七年级数学上册21整式件新版新人教版
- 格式:pptx
- 大小:6.84 MB
- 文档页数:13
第一课时用含字母的式子表示数量关系一、教学目标(一)学习目标1.理解字母表示数的意义,正确分析实际问题中的数量关系,初步体会“数式通性”.2.能熟练地把实际问题中的数量关系规范书写出来.3.熟练准确规范的列式解决实际问题中的数量关系.(二)学习重点理解字母表示数的意义,正确分析实际问题中的数量关系并用含字母的式子表示数量关系,体会抽象的数学思想.(三)学习难点用含字母的式子规范表示实际问题中的数量关系.二、教学设计(一)课前设计1.预习任务(1)欣赏一组图片,了解图片背景.问题1:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶km h.列车在冻土地段行驶时,根据已知数据求出列车行驶的路程.速度是100 /(1)2h行驶的路程是 200km,3h驶的路程是 300km,4h驶的路程是 400km,h驶的路程是 100km .(2)字母表示时间,用v表示速度,列车行驶的路程是vtkm .2.预习自测(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价 .【知识点】字母表示数.【解题过程】810p =0.8p 元. 【思路点拨】现价=原价×折数×110. 【答案】0.8p 元.(2)某产品前年的产量是n 件,去年的产量是前年产量的m 倍,用式子表示去年的产量 . 【知识点】字母表示数 【解题过程】mn 件.【思路点拨】去年的产量=前年的产量×m 倍. 【答案】mn 件.(3)一个长方体包装盒的长和宽都是a cm ,高是h cm ,用式子表示它的体积 . 【知识点】字母表示数.【解题过程】体积= a a h ⨯⨯ =2a h 3cm . 【思路点拨】长方体体积=长×宽×高. 【答案】2a h 3cm .(4)用式子表示数n 的相反数 . 【知识点】字母表示数. 【解题过程】n -.【思路点拨】求一个数的相反数就在这个数前面添上一个“负号”. 【答案】n -. (二)课堂设计 问题探究探究一 字母表示数的意义▲●活动① (回顾列式,感受数式通性) 师问:前面的字母,表示什么含义? 生答:表示时间总结:字母代表时间,那么可以和数一样参与运算,并且可以简明的表示列车行驶的路程与时间、速度的关系.用恰当的式子表示下列各题数量关系.(1)5箱苹果重m kg ,每箱重 kg ; (2)一个数比a 的2倍小5,则这个数为 ;(3)全校学生总数是x ,其中女生占总数的52%,则女生人数是 ,男生人数是 ;(4)某校前年购买计算机x 台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,则学校三年共购买计算机 台;(5)某班有a 名学生,现把一批图书分给全班学生阅读,如果每人分4本,还缺25本,则这批图书共 本;(6)一个两位数,十位上的数字为a ,个位上的数字为b ,则这个两位数为 ; 师生活动:学生独立列式,然后同桌交流,学生代表板书,老师巡视. 解:(1)5m;(2) 25a -;(3) 0.52x ,0.48x ;(4) 24=7++x x x x ;(5) 425a -;(6)10a b +.师问:式子中m 、x 、a 、b 在各自实际问题中分别表示什么意义? 生答:学生抢答师问:字母在不同的实际问题中表示的意义不一样,可以表示一个数,可以参与各种运算,你能再举一些例子说明吗? 生答:抽学生举例.师追问:你能再赋予0.52x 一个含义吗?n -一定是一个负数吗? 学生举行抢答.总结:虽然字母在不同的实际问题中表示的意义不一样,但与数一样可以参与各种运算. 【设计意图】通过学生自己独立列式,独立对问题中的关键信息的勾划解读研究,找到如何用含字母的式子表示数量关系,增强学生的符号感和数学符号的简洁美,本例中解释时可以允许学生借助实例进行说明,这样更有利于学生接受和认可,起到很好地过渡作用. ●活动② (回顾列式,探究列式的方法)师问:用含字母的式子表示实际问题中数量关系是如何通过列式表达出来的?生答:列式就是把实际问题中表示数量关系的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为数学符号语言.师问:分析实际问题时,我们应在列式前抓题目中的哪些关键语句理解便于明确它们的意义以及它们之间的数量关系?生答:我们应抓住题目中的如和、差、积、商、大、小、多、少、倍、分、倒数、相反数等词语理解.师问:在列式中还是否应该注意理清语句的层次,明确运算顺序呢? 生答:要.师问:在用字母表示数量关系时我们还应该记住必要的、常用的哪些公式? 生答:如几何图形的周长公式、面积公式、体积计算公式等.总结:列式就是把实际问题中表示数量关系的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为数学符号语言.分析实际问题时应注意:①抓住关键词理解,明确它们的意义以及它们之间的数量关系,如和、差、积、商、大、小、多、少、倍、分、倒数、相反数等词语理解.②应该注意理清语句的层次,明确运算顺序. ③联想相关的概念和公式.【设计意图】通过师生互动让学生在经历列式的过程中知道列式表示数量的关系的步骤和方法,体会从具体到抽象的数学思想. 探究二 代数式的规范书写▲ ●活动①(整合旧知,探究书写规则)师问:在书写一个代数式时我们应怎样书写才简洁、美观、规范? 生答:学生小组讨论,再分组回答交流.总结:老师在学生交流的基础上进行归纳总结强调:①数与字母、字母与字母相乘一般要省略乘号或者用·表示,如a b ⨯表示ab 或·a b . ②数与字母相乘时,数必须写在字母前面,当这个数为1时可以省略不写,如1ab 表示为ab ;当这个数是-1时,只省略1,但“负号”不能省略,如-1ab 表示为- ab ;当这个数是带分数时必须把这个数化为假分数,如235ab -应表示为175ab -. ③式子中出现除法运算时,必须按分数形式来写,如3m ÷应表示为3m . ④带单位时,若遇有加减运算符号的式子适当添加括号,如()ab cd - kg .【设计意图】让学生知道用字母表示数量关系的式子时须要按要求书写规范,从而保证式子的规范、简洁.●活动② (反思过程,强化式子的规范书写) 师问:判定下列式子书写是否规范?不规范的请改正.x y ⨯, 526ab , 3x , 1n -, 3b ÷学生举手抢答.总结:x y ⨯应该省略乘号,526ab 系数不能是带分数,3x 的系数应写在字母前面,1n -中1该省略,3b ÷应写成分数形式.【设计意图】更进一步强化列式时的规范书写的重要性.体会规范书写的简洁美. 探究三 会用准确规范的列式表示实际问题中简单的数量关系.★▲ ●活动①例1.(1)一条河的水流速度是2.5 /km h ,船在静水中的速度是v /km h ,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x 元,买一个排球需要y 元,买一个足球需要z 元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数;(3)如图(a )(图中长度单位: cm ),用式子表示三角尺的面积;(4)如图(b )是一所住宅的建筑平面图(图中长度单位: m ),用式子表示这所住宅的建筑面积.【知识点】列式表示数量关系. 【数学思想】从具体到抽象的数学思想.【解题过程】解:(1)船在这条河中的顺水行驶的速度是( 2.5v +)/km h ,逆水行驶的速度是( 2.5v -) /km h .(2)买3个篮球,5个排球、2个足球共需要(352x y z ++)元.(3)三角尺的面积等于三角形的面积减去圆面积,根据图中的数据,得到三角尺的面积(单位: 2cm )是(212ab r π-)2cm . (4)住宅的建筑面积的等于四个长方形面积的和,根据图中标出的尺寸,可得到这所住宅的建筑面积(单位: 2m )是(2218x x ++)2m .【思路点拨】(1)船在河流中行驶时,船的速度需要分两种讨论:顺水行驶时,船的速度=船在静水中的速度+水流速度 逆水行驶时,船的速度=船在静水中的速度-水流速度(2)(3)(4)应根据给出关系列出式子,但要注意书写的规范与简洁.【答案】(1)船在这条河中顺水行驶的速度是( 2.5v +) /km h ,逆水行驶的速度是( 2.5v -)/km h . (2)共需要(352x y z ++)元.(3)三角尺的面积(单位: 2cm )是2212ab cm r ⎛⎫ ⎪⎝⎭-π.(4)这所住宅的建筑面积(单位: 2m )是(2218x x ++)2m . 【设计意图】让学生经历由数到式的过程,感受从特殊到一般的过程,体会到用字母表示数的简洁性和必要性,为下面继续学习用含字母的式子表示数量关系做好引导.练习:(1)某种商品每袋4.8元,在一个月内的销售量是m 袋,用式子表示在这个月内销售这种商品的收入.(2)圆柱体的底面半径、高分别是r ,h ,用式子表示圆柱体的体积.(3)有两片棉田,一片有p 2hm (公顷, 21hm =4210m ),平均每公顷产棉花a kg ;另一片有q 2hm ,平均每公顷产棉花b kg ,用式子表示两片棉田上棉花的总产量.(4)在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是a mm ,小正方形的边长是b mm ,用式子表示剩余部分的面积. 【知识点】列式表示数量关系.【解题过程】解:(1)收入=销售量×单价,收入为4.8m ; (2)圆柱体的体积=底面积×高,2v r h π=;(3)总产量=一片土地的产量+另一片土地的产量,即()ap bq + kg ; (4)剩余面积=大正方形的面积-小正方形的面积,即()22a b - 2mm . 【思路点拨】认真勾划关键词,弄清语句层次,明确运算顺序,规范表达.【答案】(1)4.8 m 元;(2) 2r h π;(3) ()ap bq + kg ;(4) ()22a b - 2mm .【设计意图】通过练习进一步弄清字母表示式子的步骤和规范的书写,让学生明白用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明的表示出来.●活动②例2:测得一种树苗的高度与树苗生长年数的有关数据如下表(树苗原高100cm ).根据表格思考下面问题:前四年树苗高度的变化与年数有什么关系?假设以后各年树苗高度的变化与年数保持上述关系,用式子表示生长了n 年的树苗的高度. 【知识点】列式表示数量关系. 【数学思想】特殊到一般.【解题过程】解:根据表中的数据可得前四年树苗高度变化与年数间的关系为:树苗每年比前一年长高5cm ,则生长了n 年的树苗高度为:(100+5n )cm .【思路点拨】观察表中所给出的数据,可以得到前四年树苗高度的变化与年数间的关系;由表中数据可知树苗原高是100cm ,并且每年以5cm 的高度逐步生长,从而可以用关于n 的式子表示出第n 年树苗的高度,从而解答题目. 【答案】(100+5n )cm .练习:礼堂第1排有20个座位,后面每排都比前一排多一个座位.用式子表示第n 排的座位数.【知识点】式子表示规律. 【数学思想】特殊到一般.【解题过程】解:礼堂第1排有20个座位,后面每排都比前一排多一个座位;礼堂第2排有21个座位,礼堂第3排有22个座位,礼堂第4排有23个座位,...... 礼堂第n 排有座位数为:20(1)201n n +-=+-=19n + 答:礼堂第n 排有座位(19)n +个. 【答案】(19)n +个.【设计意图】通过表格数据的观察、分析总结得出数据的变化与生长的年数的关系,准确的列出式子表达这一规律,培养学生的观察分析问题的能力. 课堂总结 知识梳理(1)知道字母可以表示一个数,字母可以参与运算.(2)用含字母的式子表示实际问题中数量关系时要注意的问题:①数与字母、字母与字母相乘一般要省略乘号,如a b ⨯表示ab 或a ·b .②数与字母相乘时,数必须写在字母前面,当这个数为1时可以省略不写,如1ab 表示为ab .当这个数是-1时,只省略1,但“负号”不能省略,如-1ab 表示为- ab .当这个数是带分数时必须把这个数化为假分数,如235ab -应表示为175ab -. ③式子中出现除法运算时,必须按分数形式来写,如3m ÷应表示为3m . ④带单位时,若遇有加减运算符号的式子适当添加括号,如()ab cd - kg . (3)列式表示数量关系解决实际问题的步骤和方法. 重难点归纳:(1)字母表示数的意义.(2)含字母的式子表示实际问题中数量关系的方法和步骤. (3)代数式的书写应注意的问题.。
七年级数学上册 2.1.2《整式(多项式)》教案(新版)新人教版
《整式(多项式)》
教学任务分析
教学目标知识与
技能
掌握多项式的定义、多项式的项
和次数,以及常数项等概念
过程与
方法
让学生经历新知的形成过程,培
养比较、分析、归纳的能力,由
单项式与多项式归纳出整式,培
养学生分析问题、解决问题的能
力。
情感态
度与
价值观
通过数学探究活动,提高学生对
数学学习的好奇心与求知欲。
教学重点掌握整式和多项式的项及其次数、常数项的概念。
教学难点掌握整式和多项式的项及其次数、常数项的概念。
教学过程设计
[活动3]练习:
[活动4]小结:。
千里之行,始于足下。
七年级数学上册第二章整式的加减全章知识点总结新版新人教版以下是七年级数学上册第二章整式的加减的知识点总结(新人教版):1. 整式的概念:由常数和变量的乘积以及其和差的形式构成的代数式称为整式。
2. 整式的加法:将同类项相加,不同类项保持不变。
3. 同类项:具有相同字母,相同指数的项称为同类项。
4. 倍数和倍式:若正整数a能整除正整数b(即b/a的结果为整数),则a称为b的因数,b称为a的倍数。
a、b都是整数。
5. 同底数幂的加减法:同底数幂相加(或相减)时,保持底数不变,将指数相加(或相减)。
6. 整式的减法:先将被减整式中的各项取相反数,然后按照整式的加法规则进行加法运算。
7. 约束条件:表示一些情况下的特殊要求,一般用等式或不等式表示。
8. 字母运算规则:(1)相同字母的指数相加(或相减)。
(2)不同字母之间的运算,字母之间互不影响。
9. 整式化简:将整式中的同类项合并后,将不同字母之间的项单独放在一起。
第1页/共2页锲而不舍,金石可镂。
10. 内括号化简:使用分配律将多个内括号化简为单个内括号。
11. 外括号化简:使用分配律将外括号前的数分别与里面的每一项进行乘法运算。
12. 同底数幂的运算规则:(1)乘法:底数相同,指数相加。
(2)除法:底数相同,指数相减。
13. 括号内指数的运算规则:括号内的整个表达式的指数乘以括号外数的指数。
14. 幂的指数为负的意义:a的-n次方等于1除以a的n次方。
15. 合并同类项:将整式中相同的同类项相加或相减,得到的结果仍为整式。
16. 合并同底数幂:将整式中的同底数幂相加或相减,得到的结果仍为整式。
这些是七年级数学上册第二章整式的加减的知识点总结,希望对你有帮助!。
人教版数学七年级上册21整式-教案设计2、1整式,单项式教学目标1、知识与技能:理解单项式及单项式的系数、次数的概念,会准确迅速地确定一个单项式的系数和次数。
2、过程与方法:通过观察、分析、抽象、概括等,初步培养学生思维能力和应用意识。
3、情感态度与价值观:通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
教学难点:单项式概念的建立。
教学过程:一、情境引入:我们小时候都听过这样一段儿歌“一只青蛙一张嘴,两只眼睛,四条腿,一声扑通跳下水。
”请接下去。
n只青蛙,张嘴,只眼睛,条腿,声扑通跳下水。
这几个空所填的形式就是我们这节课要学习的内容,单项式(板书课题)二、学习目标1、知道什么是单项式,什么是单项式的系数、次数,并能举例说明;2、会用单项式表示简单的数量关系。
三、学习指导(5分钟)带着下面问题自学56-57页内容:1、看56页“思考”,说说这些式子有什么特点?2、读例3以上内容:说说什么是单项式?单项式中只有哪一种运算?有哪些特殊的单项式?3、什么是单项式的系数?mn的系数是几?-a的系数呢?的系数呢?4、什么是单项式的次数?请举例说明。
单独的一个数字(非零)的次数是多少?单独的一个字母的次数呢?5、读例3全过程,注意单项式的书写规范及单项式的系数与次数的确定方法;然后读最后一段,说说你有什么感悟。
四、合作交流1、对子交流:学习指导问题1、22、组内讨论:学习指导问题3、4五、学情展示1、下列各式是不是单项式?为什么?2、判断下列各说法是否正确,将错误的改正过来。
(1)单项式的系数是0,次数是2、()(2)单项式的系数是2,次数是10。
()(3)单项式的系数是,次数是n+1、()3、若a2yb-1是关于,y的单项式,系数为6,次数是3,则a=(),b=()。
4、你能写出一个含有、y,而且系数是-3,次数是4的单项式吗?5、若是关于,y的一个四次单项式,m,n应满足的条件?6、若-3ay2是一个五次单项式,你能说出指数a是几吗?六、归纳总结我这节课的收获:我还有的困惑:知识小结:1、单独的一个数或一个字母也是单项式;2、当一个单项式的系数是1或-1时,通常省略不写,如2,-a2b 等;3、圆周率π是常数,把它当作系数;4、如果单项式为单独的一个数,那么它就是0次单项式;5、单项式次数只与字母指数有关,与数字的指数无关;6。
《2.1整式(第三课时)——多项式》我说课的题目是多项式。
下面我将从教材、学情、教法、学法、教学程序、板书设计六个方面进行说明。
恳请在座的各位评委、同仁批评指正。
一.教材分析1、地位和作用本节内容选自人教版数学七年级上册第二章第一节第三课时,是初中代数的重要内容之一。
一方面本节课是建立在学生已经学习了单项式的基础上,对整式知识的进一步深入和拓展;另一方面又为学习整式加减等知识奠定了基础,是进一步研究整式的工具性内容。
鉴于这种认识,我认为本节课起着承前启后的作用。
2.教学目标知识与技能:1.掌握多项式及其项、次数、常数项的概念.2.准确地确定一个多项式的项数和次数.3.知道整式的概念.过程与方法:1.通过小组讨论、合作交流,让学生经历新知识的形成过程.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生对知识的迁移和知识结构体系的更新.情感态度与价值观:1.让学生经历数学活动,体验主动探究问题的乐趣与成功的快乐,感受数学活动充满探索与创新的机遇.3.教学重点.多项式的定义、多项式的项和次数以及常数项等概念.4.教学难点.多项式的次数.二.学情分析七年级二班学生基础不是很扎实,整体学习能力处于中等水平,学习新的知识需要较长的理解过程,再加上学生的好动性,注意力易分散,爱发表见解这一特点,容易将单项式与多项式的相关概念混淆,所以教学中教师应予以简单明白、深入浅出的分析,同时要创造条件和机会,让学生发表见解,发挥学生学习的主动性,提高学生学习的积极性。
三.教学方法鉴于以上对教材和学情的分析,本节课我将采用启发式、讨论式以及讲练结合的教学方法,带着学生去发现和探究新知识,以问题的提出、问题的解决为主线,同时在教学过程中,我将以列表格等多种形式加深学生对知识点的理解,激发学生的学习兴趣,提高教学效率并注意学生的观察能力和语言表达能力的培养。
四.学法分析1、学生采用对比学习的方法,即通过与单项式的比较学习多项式。
整式( 多项式 )基础检测1.以下说法正确的就是 ( ).A. 整式就就是多项式B.就是单项式4+2x 3 就是七次二项次 D.3x 1就是单项式52.以下说法错误的就是 ( ).A.3a+7b 表示 3a 与 7b 的与B.7x 2- 5 表示 x2的 7 倍与 5 的差C.1-1表示 a 与 b 的倒数差a bD.x 2- y2表示 x,y 两数的平方差3.m,n 都就是正整数mn m+n)., 多项式 x +y +3 的次数就是 (或 n C.m+n D.m,n中的较大数4. 随着通讯市场竞争日益激烈,? 某通讯公司的手机市话收费标准按原标准每分钟降低 a 元后 , 再次下调 25%,现在的收费标准就是每分钟 b 元 , 则原收费标准就是每分钟为() 元.A.(5b-a) B.(5b+a) C.(3b+a) D.(4b+a) 44435. 张老板以每颗 a 元的单价买进水蜜桃100 颗 . 现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低 b 元的价格将剩下的30 颗卖出,? 求全部水蜜桃共卖多少元?( ).A.70a+30(a- b)×(1+20%)×a+30b×(1+20%)×a-30(a - b)×(1+20%)×a+30(a-b)6. 按图程序计算, 若开始输入的值为x=3,则最后输出的结果就是( ).2 237. 多项式- mn +m- 2n- 3 就是 _____次_____项式 , 最高次项的系数为_______,? 常数项就是_______.8. 多项式x m+(m+n)x 2- 3x+5就是关于x的三次四项式,且二次项系数就是-2,则m=_____,n=_______.平方的 2 倍与 3 的差, 用代数式表示为________;当a=- 1?时 ,? 此代数式的值为_________.10.某电影院的第一排有m 个座位 , 后边每排比前一排多 2 个座位 , 则第 k 排的座位数就是_______.11.已知 x2- 2y=1, 那么 2x2- 4y+3=_______....12.数学家发明了一个魔术盒 ,当任意实数对 (a,b)进入其中时 ,? 会获取一个新的实数 :a 2+b+1. 比方把 (3,- 2) 放入其中 , 就会获取 32+( - 2)+1=8,?...现将实数对 ( - 2,3) 放入...其中获取实数m,再将实数对 (m,1) 放入其中后 , 获取的实数就是 _____.拓展提高13.已知多项式2 m+134, 单项式 3x3n4-mx- 3x y+x y- 3x- 1 就是五次四项式y z 与多项式的次数相同, 求 m,n 的值 .14. 某房间窗户以下列图. 其中上方的装饰物由两个四分之一圆与一个半圆组成相同 ):( 它们的半径(1)装饰物所占的面积就是多少?(2)窗户中能射进阳光的部分的面积就是多少?15.某校暑期将组织该校“三好学生”去北京旅游 , 由 3 名老师带队 , 甲旅游社说 : “若是带队老师买全票 , 则其余学生可享受半价优惠” , 乙旅游社说 : “包括带队老师在内全部按全票价的 6 折优惠” . 若全票价就是 800 元 , 设学生数为x 人 ,? 分别计算两家旅游社的收费 .16. 国家个人所得税法定, 月收入不超1600 元的不 , 月收入超1600 元的部分依照下表定的税率个人所得税:全月税所得税率 (%)不超 500 元的部分5超 500~2000 元的部分10超 2000~5000 元的部分15⋯⋯写出在不相同段的工所的个人所得税.( 工 x 元,0<x ≤5 000)答案 :7.4,4,-1,-3 8.3,-2-3,-110.?m+2k -2 11.5 12.66 13.m=2,n=114.(1)b2;(2)ab -b2161615.甲 2400+400x( 元)?;? 乙 480x+144 0( 元 )16.当 0<x≤1600 时 , 不缴税 ; 当 1600<x≤2100 时 , 缴税 :(x -1600) ×5%=5%x-80( 元 );当 2100<x≤3600 时 , 缴税 :500 ×5%+(x- 2100) ×10%=10%x- 160( 元 );当 3600≤x≤5000 时,500 ×5%+1500×10%+(x-3600) ×15%=15%x-365( 元 )。
第二章2.1 整式学校:姓名:班考号:1. 式子ab,3xy,a 1,3ax y,1-y,x xy y中,单项式共有()A. 3个B. 4个C. 5个 D. 6个2. 按次数把多项式分类,4x4-4和a3b-2ab2-1属于同一类,则下列多项式属于此类的是()A. -x5y4B. 2x2-3C. 3abcd-1 D. a3 3a2b 3ab2b23. 下列说法中正确的是()A. 4π是一次单项式B. x 3是二次三项式C. -的系数是-2D. -m的系数是-14. 多项式-x2y m+1+xy2-3x2-6是六次四项式,单项式3x2n y5-m与该多项式的次数相同,那么m,n的值分别是()A. 5,3B. 3,2C.2,1 D. 0,5. 某品牌电脑原售价为n元,降低m元后,又降价20%,那么该电脑的现售价为()A. n+mB. n-mC. n-m D. n-m6. 下列说法中正确的是()A. 单项式的系数是-2,次数是3B. -a是单项式,表示负数C. -6x2y 4x-1是二次三项式 D. 单项式-的次数是2,系数是-7. 如果多项式4y2-2y 5的值为7,那么多项式2y2-y 1的值为()A. -2B. 4C.3 D. 28. 某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A. (1-10%)(1+15%)x万元B. (1-10%+15%)x万元C. (x-10%)(x+15%)万元D. (1+10%-15%)x万元9. 购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A. (a+b)元B. 3(a+b)元C.(3a+b)元 D. (a+3b)元10. 一个两位数,十位数字是x,个位数字比十位数字的2倍少3,这个两位数是( )A. x(2x-3)B. x(2x+3)C.12x+3 D. 12x-311. 多项式1-2xy xy3的次数是( )A. 1B. 2C.3 D. 412. 如果单项式-x a 1y3与y b x2是同类项,那么a,b的值分别为( )A. a=2,b=3B. a=1,b=2C.a=1,b=3 D. a=2,b=213. 已知式子:(1)2x 3;(2)x3;(3)0;(4);(5)-;(6),其中是单项式的共有( )A. 2个B. 3个C. 4个 D. 5个评卷人得分二、填空题14. 若β2β=1,则2β2 2β 2 010= .15. 若4x n-(m 2)x2-3是关于x的四次二项式,则m,n满足的条件是.16. 32xy2的系数是,次数是.17. 一种商品每件成本m元,按成本增加25%定价.现因出现库存积压降价,按定价的90%出售,每件还能盈利元.18. 若多项式x n 2-2x2-n 2是一个三次多项式,则n的值为.19. 4x2y 6x-2-x3y2是次项式,其中最高次项的系数是,常数项是.20. 据报道,某种电脑液晶显示器比常规彩色显示器节能60%,若使用常规彩色显示器消耗的能量为x,则使该种液晶显示器消耗的能量为.21. 如图,阴影部分的面积为.22. 下列图形是按一定规律排列的,依照此规律,第8个图形中共有个★.23. 若单项式-3x4a y与x6y b 4是同类项,则a=,b=.24. 如果-mx n y是一个关于x,y的单项式,且系数为3,次数为5,则m=n=.评卷人得分三、解答题25. 某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款元(用含x的式子表示);若该客户按方案二购买,需付款元(用含x的式子表示).(2)若x=30,通过计算说明此时按哪种方案购买较为合算.26. 某百货商场经销一种儿童服装,每件售价50元,每天可以销售80件,为了迎接“六一”国际儿童节,商场决定采取降价措施以扩大销售量,经市场调查发现:每件童装每降价1元,平均每天就可多销售10件.(1)当每件童装降价x(x<10)元时,每天该童装的营业额是多少元?(2)当x=5时,每天该童装的营业额是多少元?27.已知多项式x2 2x 5的值是7,求多项式3x2 6x 3的值.28. 计算下列各式的值:(1)-0.4xy3,x=-2,y=3;(2)m2-2mn n2,m=2,n=.29. 梯形的上底为a,下底是上底的2倍,高是下底的倍,用式子表示梯形的面积.30. 列式表示下列语句:(1)比a,b的和的一半小1的数;(2)与m的和是1的数.31. 某商场有一批货,进货款为a元.如果这批货月初出售,可获利1000元,然后将这批货的进货款和已获利的1000元进行投资,到月末该投资可获利3%.如果这批货月初出售,请用含a 的式子表示该商场到月末时所获利润.32.计算图(1)(2)中阴影部分的面积:(用字母表示)参考答案1. 【答案】A【解析】本题考查单项式的概念.本题中单项式有ab,3xy, 3ax2y2,共3个.故选A.2. 【答案】C【解析】本题考查多项式.由题意只有3abcd-1是四次多项式,故选C.3. 【答案】D【解析】本题考查单项式.A.4π是常数项,所以A错误.B. x 3不是多项式,所以B错误.C.-的系数是-,所以C错误.D.-m的系数是-1,所以D正确.故选D.4. 【答案】B【解析】本题考查多项式与单项式的次数的意义,由题意得:2+(m+1)=6,得m=3,由2n+(5-m)=6,代入m=3,解得n=2,故选B.5. 【答案】B【解析】本题考查列代数式。
七年级数学上册2-1整式导学案1(无答案)(新版)新人教版
能用代数式表示实
归纳的能力.
通过列式表示实际问题中的数量关系,
1
)列车在冻土地段行驶时,
)在西宁到拉萨路段,列车通过非冻土地段所
图片展示预习问题,提问学生回答。
上面这种用含有字母的式子来表示量,就是我们今天要学习请同学们认真阅读教材
用含有字母的式子表示数量关系有什么优点?从运算的角度看这两个例题列出式子有什么不同?
1 / 2
语言表述转化为数学式子。
列数学式子首先要弄清语言。
1,2,3,4
课本第
2 / 2。