第八章 循环码.
- 格式:ppt
- 大小:1.65 MB
- 文档页数:49
2、循环码2.1循环码的基本原理 1.定义循环码是满足循环特性的线性分组码,是线性分组码的子类,之所以这样说是因为线性分组码要求所选择的码是线性的,循环码则是在线性分组码的基础之上进一步要求所选择的码具有循环性。
假设C 是一个(n,k)线性码,如果C 中任意一个码字经任意循环移位之后仍然是C 中的码字,那么此码是一个循环码。
循环码具有规则的代数结构,且是自封闭的,因此用多项式来描述更方便。
长度为n 的循环码可用一个n-1次多项式来描述,此多项式称为码多项式,表示如下:(1)左移i 位后的码多项式为(2)码多项式与循环移位后的多项式之间的关系为)1()(c xC(x)1)1(021121-n -+=++⋅⋅⋅++=---nn n n n x c x C x c x c x c x (3)也即是)1m od()()()1(-≡n x x xC x C (4)以此类推,可以得到)1m od()()()(-≡n i i x x C x x C (5)2.循环码的性质(1)GF(q)上的(n,k)循环码中,存在唯一的一个n-k 次首一多项式0111)(g x g x g x x g k n k n k n ++⋅⋅⋅++=-----,每一个码多项式)(x C 都是)(x g 的倍式,即循环码的码多项式)(x C 中次数最低且其常数项为1的码多项式有且仅有一个,为码的生成多项式,记做)(x g 。
循环码C 中的每个码多项式)(x C 都可唯一表示成)()()(x g x m x C =。
(2))(,),(),(),(12x g x x g x x xg x g k -⋅⋅⋅都是生成多项式,他们的线性组合也是生成多项式。
(3)GF(q)上(n,k)循环码的生成多项式)(x g 一定是)1(-nx 的因子。
(4)循环码的生成矩阵H 和校验矩阵H 的正交性可以用多项式表示为1)()(-=n x x h x g 。
2、循环码2.1循环码的基本原理 1.定义循环码是满足循环特性的线性分组码,是线性分组码的子类,之所以这样说是因为线性分组码要求所选择的码是线性的,循环码则是在线性分组码的基础之上进一步要求所选择的码具有循环性。
假设C 是一个(n,k)线性码,如果C 中任意一个码字经任意循环移位之后仍然是C 中的码字,那么此码是一个循环码。
循环码具有规则的代数结构,且是自封闭的,因此用多项式来描述更方便。
长度为n 的循环码可用一个n-1次多项式来描述,此多项式称为码多项式,表示如下:(1)左移i 位后的码多项式为(2)码多项式与循环移位后的多项式之间的关系为)1()(c xC(x)1)1(021121-n -+=++⋅⋅⋅++=---nn n n n x c x C x c x c x c x (3)也即是)1m od()()()1(-≡n x x xC x C (4)以此类推,可以得到)1m od()()()(-≡n i i x x C x x C (5)2.循环码的性质(1)GF(q)上的(n,k)循环码中,存在唯一的一个n-k 次首一多项式0111)(g x g x g x x g k n k n k n ++⋅⋅⋅++=-----,每一个码多项式)(x C 都是)(x g 的倍式,即循环码的码多项式)(x C 中次数最低且其常数项为1的码多项式有且仅有一个,为码的生成多项式,记做)(x g 。
循环码C 中的每个码多项式)(x C 都可唯一表示成)()()(x g x m x C =。
(2))(,),(),(),(12x g x x g x x xg x g k -⋅⋅⋅都是生成多项式,他们的线性组合也是生成多项式。
(3)GF(q)上(n,k)循环码的生成多项式)(x g 一定是)1(-nx 的因子。
(4)循环码的生成矩阵H 和校验矩阵H 的正交性可以用多项式表示为1)()(-=n x x h x g 。
通信原理循环码1. 什么是循环码?1.1 循环编码的概念循环码是一种错误检测和纠正码。
它是一种具有循环性质的编码方式,通过添加冗余位实现错误检测和纠正的功能。
1.2 循环码的结构循环码由生成多项式决定,它决定了编码和解码过程中的位操作,如异或运算。
循环码可以用一个(d, n)的表示方式,其中d表示循环码能够检测和纠正的错误位数,n表示编码后的总位数。
1.3 循环码的特点循环码具有以下特点: - 具有循环性,可以通过循环移位实现位操作,提高编码和解码的效率; - 可以实现错误检测和纠正; - 可以通过选择不同的生成多项式,实现不同的错误检测和纠正能力; - 可以通过简单的位操作进行编码和解码。
2. 循环码的编码原理循环码的编码过程可以分为以下几个步骤:2.1 选择生成多项式生成多项式是循环码编码和解码的关键参数,不同的生成多项式决定了循环码的检错和纠错能力。
通常使用最简生成多项式,也就是二进制形式的多项式。
2.2 构造生成多项式的环根据生成多项式构造生成多项式的环,即在二进制有限域中构造一个环,环的元素由0和1组成,可以进行模2加法和模2乘法。
2.3 填充待编码数据待编码的数据通常使用二进制表示,如果数据位数小于生成多项式的次数,则需要进行补零操作,保证待编码数据的位数与生成多项式的次数相同。
2.4 模2除法运算将补零后的待编码数据与生成多项式进行模2除法运算,得到余数作为编码后的冗余位。
2.5 添加冗余位将编码后的冗余位添加到原始数据后面,形成完整的循环码。
3. 循环码的解码原理循环码的解码过程可以分为以下几个步骤:3.1 接收数据接收到经过信道传输后的循环码数据。
3.2 构造生成多项式的环根据生成多项式构造生成多项式的环,与编码过程中的环保持一致。
3.3 计算余数将接收到的数据与生成多项式进行模2除法运算,得到余数。
3.4 检测错误检测余数是否为非零,如果余数为非零,则表示存在错误。
3.5 纠正错误根据余数的位置,确定错误位,并进行纠正。
8.5 循环码循环码是线性分组码中最重要的一个子类码,它的基本特点是编码电路及伴随式解码电路简单易行;循环码代数结构具有很多有用的特性,便于找到有效解码方法。
因此在实际差错控制系统中所使用的线性分组码,几乎都是循环码。
下面将介绍循环码的多项式表示及其性质,同时简介几种重要的循环码,CRC、BCH和R-S 码等。
8.5.1 循环码的描述1. 码多项式及其运算通式表示为:(8-69)于是称与为“同余”式,即[模](8-70)如:则[模] 即能被整除利用这一运算原理,我们可对一个码字进行移位表示:如:的多项式表示为:使码组向左移2位(循环)则有对应多项式然后以去除得:这一结果表明,以作除法运算(称模)后,即与为同余因此,(模)应注意,利用这种同余式表示,必须加注(模),否则就不明确在什么条件下得到的这一同余关系式。
2.循环码的构成循环码的构成突出特点是只要是该码中的一个许用码组——码字,通过循环位其结果则可包括全部个非全0码字,如上面介绍的(7,3)分组码,从信码位0 0 1构成的码字(0011101)开始逐一向左(或者向右)移一位,可得其余6个码字:(0111010)、(1110100)、(1101001)、(1010011)、(0100111)、(1001110)。
若把这些码字写成码多项式,都具有同一个移位运算模式,并设(0011101)对应的码多项式,于是,有:(模)(8-71)这样,就构成了(7,3)循环码,如表8-4。
从表8-4看出,循环得到的(7,3)码,仍为系统码,信息码组均在表中码字的高位(左方)。
表8-4 (7,3)循环码移位(7,3)码码多项式(模)0 0 0 1 1 1 0 11 0 1 1 1 0 1 02 1 1 1 0 1 0 03 1 1 0 1 0 0 14 1 0 1 0 0 1 15 0 1 0 0 1 1 16 1 0 0 1 1 1 08.5.2 循环码生成多项式与生成矩阵1. 生成多项式由表8-4构成个非全0码字多项式的过程与结果看,我们从开始进行逐一循环,并以模运算,该码字正是信码组中最低位为1,对应码字多项式,在全部非全0码字中,它的最高位阶次也最低,并等于,即最高次项为,随后一系列码字都源于它的移位而形成,因此称其为生成多项式,即(8-72)然后再从的因式分解来进一步分析(8-73)我们可以将三个既约多项式因式任意组合成两个因式,可有(8-74)如:(8-75)(8-76)其中可以组合为二因式中包含最高次为4次的情况有两种,即展开式的第4及第5两组,都可以作为阶次最高为4的即(8-77)(8-78)在展开式中选用了其中一个(组合)因式为后,余下一个因式,则称其为循环码的监督多项式,如式(8-74)生成多项式与相应监督多项式乘积等于多项式。
2、循环码2.1循环码的基本原理 1.定义循环码是满足循环特性的线性分组码,是线性分组码的子类,之所以这样说是因为线性分组码要求所选择的码是线性的,循环码则是在线性分组码的基础之上进一步要求所选择的码具有循环性。
假设C 是一个(n,k)线性码,如果C 中任意一个码字经任意循环移位之后仍然是C 中的码字,那么此码是一个循环码。
循环码具有规则的代数结构,且是自封闭的,因此用多项式来描述更方便。
长度为n 的循环码可用一个n-1次多项式来描述,此多项式称为码多项式,表示如下:(1)左移i 位后的码多项式为(2)码多项式与循环移位后的多项式之间的关系为)1()(c xC(x)1)1(021121-n -+=++⋅⋅⋅++=---nn n n n x c x C x c x c x c x (3)也即是)1m od()()()1(-≡n x x xC x C (4)以此类推,可以得到)1m od()()()(-≡n i i x x C x x C (5)2.循环码的性质(1)GF(q)上的(n,k)循环码中,存在唯一的一个n-k 次首一多项式0111)(g x g x g x x g k n k n k n ++⋅⋅⋅++=-----,每一个码多项式)(x C 都是)(x g 的倍式,即循环码的码多项式)(x C 中次数最低且其常数项为1的码多项式有且仅有一个,为码的生成多项式,记做)(x g 。
循环码C 中的每个码多项式)(x C 都可唯一表示成)()()(x g x m x C =。
(2))(,),(),(),(12x g x x g x x xg x g k -⋅⋅⋅都是生成多项式,他们的线性组合也是生成多项式。
(3)GF(q)上(n,k)循环码的生成多项式)(x g 一定是)1(-nx 的因子。
(4)循环码的生成矩阵H 和校验矩阵H 的正交性可以用多项式表示为1)()(-=n x x h x g 。
第8章 循环码习题答案:1. 已知(8, 5)线性分组码的生成矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1000011101000100001000100001000100001111G(1)证明该码是循环码;(2)求该码的生成多项式)(x g 。
(1)证明如下:(1)(2)(2)1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 01 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 00 0 1 0 0 0 1 01 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1+⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(3)(3)(4)1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 00 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 00 0 0 1 1 1 1 01 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1++−−−→⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎢⎥⎢−−−→⎢⎥⎢⎢⎥⎢⎢⎥⎢⎣⎦⎣⎦(1)(5)(4)(5)1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 00 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 00 0 0 1 1 1 1 00 0 0 1 0 0 0 10 0 0 0 1 1 1 1++⎥⎥−−−→⎥⎥⎥⎡⎤⎡⎢⎥⎢⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎣⎦⎣⎤⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦由生成矩阵可知为(8、5)循环码。
(2)生成多项式如下:32()1g x x x x =+++2. 证明:1245810++++++x x x x x x为(15, 5)循环码的生成多项式,并写出信息多项式为1)(4++=x x x m 时的码多项式(按系统码的形式)。
2、循环码2.1循环码的基本原理 1.定义循环码是满足循环特性的线性分组码,是线性分组码的子类,之所以这样说是因为线性分组码要求所选择的码是线性的,循环码则是在线性分组码的基础之上进一步要求所选择的码具有循环性。
假设C 是一个(n,k)线性码,如果C 中任意一个码字经任意循环移位之后仍然是C 中的码字,那么此码是一个循环码。
循环码具有规则的代数结构,且是自封闭的,因此用多项式来描述更方便。
长度为n 的循环码可用一个n-1次多项式来描述,此多项式称为码多项式,表示如下:(1)左移i 位后的码多项式为(2)码多项式与循环移位后的多项式之间的关系为)1()(c xC(x)1)1(021121-n -+=++⋅⋅⋅++=---nn n n n x c x C x c x c x c x (3)也即是)1m od()()()1(-≡n x x xC x C (4)以此类推,可以得到)1m od()()()(-≡n i i x x C x x C (5)2.循环码的性质(1)GF(q)上的(n,k)循环码中,存在唯一的一个n-k 次首一多项式0111)(g x g x g x x g k n k n k n ++⋅⋅⋅++=-----,每一个码多项式)(x C 都是)(x g 的倍式,即循环码的码多项式)(x C 中次数最低且其常数项为1的码多项式有且仅有一个,为码的生成多项式,记做)(x g 。
循环码C 中的每个码多项式)(x C 都可唯一表示成)()()(x g x m x C =。
(2))(,),(),(),(12x g x x g x x xg x g k -⋅⋅⋅都是生成多项式,他们的线性组合也是生成多项式。
(3)GF(q)上(n,k)循环码的生成多项式)(x g 一定是)1(-nx 的因子。
(4)循环码的生成矩阵H 和校验矩阵H 的正交性可以用多项式表示为1)()(-=n x x h x g 。