2017浙江专升本高等数学真题三贤真题试卷
- 格式:pdf
- 大小:182.92 KB
- 文档页数:5
浙江省2017年选拔优秀高职高专毕业生进入本科学习统一考试高等数学参考答案选择题部分一、选择题:本大题共5小题,每小题4分,共20分。
题号12345答案DACDD1.D 解析:0lim )(lim 10==--→→xx x e x f ,;lim )(lim 10+∞==++→→xx x e x f 所以0=x 是)(x f 的无穷间断点,即属于第二类间断点,选项D 正确。
2.A 解析:选项A :由积分中值定理:若)(x f 在],[b a 连续,则至少存在一点),(b a ∈ξ,使得()()()ξ=-⎰baf x dx f b a ,选项A 正确。
选项B :由拉格朗日中值定理:)(x f 在],[b a 上连续,在),(b a 内可导,则至少存在一点),(b a ∈ξ,使得()()'()()ξ-=-f b f a f b a ,选项B 错误。
选项C :由零点定理:若)(x f 在],[b a 连续,且0)()(<⋅b f a f ,则至少存在一点),(b a ∈ξ,使得()0ξ=f ,选项C 错误。
选项D :由罗尔定理:若)(x f 在],[b a 连续,在),(b a 内可导,且)()(b f a f =,则至少存在一点),(b a ∈ξ,使得()0ξ'=f ,选项D 错误。
3.C 解析:);()(; )()( ; )()('x f dx x f dxd C x f x df C x f dx x f =+=+=⎰⎰⎰⎰=dx x f dx x f d )()(,可见选项C 正确。
4.D 解析:2|2110102110===⎰⎰-x dx x dx x ;所以⎰101dx x收敛,故选项A 错误。
2|arcsin 1110102π==-⎰x dx x ;所以⎰-10211dx x收敛,故选项B 错误。
111lim |)1(1112=+-=-=+∞→∞++∞⎰x x dx x x ;所以⎰+∞121dx x 收敛,故选项C 错误。
2017年成人高考专升本高等数学模拟试题一一. 选择题(1—10小题,每题4分,共40分)1。
设0lim →x 错误!=7,则a 的值是( ) A 错误! B 1 C 5 D 72。
已知函数f(x )在点x 0处可等,且f ′(x 0)=3,则0lim →h 错误!等于( ) A 3 B 0 C 2 D 63。
当x 0时,sin(x 2+5x 3)与x 2比较是( )A 较高阶无穷小量B 较低阶的无穷小量C 等价无穷小量D 同阶但不等价无穷小量4. 设y=x —5+sinx ,则y ′等于( )A —5x -6+cosxB —5x —4+cosxC —5x —4—cosxD —5x —6—cosx5. 设y=,4—3x 2 ,则f ′(1)等于( )A 0B —1C -3D 36。
错误!等于( )A 2e x +3cosx+cB 2e x +3cosxC 2e x -3cosxD 17. 错误!等于( )A 0B 1C 2π D π 8。
设函数 z=arctan 错误!,则xz ∂∂等于( )y x z ∂∂∂2 A 错误! B 错误! C 错误! D 错误!9。
设y=e 2x+y 则yx z ∂∂∂2=( ) A 2ye 2x+y B 2e 2x+y C e 2x+y D –e 2x+y10. 若事件A 与B 互斥,且P (A )=0。
5 P(AUB )=0。
8,则P (B)等于( )A 0。
3B 0.4C 0.2D 0.1二、填空题(11-20小题,每小题4分,共40分)11. ∞→x lim (1—错误!)2x =12。
设函数f(x)= 在x=0处连续,则 k =13. 函数—e —x 是f(x)的一个原函数,则f (x )=14。
函数y=x-e x 的极值点x=15. 设函数y=cos2x , 求y ″=16。
曲线y=3x 2-x+1在点(0,1)处的切线方程y=17. 错误!=18。
2017年专升本(高等数学二)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.当x→0时,下列各无穷小量中与x2等价的是【】A.xsin2xB.xcos2xC.xsinxD.xcosx正确答案:C解析:所以xsinx与x2等价.2.下列函数中,在x=0处不可导的是【】A.B.C.y=sinxD.y=x2正确答案:B解析:对于B项,在点x=0处有,即导数为无穷大,即在x=0处不可导.3.函数f(x)=ln(x2+2x+2)的单调递减区间是【】A.(一∞,一1)B.(一1,0)C.(0,1)D.(1,+∞)正确答案:A解析:因为f(x)=ln(x2+2x+2),f’(x)=当f’(x)<0时,即x<一1,函数单调递减,即函数的单调递减区间是(一∞,一1).4.曲线y=x3一3x2一1的凸区间是【】A.(一∞,1)B.(一∞,2)C.(1,+∞)D.(2,+∞)正确答案:A解析:函数的定义域为(一∞,+∞),y’=3x2一6x,y”=6x一6,令y”=6x 一6<0,即x<1,曲线y是凸的,即凸区间为(一∞,1).5.曲线y=e2x一4x在点(0,1)处的切线方程是【】A.2x—y一1=0B.2x+y—1=0C.2x-y+1=0D.2x+y+1=0正确答案:B解析:切线的斜率k=y’|x=0=(2e2x一4)|x=0=一2,即切线方程为y一1=一2x,y+2x—1=0.6.A.B.C.D.正确答案:B解析:7.A.B.C.D.正确答案:C解析:8.设二元函数,则下列各式中正确的是【】A.B.C.D.正确答案:D解析:9.二元函数z=x2+y2一3x-2y的驻点坐标是【】A.B.C.D.正确答案:D解析:因为z=x2+y2一3x一2y,10.甲、乙两人各自独立射击1次,甲射中目标的概率为0.8,乙射中目标的概率为0.9,则至少有一人射中目标的概率为【】A.0.98B.0.9C.0.8D.0.72正确答案:A解析:设A为甲射中,B为乙射中,P(A)=0.8,P(B)=0.9.至少一人射中的概率为=1一(1—0.8)×(1—0.9)=1—0.02=0.98.填空题11.正确答案:2解析:12.正确答案:解析:13.曲线的铅直渐近线方程是________.正确答案:x=1解析:则x=1是y=的铅直渐近线.14.设函数f(x)=sin(1一x),则f”(1)=______.正确答案:0解析:f(x)=sin(1一x),f’(x)=一cos(1一x),f”(x)=一sin(1一x),f”(1)=0.15.正确答案:解析:16.正确答案:1解析:17.若tanx是f(x)的一个原函数,则∫f(x)dx=________.正确答案:tanx+C解析:因为tanx是f(x)的一个原函数,所以∫f(x)dx=tanx+C.18.由曲线y=x3,直线x=1,x轴围成的平面有界区域的面积为________.正确答案:解析:S=∫01f(x)dx=∫01x3dx=19.设二元函数z=x4siny,则正确答案:解析:20.设y=y(x)是由方程ey=x+y所确定的隐函数,则正确答案:解析:对ey=x+y两边同时求导,ey.y’=1+y’,y’=解答题21.正确答案:22.已知函数f(x)=cos(2x+1),求f”(0).正确答案:因为f(x)=cos(2x+1),所以f’(x)=一2sin(2x+1),f”(x)=一4cos(2x+1),f”‘(x)=8sin(2x+1),f”‘(0)=8sin1.23.正确答案:24.计算∫01xarctanxdx.正确答案:25.设离散型随机变量X的概率分布为求X的数学期望EX及方差DX.正确答案:E(X)=0×0.3+1×0.4+2×0.3=1.E(X2)=0×0.3+1×0.4+22×0.3=1.6,D(X)=E(X2)一[E(X)]2=1.6—1=0.6.26.已知函数f(x)=x4一4x+1.(1)求f(x)的单调区间和极值;(2)求曲线y=f(x)的凹凸区间.正确答案:因为f(x)=x4一4x+1,所以f’(x)=4x3一4,f”(x)=12x,令f’(x)=0,x=1,令f”(x)=0,得x=0.列表如下,由表可知曲线f(x)的单调递减区间为(一∞,1),单调递增区间为(1,+∞).凹区间为(0,+∞),凸区间为(一∞,0),极小值为f(1)=1一4+1=一2.27.记曲线与直线y=2所围成的平面图形为D(如图中阴影部分所示).(1)求D的面积S;(2)求D绕y轴旋转一周所得旋转体的体积V.正确答案:28.设其中u=x2y,v=x+y2,求正确答案:。
绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式 其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径 1()3a b V h S S =柱体的体积公式其中S a ,S b 分别表示台体的上、下底面积V =Sh h 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知}11|{<<-=x x P ,}02{<<-=x Q ,则=Q P A .)1,2(-B .)0,1(-C .)1,0(D .)1,2(--【答案】A【解析】取Q P ,所有元素,得=Q P )1,2(-.2.椭圆22194x y +=的离心率是 A.3B.3C .23D .59【答案】B【解析】e == B. 3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 【答案】A 【解析】2π1211π3(21)1322V ⨯=⨯⨯+⨯⨯=+,选A. 4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则z =x +2y 的取值范围是A .[0,6]B .[0,4]C .[6,+∞]D .[4,+∞]【答案】D【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D. 5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B.6.已知等差数列[a n ]的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6”>2S 5的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】4652S S S d +-=,所以为充要条件,选C.7.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选D.8.已知随机变量ξ1满足P (1ξ=1)=p i ,P (1ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ8.【答案】A 【解析】112212(),(),()()E p E p E E ξξξξ==∴<111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<,选A.9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),PQR 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<所以选B10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I O A O B =,2·I OB OC =,3·I OC OD =,则A .I 1<I 2<I 3B .I 1<I 3<I 2C . I 3<I 1<I 2D .I 2<I 1<I 3【答案】C【解析】因为90AOB COD ∠=∠> ,所以0(,)OB OC OA OB OC OD OA OC OB OD ⋅>>⋅>⋅<< 选C非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2017浙江专升本高等数学真题三贤真题试卷第一题已知函数f(x)为连续函数,且f(x)在(1,+\infty)内单调递减。
设a,b为常数,且\lim_{x \to +\infty}[f(x)+ax+b]=1。
(1) 证明函数f(x)在(1,+\infty)内存在唯一零点;(2) 若f(1)=5,求a,b的值。
解答:(1) 由题意,\lim_{x \to +\infty}[f(x)+ax+b]=1,即当x趋向正无穷时,f(x)+ax+b趋向1。
根据函数极限的定义,对于任意的\epsilon>0,存在正数X,使得当x>X时,有|f(x)+ax+b-1|<\epsilon。
考虑区间[1,X]内的函数f(x),由于f(x)在(1,+\infty)内单调递减,故在[1,X]内有f(x)≥f(X)。
我们可以将f(X)作为一个常数,记为c,则f(x)+ax+b-1的绝对值不超过\epsilon+c+ax+b-1。
对于给定的\epsilon>0,我们可以选择X为一个足够大的数,使得c+ax+b-1<\epsilon/2。
这样,当x>X时,有|f(x)+ax+b-1|<\epsilon/2,并且等式左边总是大于0。
单调函数的零点唯一性定理:若单调函数在某个区间内取过两个不同的值,则在该区间内还存在一个零点。
由于f(x)在(1,+\infty)内单调递减,且\lim_{x \to+\infty}[f(x)+ax+b]=1。
考虑f(x)+ax+b-1=0,由上述推导可知,在足够大的x值上,函数值小于1。
又因为f(x)是单调递减函数,故不存在f(x)+ax+b=1成立的x值。
综上所述,f(x)在(1,+\infty)内存在唯一零点。
(2) 已知f(1)=5,将这一条件代入\lim_{x \to +\infty}[f(x)+ax+b]=1的式子中,得到\lim_{x \to +\infty}[f(x)+ax+b]=\lim_{x \to+\infty}[f(x)+ax+5]=1。
2017年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.当0→x 时,下列变量是无穷小量的为()A.21x B.x2 C.xsin D.()e x +ln 2.=⎪⎭⎫ ⎝⎛+→xx x 21lim 0()A.eB.1-e C.2e D.2-e 3.若函数()⎪⎩⎪⎨⎧=≠=-0,0,21x a x e x f x,在x=0处连续,则常数a=()A.0B.21 C.1 D.24.设函数()x x x f ln =,则()='e f ()A.-1B.0C.1D.25.函数()x x x f 33-=的极小值为()A.-2B.0C.2D.46.方程132222=++z y x 表示的二次曲面是()A.圆锥面B.旋转抛物面C.球面D.椭球面7.若()1210=+⎰dx k x ,则常数=k ()A.-2B.-1C.0D.18.设函数()x f 在[]b a ,上连续且()0>x f ,则()A.()0>dx x f ba ⎰ B.()0<dx x f ba ⎰C.()0=⎰dx x f ba D.()dx x f ba ⎰的符号无法确定9.空间直线231231-=-+=-z y x 的方向向量可取为()A.(3,-1,2)B.(1,-2,3)C.(1,1,-1)D.(1,-1,-1)10.一直a 为常数,则幂级数()∑∞=+-121n nan ()A.发散B.条件收敛C.绝对收敛D.敛散性与a 的取值有关二、填空题:11~20小题,每小题4分,共40分。
将答案填写在答题卡相应题号后。
11.()=--→2sin 2lim2x x x _________12.曲线121++=x x y 的水平渐进方程为_________13.若函数()x f 满足()21='f ,则()()=--→11lim 21x f x f x _________14.设函数()xx x f 1-=,则()='x f _______15.()⎰-=+22cos sin ππdx x x _______16.⎰+∞=+0211dx x __________17.一直曲线22-+=x x y 的切线l 斜率为3,则l 的方程为_________18.设二元函数()y x z +=2ln ,则=∂∂xz_________19.设()x f 为连续函数,则()='⎪⎭⎫ ⎝⎛⎰xdt t f 0__________20.幂级数∑∞=03n n nx 的收敛半径为_________三、解答题:21~28题,共70分,接答应写出推理、演算步骤21.求201sin limx x e x x --→22.设⎪⎩⎪⎨⎧+=+=3211ty tx ,求dx dy 23.已知x sin 是()x f 的一个原函数,求()⎰'dxx f x24.计算dx x⎰+41125.设二元函数122+-+=y x y x z ,求yx zx z ∂∂∂∂∂2及26.计算二重积分⎰⎰+Ddxdy y x 22,其中区域(){}4,22≤+=y x y x D27.求微分方程2x dxdyy的通解28.用铁皮做一个容积为V 的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小2017年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】C【解析】00sin sin lim 0==→x x 2.【答案】C【解析】222021lim 21lim e x x xx xx =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+⋅→→3.【答案】B【解析】因为函数()x f 在0=x 处连续,则()()21021lim lim 00====-→→f a e x f x x x 4.【答案】D【解析】因为()()1ln ln ln +='+='x x x x x f ,所以()21ln =+='e e f 5.【答案】A【解析】因为()332-='x x f ,令()0='x f ,得驻点11-=x ,12=x ,又()x x f 6=''()0<61-=-''f ,()0>61=''f ,所以()x f 在12=x 处取得极小值,且极小值()2311-=-=f 6.【答案】D【解析】可将原方程化为13121222=++z y x ,所以原方程表示的是椭球面。
高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。
既可以突出重点又可以提高复习信心,效率和效益也会双丰收。
少做、不做难题,努力避免“心理饱和”现象的加剧。
保持平常心,顺其自然绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式 其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径 1()3a b V h S S =柱体的体积公式其中S a ,S b 分别表示台体的上、下底面积V =Sh h 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知}11|{<<-=x x P ,}02{<<-=x Q ,则=Q P Y A .)1,2(-B .)0,1(-C .)1,0(D .)1,2(--【答案】A【解析】取Q P ,所有元素,得=Q P Y )1,2(-.2.椭圆221 94x y+=的离心率是A.133B.53C.23D.59【答案】B【解析】945e-==,选B.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A.π2+1 B.π2+3 C.3π2+1 D.3π2+3【答案】A【解析】2π1211π3(21)1322V⨯=⨯⨯+⨯⨯=+,选A.4.若x,y满足约束条件3020xx yx y≥⎧⎪+-≥⎨⎪-≤⎩,则z=x+2y的取值范围是A.[0,6] B.[0,4] C.[6,+∞]D.[4,+∞]【答案】D【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D.5.若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则M–mA.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【答案】B【解析】因为最值在2(0),(1)1,()24a af b f a b f b==++-=-中取,所以最值之差一定与b无关,选B.6.已知等差数列[a n ]的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6”>2S 5的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】4652S S S d +-=,所以为充要条件,选C.7.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选D.8.已知随机变量ξ1满足P (1ξ=1)=p i ,P (1ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ8.【答案】A【解析】112212(),(),()()E p E p E E ξξξξ==∴<Q111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<Q ,选A.9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),PQR 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<所以选B10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB u u u r u u u r =,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r=,则A .I 1<I 2<I 3B .I 1<I 3<I 2C . I 3<I 1<I 2D .I 2<I 1<I 3【答案】C【解析】因为90AOB COD ∠=∠>o,所以0(,)OB OC OA OB OC OD OA OC OB OD ⋅>>⋅>⋅<<u u u r u u u r u u u r u u u r u u u r u u u rQ选C非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2017年成人高考专升本高等数学模拟试题一小题,每题4分,共40分)一.选择题(1-10sinax lim=7,则a的值是( 1.设)x0x?1D 7 C 5 B 1 A 7)f(x)-f(x00+2h lim则)等于(2.已知函数f(x)在点x处可等,且f ′(x)=3,00h0h?D 6C 2 A 3 B 0232比较是(x0时,sin(x)+5x3.当x ) 与A较高阶无穷小量B较低阶的无穷小量C等价无穷小量D同阶但不等价无穷小量-5+sinx,则y′等于( 4.设y=x)-6-4-4-6A -5x+cosx B -5x+cosx C -5x-cosx D -5x-cosx2,则f′(1)等于(y=4-3x)5.设A 0 B -1 C -3 D 3x?(2e-3sinx)dx 等于( 6.)?xxx-3cosx D 1 +3cosx A 2e +3cosx+c B 2eC 2e1dx?)7.dx 等于(2 1-x ?0?? D A 0 B 1 C22?z?z y8.设函数z=arctan ,则等于()x?x?y?x-yyx-x B CD A22222222+y+yxx+yx+yx2z?2x+y则=(设9.y=e)?x?y2x+y2x+y2x+y2x+y–e B 2eD A 2yeC e10.若事件A与B互斥,且P(A)=0.5P(AUB)=0.8,则P(B)等于()A 0.3B 0.4C 0.2D 0.1二、填空题(11-20小题,每小题4分,共40分)12x lim= 11.(1- ) x x??2x x<0Ke设函数f(x)= 在x=0处连续,则k=12.Hcosx x≥0-x是f(x)的一个原函数,则f(x)=13.-e 函数x的极值点x= 14. 函数y=x-e设函数y=cos2x ,求y″= 15.2y= )处的切线方程0,1在点(-x+1y=3x曲线16.1?17.dx =?x-1x?(2e-3sinx)dx =?xdxxcossin2= 19. 18.??30xy20.设z=e ,则全微分dz=分)小题,共70三、计算题(21-282-1x lim 1.2-x-12x1?x2x3dy e求,2.设函数y=x2? xsin(x计算+1)dx 3.?1?dx?1)xln(2 4.计算0 2 -1 0 1 x -2 的分布列为设随机变量x5.P(x<1) 的值,并求求a(1)0.3a0.2y0.10.1D(x) 求(2)x e 的单调区间和极值y=求函数6.1+xz22dz x+y所确定的隐函数,求+2x-2yz=ez=(x,y)7.设函数是由方程-xx x=1求曲线y=e,y=e所围成的平面图形面积与直线8.答案2017年成人高考专升本高等数学模拟试题一分)4分,共40一、(1-10小题,每题10. A 8.A 9. B 6. A 7. C 1. D 2. D 3. C 4. A 5. C分)分,共4011-20二、(小题,每小题4x-x-21x ln+3cosx+c 14. 0 15.-4cos2x 16. y=-x+118. 2e+c 11. e17. 12. 2 13. e1xy(ydx+xdy)20. dz=e 19. 4 分)小题,共70三、(21-2822(x-1)(x-1)-1x lim = = 1. 2-x-132x(x-1)(2x+1)1x?2x2x22x3222x32x32x dx x =xdy=x x2. y′=(x)′e+(e)′=3xeee+2e(3+2x)112222??+1)+c cos(x=+1)dx sin(x+1)d(x+1) 3. =xsin(x??221132x1?11?ln3ln(2x+1)}=xln(2x+1) -=-1+ dx 4. =ln3-{x-ln(2x+1)dx ??2 2(2x+1)0000a=0.3得出5. (1) 0.1+a+0.2+0.1+0.3=10.6 =各点的概率相加即可,即:0.1+0.3+0.2P(x<1),就是将x<12=0.20+0.1×1+0.3×E(x)=0.1×(-2)+0.3×(-1)+0.2×(2)2222220.3=1.96×××0.1+(-1-0.2)×0.3+(0-0.2)0.1+(2-0.2)D(x)=E{xi-E(x)}×=(-2-0.2)0.2+(1-0.2)-1x≠6. 1) 定义域2) y′=22(1+x)(1+x)) 得出x=0(注意x=1这一点也应该xxx xe(1+x)-ee =作为我们考虑单调区间的点3)令y′=0,x0 -1 +∞0)),(0,(-1),-(∞10 y+--无意义无意义y′为小F(0)=1???极小值)区间内单调递减-1,0(U)1,∞-函数在(.在(0,+∞)内单调递增该函数在x=0处取得极小值,极小值为1?f?ff?z =-2y-e 7. =2x+2, =2y-2z ?y?x?z?f?fz?2(x+1)? = =-z2y+e ?z?xx??ff?2y-2z2y-2zaz? ==-= = zz2y+e)ay-(2y+e ?y?z2(x+1)2y-2zdz= dy dx+zz2y+e2y+e x-x-1的交点分别为A(1,e),B(1,e)则,y=e8.如下图:曲线y=e,与直线x=1?dx?ee)(-xx-1=e+e-2) = (eS=+e0x0 y=e-x y=e1x?x11B年成人高考专升本高等数学模拟试题二2017。
浙江省2017年高职高专毕业生进入本科学习统一考试高等数学一、选择题(本大题共5小题,每小题4分,共20分) 1、已知函数f (x )=e 1x,则x =0是f (x )的( )A 、可去间断点B 、连续点C 、跳跃间断点D 、第二间断点 答案:D解析:由于lim x→0−f (x )=lim x→0−e 1x=0;lim x→0+f (x )=lim x→0+e 1x=+∞ 右极限不存在,所以x =0是第二类间断点 2、设f (x )在上[a,b]连续,则( )A 、必存在ξ∈(a,b)使得∫f(x)ba dx =f(ξ)(b −a) B 、必存在ξ∈(a,b)使得f (b )−f (a )=f′(ξ)(b −a) C 、必存在ξ∈(a,b)使得f (ξ)=0 D 、必存在ξ∈(a,b)使得f′(ξ)=0 答案:A解析:若f (x )在上[a,b]连续,则必存在原函数,设F (x )是在[a,b]上的原函数,可得F (x )在[a,b]连续,在(a,b )可导,由牛顿-莱布尼茨公式及拉格朗日中值定理可得,∫f(x)ba dx = F (b )−F (a )= F ′(ξ)(b −a )=f(ξ)(b −a), ξ∈(a,b) 故选A 。
3、下列等式正确的是( )A 、∫f′(x )dx =f (x )B 、∫df (x )=f (x )C 、ddx ∫f (x )dx =f (x ) D 、d ∫f (x )dx =f (x ) 答案:C解析:A 选项∫f′(x )dx =f (x )+C ;B 选项∫df (x )=f (x )+C D 选项d ∫f (x )dx =f (x )dx 4、下列广义积分发散的是( ) A 、∫√xB 、∫√1−x2C 、∫1x 2+∞1dx D 、∫1x 210dx答案:D解析:A 选项∫√x 0=∫x 1210dx=2√x|01=2 收敛B 选项∫√1−x 20=arcsinx|01=π2 收敛 C 选项∫1x2+∞1dx =−1x|1+∞=1 收敛 D 选项∫1x 210dx =−1x |01=+∞,发散 5、微分方程y ′′−3y ′+2y =e x sin x 的特解形式可设为( ) A 、ae x sin x B 、xe x (acosx +bsin x) C 、axe x sin x D 、e x (acosx +bsin x) 答案:D解析:微分方程的特征方程为:r 2−3r +2=0,解得特征方程根为r 1=1,r 2=2 1±i 不是特征方程的根,所以特解形式设为y ∗=e x (acosx +bsin x)二、填空题(只要在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)6、已知f (x )的定义域为(0,1),则f (2x )的定义域为 答案:(−∞,0)解析: f (x )的定义域为(0,1),所以0<2x <1,故x ∈(−∞,0) 7、已知lim x→0(1+kx)1x=2,则k =答案:ln 2解析:lim x→0(1+kx)1x=lim x→0(1+kx)1kx∙k =lim x→0e k =2,故k =ln 28、若f (x )=ln(1+x 2),则lim ℎ→0f (3)−f(3−ℎ)ℎ=答案:35解析:根据导数的定义式:f′(x )=lim ∆x→0f (x 0+∆x )−f(x 0)∆x,易得limℎ→0f (3)−f(3−ℎ)ℎ=limℎ→0f (3−ℎ)−f(3)−ℎ=f′(3),而f′(x )=2x1+x 2, f′(3)=359、方程x 5+2x −5=0的正根的个数有 答案:1解析:f (x )=x 5+2x −5, f′(x )=5x 4+2,显然f′(x )>0,故函数f (x )在(0,+∞)上单调递增,且f (0)=−5,f (+∞)=+∞结合零点定理,故f (x )在(0,+∞)上仅有一个根。
绝密★启用前2017年普通高等学校招生全国统一考试数学(浙江卷)本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分3至4页.满分150分.考试用时120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式:球的表面积公式锥体的体积公式球的体积公式其中S 表示棱锥的底面面积,h 表示棱锥的高台体的体积公式其中R 表示球的半径柱体的体积公式 其中S a ,S b 分别表示台体的上、下底面积24S R =π13V Sh =343V R =π1()3a b V h S S =V=Sh h表示台体的高其中S表示棱柱的底面面积,h表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,那么【A】A.B.C.D.2.椭圆的离心率是【B】ABC.D.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是【A】(第3题图){|11}P x x=-<<{02}Q x=<<P Q=(1,2)-(0,1)(1,0)-(1,2)22194x y+=2359A .B .C .D .4.若,满足约束条件则的取值范围是【D 】A .[0,6]B .[0,4]C .[6,D .[4,5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – m 【B 】 A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关6.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的【C 】A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.函数y=f (x )的导函数的图象如图所示,则函数y=f (x )的图象可能是【D 】12π+32π+312π+332π+x y 03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,,,2z x y =+)+∞)+∞()y f x '=(第7题图)8.已知随机变量满足P (=1)=p i ,P (=0)=1–p i ,i =1,2. 若0<p 1<p 2<,则【A 】 A .<,<B .<,>C .>,<D .>,>9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则【B 】(第9题图)i ξi ξi ξ121E()ξ2E()ξ1D()ξ2D()ξ1E()ξ2E()ξ1D()ξ2D()ξ1E()ξ2E()ξ1D()ξ2D()ξ1E()ξ2E()ξ1D()ξ2D()ξ2BQ CRQC RA==A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记,,,则【C 】(第10题图)A .B .C .D .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2017年专升本(高等数学一)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.当x→0时,下列变量是无穷小量的为【】A.B.2xC.sinxD.ln(x+e)正确答案:C解析:本题考查了无穷小量的知识点.=sin0=0.2.= 【】A.eB.e1C.e2D.e-2正确答案:C解析:本题考查了的知识点..3.若函数在x=0处连续,则常数a= 【】A.0B.C.1D.2正确答案:B解析:本题考查了函数在一点处连续的知识点.因为函数f(x)在x=0处连续,则.4.设函数f(x)=xlnx,则f?(e)= 【】A.-1B.0C.1D.2正确答案:D解析:本题考查了导数的基本公式的知识点.因为f?(x)=lnx+x(lnz)?=lnx+1,所以f?(e)=lne+1=2.5.函数f(x)=x3-3x的极小值为【】A.-2B.0C.2D.4正确答案:A解析:本题考查了极小值的知识点.因为f?(x)=3x2-3,令f?(x)=0,得驻点x1=-1,x2=l.又f?(x)=6x,f?(-1)=-60.所以f(x)在x2=l处取得极小值,且极小值f(1)=1-3=-2.6.方程x2+2y2+3z2=1表示的二次曲面是【】A.圆锥面B.旋转抛物面C.球面D.椭球面正确答案:D解析:本题考查了二次曲面的知识点.可将原方程化为,所以原方程表示的是椭球面.7.若,则常数k= 【】A.一2B.一1C.0D.1正确答案:C解析:本题考查了定积分的知识点.=1+k=1所以k=0.8.设函数f(x)在[a,b]上连续且f(x)>0,则【】A.f(x)dx>0B.f(x)dx 0,则定积分f(x)dx的值为由曲线y=f(x),直线x=a,x=b,y=0所围成图形的面积,所以f(x)dx>0.9.空间直线的方向向量可取为【】A.(3,-1,2)B.(1,-2,3)C.(1,1,-1)D.(1,-l,-1)正确答案:A解析:本题考查了直线方程的方向向量的知识点.因为直线方程为=,所以其方向向量为(3,-1,2).10.已知a为常数,则级数【】A.发散B.条件收敛C.绝对收敛D.收敛性与a的取值有关正确答案:B解析:本题考查了级数的收敛性的知识点.发散.由莱布尼茨判别法知,vn=填空题11.=______.正确答案:l解析:本题考查了的知识点..12.曲线的水平渐近线方程为______.正确答案:解析:本题考查了水平渐近线方程的知识点.,所求曲线的水平渐近线方程为.13.若函数f(x)满足f?(1)=2,则=______.正确答案:1解析:本题考查了一阶导数的知识点.14.设函数,则f?(x)= ______.正确答案:1+解析:本题考查了一阶导数的性质的知识点.15.(sinx+cos)dx=______.正确答案:2解析:本题考查了函数的定积分的知识点.16.=______.正确答案:解析:本题考查了反常积分的知识点..17.已知曲线y=x2+x-2的切线l斜率为3,则l的方程为______.正确答案:3x-y-3=0解析:本题考查了切线的知识点.曲线上某一点的切线斜率为k=y?=2x+1,因为该切线的斜率为3,即k=2z+1=3,x=1,y|x=1=0,即切线过点(1,0),所求切线为y=3(x-1),即3x-y-3=0.18.设二元函数z=ln(x2+y),则=______.正确答案:解析:本题考查了二元函数偏导数的知识点.19.设f(x)为连续函数,则=______.正确答案:f(x)解析:本题考查了导数的原函数的知识点.20.幂级数的收敛半径为______.正确答案:3解析:本题考查了幂级数的收敛半径的知识点.解答题21.求正确答案:22.设正确答案:23.已知sinx是f(x)的一个原函数,求.正确答案:因为sinx是f(x)的一个原函数,所以24.计算正确答案:25.设二元函数z=x2y2+x-y+1,求正确答案:26.计算二重积分,其中区域D={(x,y)|x2+y2≤4}.正确答案:D可表示为0≤θ≤2π,0≤r≤2.27.求微分方程的通解.正确答案:28.用铁皮做一个容积为V的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小.正确答案:设圆柱形的底面半径为r,高为h,则V=πr2h.所用铁皮面积S=2πr2+2πrh,于是由实际问题得,S存在最小值,即当圆柱的高等于底面直径时,所使用的铁皮面积最小.。
浙江数学专升本试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 + 4x + 3 = 0的解?A. x = -1B. x = -3C. x = 1D. x = 32. 函数f(x) = 2x^3 - 5x^2 + 7x - 1在x=2处的导数值是:A. 2B. 5C. 8D. 103. 已知数列{an}满足a1 = 2,an+1 = an + n,求a5的值是:A. 10B. 15C. 20D. 254. 一个圆的半径为5,其面积为:A. 25πB. 50πC. 75πD. 100π5. 已知集合A={1, 2, 3},B={2, 3, 4},求A∩B的结果是:A. {1}B. {2, 3}C. {2, 3, 4}D. {1, 2, 3}6. 根据题目所给的几何图形,求其体积的计算公式是:A. V = πr^3B. V = 1/3πr^2hC. V = πr^2hD. V = 4/3πr^37. 已知向量a=(2, 3),b=(-1, 2),求向量a与b的点积是:A. -1B. 1C. 3D. 58. 一个函数f(x)在区间(a, b)内连续,且f(a) = f(b) = 0,根据罗尔定理,至少存在一点c∈(a, b)使得:A. f'(c) = 0B. f(c) = 0C. f'(c) = 1D. f(c) = 19. 根据题目所给的统计数据,求样本均值的公式是:A. μ = Σxi / nB. μ = Σxi / (n-1)C. σ = Σ(xi - μ)^2 / nD. σ = Σ(xi - μ)^2 / (n-1)10. 一个随机变量X服从二项分布B(n, p),其期望E(X)等于:A. npB. nC. pD. 2np答案:1. B2. D3. B4. B5. B6. B7. D8. A9. A10. A二、填空题(每题2分,共20分)11. 将分数1/3转换为小数是________。
2017年成人高考专升本考试真题及答案高等数学(一)一、选择题:1~10小题。
1.(单选题)当时,下列变量是无穷小量的为( )(本题4分)ABCD标准答案: C解析:【考情点拨】本题考查了无穷小量的知识点。
【应试指导】2.(单选题)( )(本题4分)A eBCD标准答案: C解析:【考情点拨】本题考查了的知识点。
【应试指导】3.(单选题)若函数在x=0处连续,则常熟a=( )(本题4分)A 0BC 1D 2标准答案: B解析:【考情点拨】本题考查了函数在一点处连续的知识点。
【应试指导】因为函数在处连续,则4.(单选题)设函数则( )(本题4分)A -1B 0C 1D 2标准答案: D解析:【考情点拨】本题考查了导数的基本公式的知识点。
【应试指导】因为,所以5.(单选题)函数的极小值为( )(本题4分)A -2B 0C 2D 4标准答案: A解析:【考情点拨】本题考查了极小值的知识点。
【应试指导】因为得驻点所以处取得极小值,且极小值6.(单选题)方程表示的二次曲面是( )(本题4分)A 圆锥面B 旋转抛物面C 球面D 椭球面标准答案: D解析:【考情点拨】本题考查了二次曲面的知识点。
【应试指导】可将原方程化为,所以原方程表示的是椭球面。
7.(单选题)若则常熟( )(本题4分)A -2B -1C 0D 1标准答案: C解析:【考情点拨】本题考查了定积分的知识点【应试指导】8.(单选题)设函数在[a,b]上连续且,则( )(本题4分)ABCD 的符号无法确定标准答案: A解析:【考情点拨】本题考查了定积分性质的知识点【应试指导】若在区间[a,b]上,则定积分的值为由曲线,直线x=a,x=b,y=0所围成图形的面积,所以9.(单选题)空间直线的方向向量可取为( )(本题4分)A (3,-1,2)B (1,-2,3)C (1,1,-1)D (1,-1,-1)标准答案: A解析:【考情点拨】本题考查了直线方程的方向向量的知识点【应试指导】因为直线方程为,所以其方向向量为(3,-1,2)。