六年级下册数学思维训练用正反比例知识解决行程问题
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
用正反比例知识解决行程问题(中点有关的行程问题)
例题引路:甲乙两辆汽车分别从两地相对开出,它们的速度比是5﹕7,在距中点18千米的地方相遇,两地相距多少千米?
基本训练
1、两只轮船同时从两港相对开出,客船每小时行49千米,货船的速度是客船的,两只轮船在离甲、乙两港中点6千米处相遇。
求甲、乙两港的距离是多少?
2、客车和货车同时从甲乙两地相对开出,客车每小时行了全程的,货车每小时行60千米,相遇时客车和货车所行的路程比是3﹕2,。
甲、乙两地相距多少千米?
3、甲乙两车同时从两地出发,相向而行,甲车行完全程需要3.5小时,乙车每小时75千米,相遇时甲、乙两车所行路程的比是4﹕3.相遇时乙车行了多少千米?
4、快车和慢车同时从A、B两地出发,相向而行,行驶一段时间后两车相遇,相遇点到AB中点的路程恰0好是AB全长的,客车与慢车的速度比是多少?
拓展提高
5、甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行100千米,乙车每小时行90千米,当乙车行至全程的时,甲车距离中点还有20千米,A、B两地相距多少千米?
竞赛训练/
6、客车和货车分别从甲、乙两地同时出发,相向而行,客车每小时行90千米,货车每小时行70千米,当货车行至全程的时,客车距中点还有12千米。
甲乙两地相距多少千米?
7、甲乙两车都从A地到B地,甲车比乙车提前30分钟出发,行到全程时,甲车发生故障,修车花了15分钟,结果比乙车晚到B地15分钟,甲车修车前后速度保持不变,全程为300千米,那么乙车追上甲车时距A地多少千米?(2012年中国青少年数
学论坛展示大赛)。
正比例、反比例应用题一、应用题1.小兰的身高1.5m,她的影长是2.4m。
如果同一时间同一地点测得一棵树的影子长4米,这棵树有多高?2.一间房子要用方砖铺地,用边长5分米的方砖需用2000块,如果改用边长是4分米的方砖,需用多少块?(用比例解)3.用同样的砖铺地,铺18平方米要用618块砖.如果铺地24平方米,要用多少块砖?(用比例知识来解)4.测量小组要测量一棵树的高度,先量得树的影子长12米,接着在树的附近直立了一根长2米的竹竿,量得竹竿的影子长1.2米.这棵树的高度是多少米?5.王师傅完成一批零件,计划每天加工240个,20天完成。
实际每天多加工60个,多少天完成任务?(用比例知识解答)6.青艺农场收割小麦.前6天收割了114公顷,剩下152公顷.(1)照前几天的工作效率,剩下的还要多少天才能完成?(用比例解)(2)前几天收割的比后几天收割的少百分之几?(3)每公顷平均收小麦7.5吨,这个农场用载重5吨的卡车运回全部小麦,需要运多少次?7.小华的身高是1.6米,他的影长是2.4米.如果在同一时间、同一地点测得一棵树的影长为6米,这棵树有多高?8.市政工程队铺一条路,原计划每天铺0.6千米,24天完成.实际每天铺0.8千米,实际用多少天完成?9.给学校教务处办公室铺地砖,原计划选用3分米的方砖,需要960块;后来实际选用了4分米的方砖铺地,实际用了多少块4分米的方砖?10.甲乙两地相距360千米,一辆汽车从甲地到乙地计划7小时行完全程,汽车时间234….(小时)路程100150200….(千米)4.5千米,20天完成,实际每天修6千米,实际几天可修完?(用比例解)12.一辆汽车3小时行了135千米,照这样计算,行驶315千米需要几小时?(用比例解)13.一辆汽车从甲地出发,每小时行45千米,4小时到达乙地.如果每小时行60千米,几小时可到达乙地?(用比例解)14.(2015•邹城市)一艘轮船从甲港开往乙港,去时顺水,每小时行24千米,15小时到达.返回时逆水,速度降低了25%,多少小时返回甲港?(用比例解)15.用边长是40厘米的方砖给教室铺地需500块,如果改用边长是50厘米的方砖铺地,可节省多少块?16.六年级甲、乙、丙三个班植树,任务分配是:甲班要植三个班总棵数的40%,乙、丙两班植树棵数的比是4:3.当甲班植了200棵树时,正好完成三个班植.求丙班植树多少棵?树总棵数的2717.一间房子要用方砖铺地,用边长是5分米的方砖需要400块,如果改用边长是4分米的方砖,需要多少块?(用比例解)18.育美小学的六年级同学参加军校的行军训练,3小时行了15千米.照这样计算,再行17.5千米就可到达目的地,到达目的地还要行几小时?(用比例解) 19.A、B两地相距360km,一辆汽车从甲地到乙地,原计划每小时行90km,实际这辆汽车是按照下表的速度行驶的.问这辆汽车能否在原计划时间内到达目的时间(h)234…10…路程(km)100150200…500…平方米的客厅要用87.5块,那么18平方米的卧室要用多少块?21.印刷厂用一批纸装订英语练习本.如果每本36页,能订4000本,如果每本32页,能订多少本?车厢种类车厢节数每节车厢可乘人数硬座7108硬卧1678软卧43423.一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如果改用边长是4分米的方砖,需用多少块?(用比例解)24.在春游活动中,我班共创建了8个活动小组,每组5人。
比例中的行程问题例一、张师傅计划加工1200个零件,实际由于工作效率提高了20%,结果提前1小时完成,张师傅计划每小时加工多少个零件?分析:工作总量一定,工作时间与工作效率成反比例,计划与实际工作效率比是1:(1+20%)=5:6,计划与与实际工作时间相差1小时,可求出计划时间,再求出计划的工作效率。
计划工效:实际工效=1 ,(1+20%)=5:6计划时间:实际时间=6 :5计划时间1÷(6-5)×6=6(时)计划工效1200÷6=200(个/时)答:张师傅计划每小时加工500 个零件。
1、李师傅计划加工1000 个零件,实际由于工作效率提高25%,结果提前1小时完成。
李师傅计划每小时加工多少个零件?,这样就比计划多烧2天。
计划2、食堂运来900 千克煤,由于每天比计划节约用煤110每天烧煤多少千克?,结果提前1小时到达甲地。
甲、乙两3、一列火车从甲地开往乙地,返回时,速度提高15地相距440 千米,求这列火车往返的平均速度。
例二、甲、乙两人同时加工批零件,已知甲、已工作效率的比是4 :5,完成任务时,乙比甲多加工120个零件,这批零件共有多少个?分析:甲、乙两人加工零件的时间相同,所以工作总量与工作效率成正比例,即甲、乙工作总量的比应等于他们工作效率的比,又已知乙比甲多加工120个零件,这样就可求出这批零件的个数。
120÷(54+5-44+5)=1080(个)答:这批零件共有1080个。
巩固练习21、甲、乙两人同时加工一批零件,完成任务时,乙比甲多加工200 个,已知甲、乙工作效率的比是5 :7,这批零件共有多少个?2、甲、乙两车同时从A、B 两地同时出发相向而行,两车在距中点36 千米处相遇,已知甲、乙两车的速度比是4 :5,求A、B 两地之间的路程。
3、甲、乙两车同时从A 地开往B 地,速度比是7 :9,当乙车到达B 地后立即返回,在距B地24 千米处与甲车相遇。
+比例行程进阶12本讲内容接送问题 巧用路程和的比 往返中的复合比前铺知识比例行程初步------五年级春季第10讲(第10级下)后续知识多次相遇与追及------六年级秋季第11讲(第11级下) 变速问题------六年级秋季第15讲(第11级下)1.(1)甲、乙两车行驶相同时间,甲、乙速度比为9:7,则路程比为________. (2)甲、乙两车速度相同,甲、乙行驶时间比为3:5,则路程比为________. (3)甲、乙两车行驶路程相同,甲、乙速度比为2:5,则所用时间比为_______. 【分析】(1)9:7;(2)3:5,483580÷⨯= ;(3)5:2,()4.55257.5÷-⨯=2.A 、B 两地距离300千米,甲乙两车分别从A 、B 两地同时出发.若甲、乙的速度比为3:1,相遇点距A 多少千米?【分析】330022531⨯=+千米3. 一辆汽车从A 地去B 地,若速度提高了25%后,提前30分钟达到,求到达B 地所需的时间.【分析】 速度的比为4:5,时间的比为5:4,时间的差为30分钟,所需的时间为30×4=120分钟=2小时.(1)甲、乙两人的速度比为3:4,行走的时间之比为2:5,甲的路程为30,那么乙所走的路程为_____.(2)甲、乙两人的速度比为3:4,行走的路程之比为2:5,甲用时24小时,那么乙所花的时间为_____.【分析】 (1)100(2)45(1)甲、乙两车速度相同,甲、乙行驶时间比为7:5,甲行驶35千米,则乙行驶________千米.(2)甲、乙两车都从A 地到B 地,甲、乙速度比为3:5,所用时间比为_________,若甲比乙多用3小时,则甲用________小时。
【分析】 (1)25(2)5:3;7.5甲班与乙班学生同时从学校出发去公园,两班的步行速度都是4千米/小时,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,设两地相距150千米,那么各个班的步行距离是多少?【分析】 由于汽车速度是甲乙两班步行速度的12倍,设乙班步行1份,汽车载甲班到A 点开始返回到B 点相遇,这样得出:1:[(121)2]1:5.5BD BA =-÷=,汽车从A 点返回最终与乙班同时到达C 点,汽车又行走了12份,所以总路程分成1 5.517.5++=(份),所以每份1507.520=÷=(千米),所以各个班的步行距离为20千米.海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地.决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时?根据“路程=速度×时间”的公式,我们可以发现:①当时间一定时,路程之比等于速度之比,即T T =乙甲时,::S S V V =乙乙甲甲. ②当速度一定时,路程之比等于时间之比,即V V =乙甲时,::S S T T =乙乙甲甲. ③当路程一定时,速度之比等于时间的反比,即S S =甲乙时,::V V T T =甲乙乙甲. ④当没有相同量时,:():()S S V T V T =⨯⨯甲乙甲甲乙乙比例行程中的正比例【分析】 由于100名学生要分4次乘车,分别命名为甲、乙、丙、丁四组,且汽车的速度是步行速度的11倍,乙组步行1份路程,则汽车载甲组行驶6份,放下甲组开始返回与乙组的学生相遇,汽车载乙组追上甲组,把乙组放下再返回,甲组也步行了1份,丙组、丁组步行的路程和乙组相同,所以全程为61119+++=份,恰好是33千米,其中汽车行驶了339622÷⨯=千米,共步行了332211-=千米,所以全体学生到达目的地的最短时间为2255115 2.6÷+÷=(小时)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分? 【分析】 画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分),爸爸骑行16千米需要16分钟.8+8+16=32.所以这时是8点32分.小华步行从家里出发去学校,出发8分钟后,爸爸骑自行车去追他,在离家2千米处追上了他,然后爸爸立即回家,到家后又立刻去追小华,再追上小华时,离家3千米,问:小华每分钟走多少米?[行程中的正比例模型]★★★【分析】 如下图,相同的线型表示同一阶段(一般是相同的颜色表示同一阶段,但限于非彩印,只能用粗细区分,建议课堂上用不同颜色区分,线型一般用于变速问题中区分),这些阶段的路程之比都会等于速度之比.粗线阶段,爸爸走了2+3=5千米,小华走了3-2=1千米,所以两人速度之比为5:1.细线阶段,爸爸走了2千米,所以小华走了2÷5=0.4千米,得出虚线阶段长度为2-0.4=1.6千米,小华8分钟走了1.6千米,所以小华每分钟走1600÷8=200米.爸爸追上小华的位置家B 地在A ,C 两地之间。
2021-2022学年六年级数学下册典型例题系列之第六单元正比例和反比例在图表中的应用专项练习(解析版)一、填空题。
1.(2021·河北邯郸·小升初真题)如图表示一辆汽车在公路上行驶的时间与路程的关系,这辆汽车行驶的时间与路程成()比例。
照这样计算,2.2小时行驶()千米。
【解析】(1)根据图可知:路程÷时间=速度(一定),商一定,所以路程和时间成正比例关系;(2)100÷1×2.2=100×2.2=220(千米)2.(2021·河北保定·小升初真题)观察关于购买衣服的统计表:购买衣服的数量和总价成( )比例。
【解析】70÷2=35105÷3=35140÷4=35175÷5=35210÷6=35总价÷数量=35(一定),商一定,所以购买衣服的数量和总价成正比例。
3.(2021·云南玉溪·六年级期末)如图表示一辆汽车在公路上行驶的时间与路程的关系,这辆汽车行驶的时间与路程成( )比例。
照这样计算,该汽车6.6时行驶( )km。
【解析】6.6×100=660(千米)这辆汽车行驶的时间与路程成正比例。
照这样计算,该汽车6.6时行驶660km。
4.(2021·陕西·延安市宝塔区蟠龙镇初级中学六年级期末)莎莎骑车到相距5千米的书店买书,买完书立刻返回家中。
如图是她离开家的距离与时间的统计图。
(1)莎莎去书店每小时行( )千米,用了( )分钟,这段时间内她骑车的路程和时间成( )比例。
(2)莎莎从书店返回家中的速度是每小时( )千米,用了( )分钟。
(3)莎莎返回时的速度比去时慢( )%。
【解析】(1)5÷0.5=10(千米),所以,莎莎去书店每小时行10千米,用了30分钟,这段时间内她骑车的路程和时间成正比例;(2)5÷1.25=4(千米),所以,莎莎从书店返回家中的速度是每小时4千米,用了75分钟;(3)(10-4)÷10=6÷10=60%所以,莎莎返回时的速度比去时慢60%。
比例中的行程问题典型例题1一辆汽车从甲地开往乙地,每小时行40千米,返回时每小时行50千米,结果返回时比去的时间少了48分钟,求甲、乙两地之间的路程。
巩固练习11.一辆汽车从甲地开往乙地,去时每小时行48千米,返回时,每小时行56千米,返回比去时少用1小时,求甲、乙两地的路程。
2.某人从A城步行到B城办事,每小时走5千米,回来时骑自行车,每小时行15千米,往返用6小时,求A、B 两城之间的路程。
3.一辆汽车从甲地去乙地,每小时行45千米,返回时每小时多行20%。
往返共用去11小时。
甲地到乙地共有多少千米?典型例题2甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行48千米,乙车每小时行42千米。
当乙车行至全程的错误!时,甲车距中点还有24千米,A、B两地相距多少千米?巩固练习21.甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行40千米,乙车每小时行48千米,当乙车行至全程的错误!时,甲车距中点还有30千米。
求A、B 两地的路程。
2.甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行56千米,乙车每小时行40千米,当乙车行至全程的错误!时,甲车已超过中点12千米。
求两地的路程。
3.把一批零件按2:3分配给甲、乙两人,甲每小时加工12个,乙每小时加工16个,当甲完成时,乙还有24个未加工,这批零件共多少个?典型例题3甲、乙两车同时从A地开往B 地,当甲车行至全程的错误!处时,乙车行了全程的错误!;当乙车到达B地时,甲车距B地还有20千米,求A、B两地的路程。
巩固练习31.甲、乙两车同时从A地开往B地,当甲车行了全程的错误!时,乙车正好行了全程的错误!,当甲车到达B 地时,乙车距B地还有30千米,求A、B两地之间的路程。
2.甲、乙两车同时从A地开往B地,当甲车行至中点时,乙车行了80千米;当甲车到达B地时,乙车距B 地还有全程的错误!。
求A、B两地的路程。
3.甲、乙两车同时从A地开往B地,当甲车行至中点时,乙车行了全程的错误!;当甲车到达B地时,乙车已超过B地24千米。
(完整版)正反比例应用题与行程问题正反比例应用练习判断下面各题中相关联的量成什么比例并列出比例式(不用解比例)一、路程、时间、速度1、一辆汽车4小时行驶280千米,照这样计算,6小时行驶多少千米(或行驶420千米要多少小时)“照这样计算”是指()一定,()和()成()比例,列比例式:2、从甲地到乙地,一辆汽车如果每小时行60千米,6小时能到达,如果每小时行90千米,几小时到达?“从甲地到乙地”是指()一定,()和()成()比例,列比例式:3、从甲地到乙地,一辆汽车如果每小时行60千米,6小时能到达,如果要4小时到达,每小时应行多少千米?“从甲地到乙地”是指()一定,()和()成()比例,列比例式:二、总价、单价、数量1、一本种笔记本,小明买了8本花了52元,如果买12本,要花多少钱?()一定,()和()成()比例,列比例式:2、一本笔记本6.5元,小明买了8本,如果这些钱正好能买10枝圆珠笔,每枝圆珠笔卖多少钱?“如果这些钱”是指()一定,()和()成()比例,列比例式:3、一本笔记本6.5元,小明买了8本,如果这些钱买每本5.2元的笔记本,能买多少本?“如果这些钱”是指()一定,()和()成()比例,列比例式:三、工作总量、工作时间、工作效率1、修一段路,3天能修225米,照这样计算,5天能修多少米?“照这样计算”是指()一定,()和()成()比例,列比例式:2、修一段路,3天能修225米,照这样计算,修375米要多少天?“照这样计算”是指()一定,()和()成()比例,列比例式:3、修一段路,如果每天修75米,3天能修完,如果每天修45米,要多少天修完?()一定,()和()成()比例,列比例式:4、修一段路,如果每天修45米,5天能修完,如果要3天修完,每天应修多少米?()一定,()和()成()比例,列比例式:()一定,()和()成()比例,列比例式:6、一辆货车3小时能搬运36吨货物,照这样计算,几小时能搬完60吨货物?()一定,()和()成()比例,列比例式:7、装订一批书籍,计划每天装订2500本,30天完成,实际每天装订3000本。
_________________ 个性化辅导讲义年级:时间年月日课题比例解行程问题教学目标 1. 了解物体匀速运动的特点。
2.掌握运用比例知识解决行程问题的方法。
3.培养想像力,增强思维力。
教学内容【知识梳理】我们常常会应用比例的工具分析 2 个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用v , v ;t ,t ;s s来表示,大体可分为以下两种情况:甲乙甲乙甲,乙1.当 2 个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s甲v甲t甲,这里因为时间相同,即 t甲t乙t ,所以由 t甲s甲, t乙s乙s乙v乙t乙v甲v乙得到 t s甲s乙,s甲v甲,甲乙在同一段时间 t 内的路程之比等于速度比v甲v乙s乙v乙2.当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时, 2 个物体所用的时间之比等于他们速度的反比。
s甲v甲t甲,这里因为路程相同,即 s甲 s乙s ,由 s甲 v甲 t甲,s乙 v乙 t乙s乙v乙t乙得 s v甲t甲v乙 t乙,v甲t乙,甲乙在同一段路程 s 上的时间之比等于速度比的反比。
v乙t甲比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
【例题精讲】例题 1 甲、乙两人同时A地出发,在A、B两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达 A 地、 B 地或遇到乙都会调头往回走,除此以外,两人在AB 之间行走方向不会改变,已知两人第一次相遇的地点距离 B 地 1800米,第三次的相遇点距离 B 地 800 米,那么第二次相遇的地点距离 B 地。
用正反比例知识解决行程问题(中点有关的行程问题)
例题引路:甲乙两辆汽车分别从两地相对开出,它们的速度比是5﹕7,在距中点18千米的地方相遇,两地相距多少千米?
基本训练
1、两只轮船同时从两港相对开出,客船每小时行49千米,货船的速度是客船的76,两只轮船在离甲、乙两港中点6千米处相遇。
求甲、乙两港的距离是多少?
2、客车和货车同时从甲乙两地相对开出,客车每小时行了全程的4
1,货车每小时行60千米,相遇时客车和货车所行的路程比是3﹕2,。
甲、乙两地相距多少千米?
3、甲乙两车同时从两地出发,相向而行,甲车行完全程需要3.5小时,乙车每小时75千米,相遇时甲、乙两车所行路程的比是4﹕3.相遇时乙车行了多少千米?
4、快车和慢车同时从A 、B 两地出发,相向而行,行驶一段时间后两车相遇,相遇点到AB 中点的路程恰0好是AB 全长的20
1,客车与慢车的速度比是多少?
拓展提高
5、甲乙两车分别从A 、B 两地同时出发,相向而行,甲车每小时行100千米,乙车每小时行90千米,当乙车行至全程的
22
9时,甲车距离中点还有20千米,A 、B 两地相距多少千米?
竞赛训练/
6、客车和货车分别从甲、乙两地同时出发,相向而行,客车每小时行90千米,货车每小时行70千米,当货车行至全程的
207时,客车距中点还有12千米。
甲乙两地相距多少千米?
7、甲乙两车都从A 地到B 地,甲车比乙车提前30分钟出发,行到全程3
1 时,甲车发生故障,修车花了15分钟,结果比乙车晚到B 地15分钟,甲车修车前后速度保持不变,全程为300千米,那么乙车追上甲车时距A 地多少千米?(2012年中国青少年数学论坛展示大赛)。