的一种耐高温的石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温为热源,使炉料熔化进行炼钢,其他一些电冶炼或电解设备也常使用石墨电极为导电材料。2000年全世界消耗石墨电极100万t左右,中国2000年消耗石墨电极25万t左右。利用石墨电极优良的物理化学性能,在其他工业部门中也有广泛的用途,以生产石墨电极为主要品种的炭素制品工业已经成为当代原材料工业的重要组成部门。 简史早在1810年汉佛莱?戴维(Humphry Davy)利用木炭制成通电后能产生电弧的炭质电极,开辟了使用炭素材料作为高温导电电极的广阔前景,1846年斯泰特(Stair)和爱德华(Edwards)用焦炭粉及蔗糖混合后加压成型,并在高温下焙烧从而制造出另一种炭质电极,再将这种炭质电极浸在浓糖水中以提高其体积密度,他们获得了生产这种电极的专利权。1877年美国克利夫兰(Cleveland)的勃洛希(C.F.Brush)和劳伦斯(https://www.doczj.com/doc/4b12294411.html,wrence)采用煅烧过的石油焦研制低灰分的炭质电极获得成功。1899年普利查德(O.G.Pritchard)首先报道了用锡兰天然石墨为原料制造天然石墨电极的方法。1896年卡斯特纳(H.Y.Gastner)获得了使用电力将炭质电极直接通电加热到高温,而生产出比天然石墨电极使用性能更好的人造石墨电极的专利权。1897年美国金刚砂公司(Carborundum Co.)的艾奇逊(E.G.Acheson)在生产金刚砂的电阻炉中制造了第一批以石油焦为原料的人造石墨电极,产品规格为22mm×32m mX380mm,这种人造石墨电极当时用于电化学工业生产烧碱,在此基础上设计的“艾奇逊”石墨化炉将由石油焦生产的炭质电极及少量电阻料(冶

刀具的选择

刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD 的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设臵了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 一、数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专

用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种; ②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀具;④铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: ⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; ⑵互换性好,便于快速换刀; ⑶寿命高,切削性能稳定、可靠; ⑷刀具的尺寸便于调整,以减少换刀调整时间; ⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除; ⑹系列化,标准化,以利于编程和刀具管理。

石墨电极的生产工艺流程和质量指标的及消耗原理知识讲解

石墨电极的生产工艺流程和质量指标的及 消耗原理

目录 一、石墨电极的原料及制造工艺 二、石墨电极的质量指标 三、电炉炼钢简介及石墨电极的消耗机理 石墨电极的原料及制造工艺 ●石墨电极是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混 捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。生产石墨电极的原料有石油焦、针状焦和煤沥青 ●石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑 多孔,主要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于 易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 ●石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟 焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 ●石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中 硫焦(含硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 ●针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石 墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性的纤维状结 构,因而称之为针状焦。 ●针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具 有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 ●针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青 原料生产的煤系针状焦。 ●煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合 物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

电火花加工

电火花加工 一、概述 二、电火花成形加工 1.电火花加工机床 常见的电火花成形加工机床由机床主体、脉冲电源、伺服系统、工作液循环系统等几个部分组成。 (1)机床主体:包括床身、工作台、立柱、主轴头及润滑系统。用于夹持工具电极及支承工件,保证它们的相对位置,并实现电极在加工过程中的稳定进给运动。 (1) 脉冲电源:把工频的交流电流转换成一定频率的单向脉冲电流。 (2) 伺服进给系统:使主轴作伺服运动。 (3) 工作液循环过滤系统:提供清洁的、有一定压力的工作 2.电火花成形加工的原理 电火花成形加工的基本原理是基于工具和工件(正、负电极)之间脉冲火花放电时的电腐蚀现象来蚀除多余的金属,以达到对零件的尺寸、形状及表面质量预定的加工要求。要达到这一目的,必须创造下列条件: (1)必须使接在不同极性上的工具和工件之间保持一定的距离以形成放电间隙。一般为0.01~0.1mm左右。 (2)脉冲波形是单向的,如图所示。 (3)放电必须在具有一定绝缘性能的液体介质中进行。 (4)有足够的脉冲放电能量,以保证放电部位的金属熔化或气化。 如图,自动进给调节装置能使工件和工具电极保持给定的放电间隙。脉冲电源输出的电压加在液体介质中的工件和工具电极(以下简称电极)上。当电压升高到间隙中介质的击穿电压时,会使介质在绝缘强度最低处被击穿,产生火花放电。瞬间高温使工件和电极表面都被蚀除掉一小块材料,形成小的凹坑。 1

一次脉冲放电之后,两极间的电压急剧下降到接近于零,间隙中的电介质立即恢复到绝缘状态。此后,两极间的电压再次升高,又在另一处绝缘强度最小的地方重复上述放电过程。多次脉冲放电的结果,使整个被加工表面由无数小的放电凹坑构成 极性效应 (1)什么是极性效应? 在脉冲放电过程中,工件和电极都要受到电腐蚀。但正、负两极的蚀除速度不同,这种两极蚀除速度不同的现象称为极性效应。 (2)为什么会有极性效应? 产生极性效应的基本原因是由于 电子的质量小,其惯性也小,在电场力作用下容易在短时间内获得较大的运动速度,即使采用较短的脉冲进行加工也能大量、迅速地到达阳极,轰击阳极表面。而正离子由于质量大,惯性也大,在相同时间内所获得的速度远小于电子。 ①当采用短脉冲进行加工时,大部分正离子尚未到达负极表面,脉冲便已结束,所以负极的蚀除量小于正极。这时工件接正极,称为“正极性加工”。 ②当用较长的脉冲加工时,正离子可以有足够的时间加速,获得较大的运动速度,并有足够的时间到达负极表面,加上它的质量大,因而正离子对负极的轰击作用远大于电子对正极的轰击,负极的蚀除量则大于正极。这时工件接负极,称为“负极性加工”。 (3)极性效应在电火花加工过程中的作用 在电火花加工过程中,工件加工得快,电极损耗小是最好的,所以极性效应愈显著愈好, 3.电火花加工的特点及应用 1)电火花加工的特点 (1)优点 2

数控加工常用刀具的种类及选择

数控加工常用刀具的种类及选择1.数牲加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。 2.1数控刀具的分类有多种方法 a.根据刀具结构可分为 (1)整体式; (2)镶嵌式,采用焊接或机夹式联接,机夹式又可分为不转位和可转位两种; (3)特殊型式,如复合式刀具、减震式刀具等。 b.根据制造刀具所用的材料可分为: (1)高速钢刀具; (2)硬质合金刀具; (3)金刚石刀具; (4)其他材料刀具,如立方氮化硼刀具、陶瓷刀具等。 c.从切削工艺上可分为: (1)车削刀具,分外圆、内孔、螺纹、切割刀具等多种; (2)钻削刀具,包括钻头、铰刀、丝锥等;

(3)镗削刀具; (4)铣削刀具等。 为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%一40%,金属切除量占总数的80%~90%。 2.2数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: (1)刚性好(尤其是粗加工刀具)、精度高、抗振及热变形小;互换性好,便于快速换刀; (2)寿命高,切削性能稳定、可靠; (3)刀具的尺寸便于调整,以减少换刀调整时间; (4)刀具应能可靠地断屑或卷屑,以利于切屑的排除; (5)系列化标准化以利于编程和刀具管理。 2.数控加工刀具的选择 刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材科的性能、加 工工序切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便、刚性好、耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。

石墨电极知识

石墨电极 1、石墨电极,主要以、为原料,作结合剂,经、配料、混捏、压型、焙烧、石墨化、机加工而制成,是在电弧炉中以电弧形式释放电能 对炉料进行加热熔化的导体,根据其质量指标高低,可分为普通功率、高功率和超高功率。 2、使用说明 (1)受潮湿的石墨电极,使用前要烘干。 (2)去除备用石墨电极孔上的泡沫塑料保护帽,检查电极孔内螺纹 是否完整。 (3)用不含油和水的压缩空气清理备用石墨电极表面和孔内螺纹; 避免用钢丝团或金属刷砂布清理。 (4)将接头小心地旋入备用石墨电极一端(不建议将接头直接装入 炉上撤换下来的电极)的电极孔内,不得碰撞螺纹。 (5)将电极吊具(建议采用石墨材质的吊具)拧入备用电极另一端的 电极孔内。 (6)起吊电极时,垫松软物到备用电极装接头一端的下面,以防止 地面碰损接头;用吊钩伸入吊具的吊环后吊起,吊运电极要平稳,防 止电极由B端松脱或与其它的固定装置碰撞。 (7)将备用电极吊到待接电极上方,对准电极孔后慢慢落下;旋转 备用电极,使螺旋吊钩与电极一起转动下降;在两支电极端面相距 10-20mm时,再次用压缩空气清理电极两个端面和接头的裸露部分; 在最后完全下放电极时,不可过猛,否则因猛烈碰撞,会导致电极 孔和接头的螺纹受损。 (1)用力矩扳手拧备用电极,直到两支电极的端面紧密接触为止 (电极和接头的正确连接夹缝小于0.05mm)。 石墨在大自然中非常普遍,并且石墨烯是人类已知强度最高的物质,但科学家可能仍然需要花费数年甚至几十年时间,才能找到一种将 石墨转变成大片高质量石墨烯"薄膜"的方法,从而可以用它们来为 人类制造各种有用的物质。据科学家称,石墨烯除了异常牢固外,

石墨电极材料的选择标准

石墨电极材料的选择标准 石墨电极材料选择的依据有很多,但主要的有四个标准: 1.材料的平均颗粒直径 材料的平均颗粒直径直接影响到材料放电的状况。材料的平均颗粒越小,材料的放电越均匀,放电的状况越稳定,表面质量越好。 对于表面、精度要求不高的锻造、压铸模具,通常推荐使用颗粒较粗的材料,如ISEM-3等;对于表面、精度要求较高的电子模具,推荐使用平均粒径在4μm 以下的材料,以确保被加工模具的精度、表面光洁度。材料的平均颗粒越小,材料的损耗情况就越小,各离子团之间的作用力就越大。比如:通常推荐在精密压铸模具、锻造模具方面,ISEM-7已足以满足要求;但客户对于精度要求特别高时,推荐使用TTK-50或ISO-63材料,以确保更小的材料损耗,从而保证模具的精度和表面粗糙度。 同时,颗粒越大,放电的速度就越快,粗加工的损耗越小。主要是放电过程的电流强度不同,导致放电的能量大小不一。但放电后的表面光洁度也随着颗粒的变化而变化。 2.材料的抗折强度 材料的抗折强度是材料强度的直接体现,显示材料内部结构的紧密程度。强度高的材料,其放电的耐损耗性能相对较好,对于精度要求高的电极,尽量选择强度较好的材料。比如:TTK-4可以满足一般电子接插件模具的要求,但有些有特殊精度要求的电子接插件模具,可以选用同等粒径,但强度略高的材料TTK-5材料。 3.材料的肖氏硬度 在对石墨的潜意识认识中,石墨一般会被认为是一种比较软的材料。但实际的测试数据及应用情况显示,石墨的硬度要比金属材料高。在特种石墨行业中,通用的硬度检验标准是肖氏硬度测量法,其测试原理与金属的测试原理不同。由于石墨的层状结构,使其在切削过程中有非常优越的切削性能,切削力仅为铜材料的1/3左右,机械加工后的表面易于处理。 但由于其较高的硬度,在切削时,对于刀具的损耗会略大于切削金属的刀具。与此同时,硬度高的材料在放电损耗方面的控制比较优秀。在我司的EDM用材料

电火花加工

课程名称:院系: 专业: 班级: 学号: 姓名:

电火花加工 1.概述 电火花加工是一种自激放电,故又称放电加工(EDM),于20世纪40年代开始研究并逐步应用于生产,是目前机械制造业中应用最广泛的特种加工方法之一,在难切削材料、复杂型面零件等的加工中得到了广泛应用。 2.原理 火花放电的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后,随即发生火花放电。伴随击穿过程,两电极间的电阻急剧变小,两极之间的电压也随之急剧变低。火花通道必须在维持暂短的时间(通常为后及时熄灭,才可保持火花放电的“冷极”特性(即通道能量转换的热能来不及传至电极纵深),使通道能量作用于极小范围。通道能量的作用,可使电极局部被腐蚀。利用火花放电时产生的腐蚀现象对材料进行尺寸加工的方法,叫电火花加工。电火花加工是在较低的电压范围内,在液体介质中的火花放电。 3.特点 1.脉冲放电的能量密度高,便于加工用普通的机械加工方法难于加工或无法加工的特殊材料和复杂形状的工件。不受材料硬度影响,不受热处理状况影响。 2.脉冲放电持续时间极短,放电时产生的热量传导扩散范围小,材料受热影响范围小。 3.加工时,工具电极与工件材料不接触,两者之间宏观作用力极小。工具电极材料不需比工件材料硬,因此,工具电极制造容易。 4.可以改革工件结构,简化加工工艺,提高工件使用寿命,降低工人劳动强度。基于.上述特点,电火花加工的主要用途有以下几项: 1)制造冲模、塑料模、锻模和压铸模。 2)加工小孔、畸形孔以及在硬质合金上加工螺纹螺孔。 3)在金属板材上切割出零件。4)加工窄缝。 5)磨削平面和圆面。

数控加工中刀具的应用分析标准版本

文件编号:RHD-QB-K9331 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 数控加工中刀具的应用分析标准版本

数控加工中刀具的应用分析标准版 本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 在数控加工中,正确的刀具选择至关重要,本文主要对选择刀具的注意事项以及刀具的优化应用进行了简单的介绍,旨在提高数控编程人员对于道具选择的精准度,从而保证零件的加工质量。 刀具的选择 数控加工中的刀具主要包括模块化刀具以及常规刀具两种。模块化刀具是刀具未来的主要发展方向,主要是由于模块化刀具的应用能够节约维护时间,并且使得刀具的标准化和合理化的程度有所提高,使刀具的性能得以充分的发挥,大大改善了刀具测量工作

出现的中断现象。 在数控加工中,刀具的选择是重中之重,正确的刀具选择能够使得机床的加工效率以及零件的加工质量得到很大程度上的提高。刀具的选择应该根据机床的性能、被加工零件的材料性能、加工工序以及加工量等等进行选择。 与普通机床相比,数控机床的主轴转速以及功率都十分高,所以对刀具的要求就更加严苛,要求刀具需具有较大的精度强度,耐用性良好,并且易于安装调整等等优点,所以刀具的结构必须合理,其几何参数以及材料性能都要合乎一定的标准。对于数控刀具的正确选择是保证数控车床的加工效率的基础之一。刀具的选择主要应该考虑以下方面: 1.1.零件材料的切削性能 选择刀具时要充分考虑金属、非金属材料的刚

电解池知识点归纳

电解池 第1课时 电解原理 学习目标 1、理解电解原理,初步掌握一般电解反应两极反应物、产物的判断方法,能写出电极反应式和电解化学方程式。 知识归纳 1、电解:使电流通过电解质溶液而在阴、阳两极引起氧化还原反应的过程,叫做电解。其实质是电解质溶液导电的过程。 电解池:把电能转化为化学能的装置,叫做电解池。 2、电极:(与电极材料无关)阳极:与电源的正极相连,发生氧化反应; 阴极:与电源的负极相连,发生还原反应。 3、构成条件:“三电一回路”①直流电源;②阴、阳电极;③电解质溶液或熔融电解质;④形成闭合回路。 4、(1)影响离子放电能力的因素:①离子得失电子的能力;②离子的浓度。 (2)离子的放电顺序:(物质在电解池的阴、阳两极发生反应的过程叫放电) 阴极:氧化性强的离子先得电子 Ag +>Hg 2+>Fe 3+>Cu 2+>H +(酸溶液)>Pb 2+>Sn 2+>Fe 2+>Zn 2+>H +(水溶液)>Al 3+>Mg 2+>Na +>Ca 2+>K + 阳极:阳极金属或还原性强的离子先失电子 活性电极>S 2->I ->Br ->Cl ->OH ->N>S>F - 5、分析总结书写电解池电极反应的一般思路 ? 6、原电池和电解池的区别 负较活泼金属阳与电源正极相连正不活泼金属或非金属导体阴与电源负极相连三个①活动性不同的两个电极①两个电极原电池 电解池一个概念 将化学能转变为电能的装置将电能转变为化学能的装置两个电极 极—失电子—发生氧化反应极—失电子—发生氧化反应极—得电子—发生还原反应极—得电子—发生还原反应流向电子负极→外电路→正极阳极→外电路→阴极 电流正极→外电路→负极阴极→外电路→阳极 离子阳离子→正极,阴离子→负极阳离子→阴极,阴离子→阳极 四个条件 ②电解质溶液③闭合电路④自发进行的氧化还原反应②电解质溶液③闭合电路④外加直流电源相同点氧化还原反应

电火花加工用脉冲电源

电火花加工及其脉冲功率电源得研究 电火花加工又称放电加工(electrical discharge machining,简称EDM),由于其能进行难切削材料与复杂形状零件得加工,而得到广泛得应用。其中最主要得部分就是脉冲电源,脉冲电源得技术性能好坏直接影响电火花成形加工得各项工艺指标,如加工质量精度、加工速度、电极损耗等。本文将对电火花加工得原理及其脉冲电源进行简要介绍与研究。 一、电火花加工得工作原理 进行电火花加工时,工具电极与工件分别接脉冲电源得两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间得间隙达到一定距离时,两电极上施加得脉冲电压将工作液击穿,产生火花放电。在放电得微细通道中瞬时集中大量得热能,温度可高达一万摄氏度以上,压力也有急剧变化,从而使这一点工作表面局部微量得金属材料立刻熔化、气化,并爆炸式地飞溅到工作液中,迅速冷凝,形成固体得金属微粒,被工作液带走。这时在工件表面上便留下一个微小得凹坑痕迹,放电短暂停歇,两电极间工作液恢复绝缘状态。 紧接着,下一个脉冲电压又在两电极相对接近得另一点处击穿,产生火花放电,重复上述过程。这样,虽然每个脉冲放电蚀除得金属量极少,但因每秒有成千上万次脉冲放电作用,就能蚀除较多得金属,具有一定得生产率。在保持工具电极与工件之间恒定放电间隙得条件下,一边蚀除工件金属,一边使工具电极不断地向工件进给,最后便加工出与工具电极形状相对应得形状来。因此,只要改变工具电极得形状与工具电极与工件之间得相对运动方式,就能加工出各种复杂得型面。 工具电极常用导电性良好、熔点较高、易加工得耐电蚀材料,如铜、石墨、铜钨合金与钼等。在加工过程中,工具电极也有损耗,但小于工件金属得蚀除量,甚至接近于无损耗。 工作液作为放电介质,在加工过程中还起着冷却、排屑等作用。常用得工作液就是粘度较低、闪点较高、性能稳定得介质,如煤油、去离子水与乳化液等。 图1电火花加工基本原理 1-工件;2-脉冲电源;3-自动进给调节装置;4-工具;5-工作液;6-过滤器;7-工作液泵

数控加工中刀具的选择原则和切削用量

数控加工中刀具的选择原则和切削用量 作者:佚名来源:不详发布时间:2008-3-9 0:57:41 发布人:admin 减小字体增大字体 摘要:现代刀具显著的特点是结构的创新速走加快。随着计算机应用领域的不断扩大,机械加工也开始运用数拉技术,这时刀具选择与切削用量提出了更高的要求。本文就扣何确定数控加工中的刀具选择与切削用全进行了探讨。 关键词:数控技术;机械加工;刀具选择 一、科学选择数控刀具 1、选择数控刀具的原则 刀具寿命与切削用量有密切关系。在制定切削用量时,应首先选择合理的刀具寿命,而合理的刀具寿命则应根据优化的目标而定。一般分最高生产率刀具寿命和最低成本刀具寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。 选择刀具寿命时可考虑如下几点根据刀具复杂程度、制造和磨刀成本来选择。复杂和精度高的刀具寿命应选得比单刃刀具高些。对于机夹可转位刀具,由于换刀时间短,为了充分发挥其切削性能,提高生产效率,刀具寿命可选得低些,一般取15-30min。对于装刀、换刀和调刀比较复杂的多刀机床、组合机床与自动化加工刀具,刀具寿命应选得高些,尤应保证刀具可靠性。车间内某一工序的生产率限制了整个车间的生产率的提高时,该工序的刀具寿命要选得低些当某工序单位时间内所分担到的全厂开支M较大时,刀具寿命也应选得低些。大件精加工时,为保证至少完成一次走刀,避免切削时中途换刀,刀具寿命应按零件精度和表面粗糙度来确定。与普通机床加工方法相比,数控加工对刀具提出了更高的要求,不仅需要冈牲好、精度高,而且要求尺寸稳定,耐用度高,断和排性能坛同时要求安装调整方便,这样来满足数控机床高效率的要求。数控机床上所选用的刀具常采用适应高速切削的刀具材料(如高速钢、超细粒度硬质合金)并使用可转位刀片。 2、选择数控车削用刀具 数控车削车刀常用的一般分成型车刀、尖形车刀、圆弧形车刀以及三类。成型车刀也称样板车刀,其加工零件的轮廓形状完全由车刀刀刃的形伏和尺寸决定。数控车削加工中,常见的成型车刀有小半径圆弧车刀、非矩形车槽刀和螺纹刀等。在数控加工中,应尽量少用或不用成型车刀。尖形车刀是以直线形切削刃为特征的车刀。这类车刀的刀尖由直线形的主副切削刃构成,如900内外圆车刀、左右端面车刀、切槽(切断)车刀及刀尖倒棱很小的各种外圆和内孔车刀。尖形车刀几何参数(主要是几何角度)的选择方法与普通车削时基本相同,但应结合数控加工的特点(如加工路线、加工干涉等)进行全面的考虑,并应兼顾刀尖本身的强度。 二是圆弧形车刀。圆弧形车刀是以一圆度或线轮廓度误差很小的圆弧形切削刃为特征的车刀。该车刀圆弧刃每一点都是圆弧形车刀的刀尖,应此,刀位点不在圆弧上,而在该

电解池知识点归纳完整版

电解池知识点归纳 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

电解池 第1课时电解原理 学习目标 1、理解电解原理,初步掌握一般电解反应两极反应物、产物的判断方法,能写出电极反应式和电解化学方程式。 知识归纳 1、电解:使电流通过电解质溶液而在阴、阳两极引起氧化还原反应的过程,叫做电解。其实质是电解质溶液导电的过程。 电解池:把电能转化为化学能的装置,叫做电解池。 2、电极:(与电极材料无关)阳极:与电源的正极相连,发生氧化反应; 阴极:与电源的负极相连,发生还原反应。 3、构成条件:“三电一回路”①直流电源;②阴、阳电极;③电解质溶液或熔融电解质;④形成闭合回路。 4、(1)影响离子放电能力的因素:①离子得失电子的能力;②离子的浓度。 (2)离子的放电顺序:(物质在电解池的阴、阳两极发生反应的过程叫放电) 阴极:氧化性强的离子先得电子 Ag+>Hg2+>Fe3+>Cu2+>H+(酸溶液)>Pb2+>Sn2+>Fe2+>Zn2+>H+(水溶液)>Al3+>Mg2+>Na+>Ca2+>K+阳极:阳极金属或还原性强的离子先失电子

活性电极>S 2->I ->Br ->Cl ->OH ->N>S>F - 5、分析总结书写电解池电极反应的一般思路 6、 原电池和电解池的区别 【练习1】如图所示是电 解氯化铜溶液的装置,其中c 、d 为石墨电极,下列有关判断正确的是( ) A.a 为负极,b 为正极 B.a 为阳极,b 为阴极 C.电解过程中,d 电极质量增加 D.电解过程中,氯离子的浓度不变 随堂检测 1.关于原电池、电解池的电极名称,下列说法错误的是( ) A.原电池中失去电子的一极为负极 负较活泼金属阳与电源正极相连正不活泼金属或非金属导体阴与电源负极相连三个①活动性不同的两个电极①两个电极原电池 电解池 一个概念将化学能转变为电能的装置将电能转变为化学能的装置两个电极 极—失电子—发生氧化反应 极—失电子—发生氧化反应 极 —得电子—发生还原反应极 —得电子—发生还原反应流向 电子 负极→外电路→正极阳极→外电路→阴极电流正极→外电路→负极阴极→外电路→阳极离子 阳离子→正极,阴离子→负极阳离子→阴极,阴离子→阳极 四个条件②电解质溶液③闭合电路 ④自发进行的氧化还原反应 ②电解质溶液③闭合电路④外加直流电源 相同点 氧化还原反应

石墨电极电火花加工性能的影响因素分析

石墨电极电火花加工性能的影响因素分析 影响石墨电极电火花加工性能的因素很多,各因素的合理配合对电火花加工特性有重要的影响。分析了主轴性能、脉冲电源及智能控制、工作液、电参数和加工极性选择等对石墨电极加工性能的影响,为生产实践提供了理论依据。 在电火花加工中如何正确选用石墨材料,并达到最佳的使用效果,不仅需考虑石墨电极材料牌号,同时要考虑加工参数及其机床性能等因素。影响石墨电极电火花加工性能(加工速度、加工表面粗糙度和电极损耗)的因素主要有机械系统性能、脉冲电源、控制系统、加工面积、放电参数、工件材料、工作液、电极形状、冲液方式等。本文根据国内外的有关研究着重从电火花机床、放电加工参数和加工材料等方面进行系统的分析和论述。 1 机床特性对石墨电极加工性能的影响 1.1 主轴性能的影响 主轴是电火花成形机的一个关键部件,它控制工件与工具电极之间的放电间隙。主轴的抬刀速度、传动速度和摇动方式直接影响生产率、表面粗糙度和加工稳定性等工艺指标。目前已普遍采用步进电动机、直流电动机或交流伺服电动机驱动主轴。 1.1.1 抬头排屑 主轴抬刀对于改善深槽(型腔)窄缝等微细加工的排屑,防止积碳和二次放电等现象有明显影响。发展高速抬刀是必然趋势。目前交流伺服电机驱动,抬刀速度一般可达3~5m/min[1]。日本Sadick公司AQ35L主轴采用直线电机控制,传动机构简单,不用滚珠丝杠,没有传动间隙,能实现高速度、高加速度移动,满足了EDM加工高速响应的要求。最大驱动力高达3000N,快进速度可达100m/min,最大加速度达到1g以上,能及时排除电蚀产物消除集中放电、二次放电。间隙不均匀性等得到极大的抑制,特别是对加工深槽窄缝能产生良好的效果[2]。例如:用端面面积为1mm×38mm、斜度1°的石墨片电极加工钢,深度达70mm,免冲液,粗加工用时2h10min,精加工用时1h30min,总共用3h40min,提高了加工速度。瑞士 Charmilles公司的ROBOFORM 35P机床,不但提高了主轴运动速度,还提高了坐标轴的运动速度,使电极交换时间节省35%。用截面20mm×20mm的电极,无冲液加工100mm深的型腔,加工时间仅为5h,表面粗糙度达到R max10μm。Makino EDNC系列抬刀速度在小型机床上是 2m/min,在大型机床上是10m/min。 1.1.2 主轴摇动 主轴的摇动功能可使加工表面均匀,得到高精度和高质量的加工表面。目前已有多种摇动方式,除了圆形和方形摇动外,还有六角、半圆柱、半球、三维射线、三维圆弧等摇动轨迹,遇到其他任意形状,可根据一个完整的轮廓建立所需的摇动方式。日本Mitsubishi EA系列电火花机床新开发的Orbit Pro摇动功能,电极以恒定运动进行加工,跟踪目标形状,实现高稳定加工;而常规摇动加工,沿目标形状一点一点连续加工,电极移动不平滑,变速移动,加工不稳定,两者对比如图1所示。 1.2 脉冲电源及智能化控制的影响 脉冲电源对电火花加工的生产率、表面质量、加工速度、电极损耗等都有很大的影响。

相关主题
文本预览
相关文档 最新文档