第四章《基本平面图形》知识点
- 格式:doc
- 大小:1.12 MB
- 文档页数:2
第四章基本平面图形知识点梳理
第四章基本平面图形知识点梳理
本章主要介绍基本的平面图形知识,包括几何体、平行四边形、多边形和圆。
一、几何体
几何体是构成物体形状的基本结构,可用平面图进行表示。
常见的几何体有正方形、矩形、多边形、三角形、圆形、椭圆形、棱形等,都有边和面。
二、平行四边形
平行四边形是指具有两条对角线的四边形,其四边相互平行。
可分为矩形和菱形,其中矩形是平行四边形中最常见的,它拥有两条相等的对角线,四个角都是直角;而菱形则是一种特殊
的平行四边形,它也具有两条对角线,不过这两条对角线是相等的,四个角都是锐角。
三、多边形
多边形是由多条线段构成的封闭图形,定义中指出“多”即多边形必须有3条或3条以上的线段才能算作一个多边形。
常见的多边形有三角形、四边形、五边形、六边形等,它们也可以分为凸多边形和凹多边形。
四、圆
圆是由一个中心点和相同半径的线段构成的一种图形,它是由圆上的所有点,距离圆心等距离构成的,因此圆也可以称为一种“完整”的图形。
圆的重要性在于不论在几何中,还是我们的日常生活中都会大量的使用,从标准的圆形工具,到日常中的化妆品,都常常使用圆形做为外形,这说明了圆形的有效性和重要性。
第四章基本平面图形■通关口诀:三线入门学几何;线段距离要分清。
温习数角数线段;中点角分三描述。
点点滴滴认识圆;六十进制作了解。
多边形与对角线;学习几何打基础。
比线比角要熟练;尺规作图知初步。
■正奇数学学堂第一讲:线段、射线、直线【知识点一】“三线”的基本概念{1.线段:不定义的基本概念。
两个特征:一是直的;二是有两个端点。
2.射线:把线段一方无限延长所形成的图形叫做射线。
三个特征:直的;一个端点;向一方无限延长。
3.直线:把线段向两方无限延长形成的图形叫做直线。
三个特征:直的;无端点;向两方无限延长。
4.注意:三线都是直的。
线段和射线都是直线的一部分。
区别在端点个数和是否延长及延长的方向。
〖母亲题示例〗1.填写下表:名称图例端点数延伸方向有无长度线段射线直线2.下图中哪个是线段,哪个是射线,哪个是直线?【知识点二】线段、射线、直线的表示方法。
1.线段:可以用表示两爹端点的大写字母或一个小写字母来表示。
名称+字母(无顺序)。
2.射线:可以用端点和射线上的另一点表示。
名称+字母(字母有顺序,端点字母必须在前)。
3.直线:可以用两个大写字母来表示。
也可以用一个小写字母来表示。
名称+字母(不讲顺序)。
4.注意:线段-字母相同即相同;射线:字母、顺序都相同,才能断定同一线;直线:字母相同即同线。
〖母亲题示例〗1.如图,A,B在直线l上,下列说法错误的是()A.线段AB和线段BA同一条线段B.直线AB和直线BA同一条直线C.射线AB和射线BA同一条射线D.图中以点A 为端点的射线有两条.【知识点三】直线的性质(老大:代表两个小弟。
)1.交点:两条直线相交,只有一个交点。
2.两点定线:经过两点有且只有一条直线。
(简记:两点确定一条直线)。
3.探求:过一点有无数条直线。
过两点以上不一定有直线。
但它们可以在一条直线上。
4.求交点:过平面内n条直线最多有(1)2n n —个交点。
5.数线段:①n个点= (1)2n n 条线段②n条基本线段:退乘法求线段数。
第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
: 联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分。
2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
3、直线的性质(1)直线公理:经过两个点有且只有一条直线。
简称两点确定一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。
5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。
第四章 基本平面图形思维导图形图面平本基⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧=︒⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧︒︒︒︒︒"=''=︒⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧)(36036018090909006016012为扇形的半径为圆心角的度数,π扇形面积:—用扇形所占百分比乘—圆心角的度数相关计算角叫做圆心角圆心角:顶点在圆心的形径所组成的图形叫做扇这条弧的端点的两条半扇形:由一条弧和经过的部分叫做圆弧圆弧:圆上任意两点间点形成的图形点旋转一周,另一个端段绕着它固定的一个端定义:平面上,一条线圆做正多边形各角也相等的多边形叫正多边形:各边相等,两个顶点的线段边形中,连接不相邻的多边形的对角线:在多图形次相连组成的封闭平面一直线上的线段首尾顺定义:由若干条不在同多边形大小比较线射线叫做这个角的平分的角,这条把这个角分成两个相等顶点引出的一条射线,角平分线:从一个角的的角,小于钝角:大于的角直角:等于的角,小于锐角:大于小于平角的角的分类,角的单位换算:希腊字母表示一个阿拉伯数字或一个字母或一个大写字母或表示方法:用三个大写而成的射线绕着它的端点旋转角也可以看成是由一条顶点的公共端点是这个角的的射线组成,两条射线角由两条具有公共端点定义角长短比较之间线段的长度两点之间的距离:两点最短性质:两点之间,线段点段分成两条相等线段的线段的中点:把一条线字母表示表示,也可用一个小写的两个端点的大写字母表示方法:用表示线段看做线段板的边沿都可以近似地定义:绷紧的琴弦、黑线段倒字母写在前面,不能颠字母表示,表示端点的表示方法:用两个大写限延长就形成了射线定义:将线段向一方无射线有一条直线性质:经过两点有且只个小写字母表示意两点的大写字母或一表示方法:用直线上任了直线个方向无限延长就形成定义:将线段向两个两直线扇形R n R n S考点精讲考点一线段、射线、直线线段、射线、直线的概念1.线段:期紧的琴弦、黑板的边沿都可以近似地看做线段.线段有两个特征:一是直的;二是有两个端点.2.射线:将线段向一个方向无限延长就形成了射线.手电筒、探照灯所射出的光线可以近似地看做射线.射线有三个特征:一是直的;二是有一个端点三是向一方无限延伸.3.直线:将线段向两个方向无限延长就形成了直线,直线有三个特征:一是直的;二是没有端点;三是向两方无限延伸.线段、射线、直线的表示方法名称图例表方方法线段用一个小写字母表示,如:线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).射线用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA直线用一个小写字母表示,如:直线l;用直线上的两个大写字母表示,如直线AB(或直线BA).线段、射线、直线的区别与联系名称线段射线直线不同点端点个数2个1个无伸展性不可延长只能向一方无限延长向两方无限延长度量可以度量不可度量不可度量联系将线段向一个方向无限延长就形成了射线,向两个方向无限延长就形成了直线,线段和射线都可以看做直线的一部分共同点都是直的,不是曲的拓展:线段的延长线是有方向的,作延长线时要特别注意表示线段的字母的顺序,以便确定延长的方向.“线段BA”与“线段AB”是同一条线段,但“线段AB的延长线”与“线段BA的延长线”却不是同一条.如图,图中,线段AB的延长线如图(1),线段BA的延长线如图(2).直线的性质1.画直线的常用工具是直尺,经过一点A可以画出无数条直线.2.直线的基本性质:经过两点有且只有一条直线(这一事实可以简述为:两点确定一条直线)线段的性质两点的所有连线中,线段最短.简单说成:两点之间的所有连线中,线段最短.可简称为“两点之间线段最短”两点之间的距离两点之间线段的长度,叫做这两点之间的距离.特别提醒:考点二比较线段的长短(1)线段是一个图形;两点间的距离是指线段的长度,是一个数值.(2)线段的长度可用刻度尺测量.比较两条线段的长短已知线段AB和CD.1.叠合法:把它们放在同一条直线上比较.具体作法如下:画一条直线l,在l上先作出线段AB,再作出线段CD,并使点C与点A重合,点D与点B位于点A的同侧,则:(1)如果点D与点B重合,就说线段AB与线段CD相等,记作AB=CD,如图①所示;(2)如果点D在线段AB内部,就说线段AB大于线段CD,记作AB>CD,如图②所示;(3)如果点D在线段AB外部,就说线段AB小于线段CD,记作AB<CD,如图③所示.2.度量法:先用刻度尺量出线段AB与线段CD的长度,再进行比较.特别提醒:用测量法比较线段的长短时,要采用相同的测量标准,单位要统一.作一条线段等于已知线段如图所示,作图步骤为:(1)作一条射线AB;(2)用圆规量出已知线段的长度(记作a);(3)用圆规在射线AB上截取AC=a.则线段AC就是所求作的线段.线段的中点特别提醒:(1)线段的中点必须在线段上,线段的中点只有一个,三等分点有两个,四等分点有三个.(2)利用线段的中点可以写出线段相等或成倍分关系的等式.(3)若点C是线段AB的中点,则AC=BC;但若AC=BC,则点C不一定是线段AB的中点.角的定义1.角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线叫做角的边.构成角的两个基本条件;一是角的顶点,二是角的边.如图所示,角的顶点是点O,角的边是射线OA,OB.考点三角2.从运动的观点看,角也可以看成是由一条射线绕着它的端点旋转而成的图形.如图所示,∠BAC可以看成是以A为端点的射线,从AB的位置绕点A旋转到AC的位置而成的图形.3.一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角.如图(1)所示,射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所成的角叫做平角:如图(2)所示,射线OA绕它的端点旋转一周所成的角叫做周角.在小学数学中,我们已经知道:1平角=180°,1周角=360°.拓展:平角与直线、周角与射线的区别:平角是一个角,它的始边和终边在同一条直线上,但方向相反;直线是一条线,没有端点,可以向两边无限延长,这是两个不同的概念,不能说“一条直线就是平角”或“平角是一条直线”.同样,周角是始边旋转360°后与终边重合而构成的角,这时构成角的两条边的两条射线重合,同样也不能说“一条射线是周角”或“周角是一条射线”.特别提醒:(1)平角和周角都是“角”,而不是”线”因此不能说“一条直线就是平角”,也不能说“一条射线就是周角.(2)没有特殊说明,我们只讨论大于等于0且小于等于180°的角.角的表示方法角的几何符号是“∠”,角的表示方法有以下几种:图例记法适用范围及注意事项用三个大写字母表示,如∠AOB或∠BOA任何情况都适用,用此方法表示角时,顶点的字母必须写在中间用一个大写字母表示,如∠O以这一点为顶点的角只有一个时才适用用数字1,2,3,…表示,如∠AOB可记作∠1任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边用小写希腊字母α,β,…表示,如∠BOC可记作∠α任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边考点三角特别提醒:当以某一点为顶点的角较多时,不能只用表示顶点的大写字母表示角,一般可用数字或希腊字母表示.角的分类小于平角的角可按大小分成三类:当一个角等于平角的一半时,这个角叫直角;大于零度角且小于直角的角叫锐角;大于直角且小于平角的角叫钝角.1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°.角的度量及换算1.角的度量单位角的度量单位主要有度、分、秒,符号分别是“°”“′”“″”.把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.以度、分、秒为单位的角的度量制,叫做角度制.此外,还有其他度量角的单位制.2.角度制的换算1周角=360°,1平角=180°,1°=60′,1′=160⎛⎫⎪⎝⎭,1′=60″,1″=160''⎛⎫⎪⎝⎭.3.角的度量方法最常用的量角的工具是量角器.用量角器量角时要注意对中(顶点对中心)、重合(一边与量角器的零刻度线重合)、读数(读出另一边所对的度数)这三点.考点四角的比较角的大小比较名称方法举例度量法用量角器量出两个角的度数,度数大的角大,度数小的角小,度数相等的角相等用量角器量得∠1=50°,∠2=45°,所以∠1>∠2.叠合法把两个角的一条边和顶点叠合在一起,另一条边在叠合边的同侧,通过观察另一条边的位置来比较两个角的大小如果EF与BC重合,如图),那么∠DEF等于∠ABC,记作∠DEF=∠ABC.如果EF落在∠ABC的外部,如图,那么∠DEF大于∠ABC,记作∠DEF>∠ABC.如果EF落在∠ABC的内部,如图,那么∠DEF小于∠ABC,记作∠DEF<∠ABC.注意:(1)角的大小与角的两边的长短、粗细无关,只与角的两边张开的程度有关;考点四角的比较(2)角的大小一旦确定,它的大小就不因图形的位置,图形的放大或缩小而改变.特别提醒:(1)比较角的大小时,有时也可用估测法,即直接通过观察的方法,比较角的大小.此方法较为直观,但不够准确,适用于角度差别较大或精确度要求不高的角的大小的比较.(2)“测量法”中角的大小关系和角的度数大小关系是一致的,是从“数的方面”来比较角的大小.“叠合法”中比较角的大小时,一定要使两个角的顶点及一边重合,将角的另一边落在重合的边的同侧,这是从“形”的方面来比较角的大小.两者比较大小的结果是一致的.角的平分线定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图所示,如图所示,射线OC是∠BOA的平分线,则∠BOC=∠COA=21∠BOA,∠BOA=2∠BOC=2∠C0A.特别提醒:(1)角的平分线是一条射线,不是线段,也不是直线.(2)若OC是∠AOB的平分线,则OC必然在∠AOB的内部.考点五多边形和圆的初步认识多边形的有关概念1.多边形:由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形.三角形、四边形、五边形、六边形等都是多边形,组成多边形的各条线段叫做多边形的边,相邻两条边的公共端点叫做多边形的顶点,相邻两条边所组成的角叫做多边形的内角,简称多边形的角.特别提醒:多边形的特征:①多边形是平面图形,要和立体图形区分开;②多边形是由不在同一直线上的线段组成的封闭图形;③组成多边形的各条线段首尾顺次相连.2.多边形的对角线:在多边形中,连接不相邻两个顶点的线段叫做多边形的对角线. 拓展:从n边形每一个顶点都能引出(n-3)条对角线,共有n个顶点,但每条对角线都重复计算了一次,从而对角线共有2)3(nn条.正多边形各边相等,各角也相等的多边形叫做正多边形.如图所示的多边形分别是正三角形、正四边形(正方形)、正五边形、正六边形、正八边形.拓展:多边形可分为凸多边形和凹多边形,如没有特别说明,本书所说的多边形都是指凸多边形,即多边形总在任何一条边所在直线的同一侧,凸多边形的每个内角都小于180°.圆、圆弧、扇形、圆心角的概念1.平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O称为圆心,线段OA称为半径(如图所示)2.圆上任意两点A ,B 间的部分叫做圆弧,简称弧,记作.读作圆弧AB 或“弧AB ”(现阶段一般研究小于半圆的弧)3.由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形;顶点在圆心的角叫做圆心角.如图所示的阴影部分就是扇形AOB .∠AOB 就是圆中的一个圆心角,∠AOB 也可记作∠1.特别提醒:圆心和半径是确定一个圆的两个必须条件.圆心确定圆的位置,半径确定圆的大小,二者缺一不可.圆心角的度数(1)一个圆可以分割成若干个扇形,这些扇形的面积的和等于圆的面积(2)因为一个周角为360°,所以分成的几个扇形的圆心角的度数之和=360,每一个扇形圆心角的度数=360°×(每一个扇形圆心角占周角的百分比)拓展:半径为R 的圆,其面积S =πR 2,将圆等分为360个小扇形,则每个圆心角为1°的小扇形的面积是3602R π,所以圆心角为n 的扇形的面是3602R n π.。
第四章基本平面图形(易错题归纳)易错点一:直线、射线、线段的概念理解不透技巧点拨:代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“⋅”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.根据代数式的书写要求判断各项即可1.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.102.下列叙述正确的是()A.线段AB可表示为线段BAB.射线AB可表示为射线BAC.直线可以比较长短D.射线可以比较长短3.下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2cm4.下列说法正确的是()A.延长直线ABB.延长射线ABC.反向延长射线ABD.延长线段AB到点C,使AC=BC易错点二:线段运用技巧点拨:正确掌握数线段方法5.A站与B站之间还有3个车站,那么往返于A站与B站之间的车辆,应安排多少种车票?()A.4B.20C.10D.96.由汕头开往广州东的D7511动车,运行途中须停靠的车站依次是:汕头→潮汕→普宁→汕尾→深圳坪山→东莞→广州东.那么要为D7511动车制作的车票一共有()A.6种B.7种C.21种D.42种7.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,问:(1)这两地之间有种不同的票价;(2)要准备种不同的车票.易错点三:两点间的距离技巧点拨:题意不明确时注意分类讨论8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上10.已知线段AB=6cm,点C在直线AB上,AC=AB,则BC=.11.如图,已知A、B、C是数轴上的三点,点B表示的数是﹣2,BC=6,AC=18,点P从A点出发沿数轴向右运动,速度为每秒2个单位.(1)数轴上点A表示的数为;点C表示的数为.(2)经过t秒P到B点的距离等于P点到C点距离的2倍,求此时t的值.(3)当点Q以每秒1个单位长度的速度从C点出发,沿数轴向终点A运动,N为BQ中点.P、Q同时出发,当一点停止运动时另一点也随之停止运动.用含t的代数式表示线段PN的长.12.P是线段AB上一点,AB=12cm,C,D两点分别从P,B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)如图若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明线段AC和线段CD的数量关系;(2)如果t=2s时,CD=1.5cm,试探索AP的值.易错点四:比较线段的长短技巧点拨:注意点的位置进行分类讨论。
O C A D B OC A E DB 第四章 基本平面图形3【知识点】【知识点】角的平分线: 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
14、多边形: 由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。
n 边形内角和等于(n-2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n-2)×1800 / n 过n 边形一个顶点有(n-3)条对角线,n 边形共(n-3)×n / 2条对角线. 圆、弧、扇形圆、弧、扇形 圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。
固定的端点称为圆心固定的端点称为圆心 弧:圆上A 、B 两点之间的部分叫做圆弧,简称弧。
两点之间的部分叫做圆弧,简称弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
圆心角:顶点在圆心的角叫圆心角。
圆心角:顶点在圆心的角叫圆心角。
4.4 角的比较※课时达标 1.1.若若OC 是∠是∠AOB AOB 的平分线的平分线,,则∠则∠AOC=_____;AOC=_____;AOC=_____;∠∠AOC=12______; ______; ∠∠AOB=2_______. 2.12平角平角=_____=_____=_____直角直角直角, , 14周角周角=______=______=______平角平角平角=_____=_____=_____直角直角直角,135,135,135°角°角°角=______=______=______平角平角平角. . 3.3.如图如图如图,(1),(1),(1)∠∠AOC=_____ +_____ = ____ -____ ;(2) (2)∠∠AOB=______-______ =______-_____.第第3题图题图 第第4题图题图4.4.如图如图如图,O ,O 是直线AB 上一点上一点,,∠AOC=90AOC=90°°,∠DOE=90DOE=90°°,则图中相等的角有则图中相等的角有_________对对( ( 小于直角的角小于直角的角小于直角的角))分别是______.5.5.下列说法正确的是下列说法正确的是下列说法正确的是( ). ( ).A. A.两条相交直线组成的图形叫做角两条相交直线组成的图形叫做角两条相交直线组成的图形叫做角B. B.有一个公共端点的两条线段组成的图形叫做角有一个公共端点的两条线段组成的图形叫做角有一个公共端点的两条线段组成的图形叫做角C. C.一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角D. D.角是从同一点引出的两条射线角是从同一点引出的两条射线角是从同一点引出的两条射线★基础巩固1.1.已知已知O 是直线AB 上一点上一点,OC ,OC 是一条射线是一条射线, ,则∠则∠则∠AOC AOC 与∠与∠BOC BOC 的关系是的关系是( ). ( ).A. A.∠∠AOC 一定大于∠一定大于∠BOCB.BOC B.BOC B.∠∠AOC 一定小于∠一定小于∠BOC BOCC. C.∠∠AOC 一定等于∠一定等于∠BOCD.BOC D.BOC D.∠∠AOC 可能大于可能大于,,等于或小于∠等于或小于∠BOC BOC2.2.已知∠已知∠已知∠AOB=3AOB=3AOB=3∠∠BOC,BOC,若∠若∠若∠BOC=30BOC=30BOC=30°°,则∠则∠AOC AOC 等于等于( ) ( )A.120 A.120°°B.120 B.120°或°或6060°°C.30 C.30°°D.30 D.30°或°或9090°°3.3. a Ð和b Ð的顶点和一边都重合的顶点和一边都重合,,另一边都在公共边的同侧另一边都在公共边的同侧,,且a b Ð>Ð,那么a Ð的另一半落在另一半落在b Ð的( ).A. A.另一边上另一边上另一边上B. B. B.内部内部内部;C.; C.; C.外部外部外部D. D. D.以上结论都不对以上结论都不对以上结论都不对4.2704.270°°=_______=_______直角直角直角_____________________平角平角平角________________________周角周角周角. .5.5.已知一条射线已知一条射线OA,OA,如果从点如果从点O 再引两条射线OB 和OC,OC,使∠使∠使∠AOB=60AOB=60AOB=60°°, , ∠∠BOC=20BOC=20°°,求∠求∠求∠AOC AOC 的度数的度数. .6.6.如图如图如图,,如果∠如果∠1=651=651=65°°1515′′,∠2=782=78°°3030′′,求∠求∠33是多少度是多少度? ?312☆能力提高7.7.如图(如图(如图(11),OD,OE 分别是∠分别是∠AOC AOC 和∠和∠BOC BOC 的平分线的平分线,,∠AOD=40AOD=40°°,∠BOE=25BOE=25°°,求∠求∠AOB AOB 的度数的度数. . 解解:∵OD 平分∠平分∠AOC,OE•AOC,OE•AOC,OE•平分∠平分∠平分∠BOC(•BOC(•BOC(•已知已知已知)•,• )•,•∴∠∴∠∴∠AOC=•2•AOC=•2•AOC=•2•∠∠AOD,•∠∠BOC=•2•BOC=•2•∠∠_____( ),∵∠∵∠AOD=40AOD=40AOD=40°°,∠_______=25_______=25°°(已知已知), ),∴∠∴∠AOC=2AOC=2AOC=2××4040°°=80=80°°(•(•等量代换等量代换等量代换). ).∠BOC=2BOC=2××( )( )°°=( ),∴∠∴∠∴∠AOB=________. AOB=________.8.8.如图(如图(如图(22),若∠若∠AOC=AOC=AOC=∠∠DOB,DOB,则∠则∠则∠AOB= AOB= AOB= ∠∠COD;•COD;•若∠若∠若∠AOB=•AOB=•AOB=•∠∠COD,•COD,•则∠则∠则∠AOC___AOC___AOC___∠∠DOB.9.9.已知∠已知∠已知∠AOB AOB 和∠和∠BOC BOC 之和为180180°°,这两个角的平分线所成的角是这两个角的平分线所成的角是_______. _______.10.10.如图(如图(如图(33),∠AOB 是直角是直角,,∠AOC=38AOC=38°°,∠COD=COD=∠∠COB=1:2,COB=1:2,则∠则∠则∠BOD=( ). BOD=( ).A.38 A.38°°B.52 B.52°°C.26 C.26°°D.64 D.64°° E C B B A D OCB A DO (1) (2)CB AD OE C BA DO(3) (4)11.11.如图(如图(如图(44)所示)所示,OE ,OE 平分∠平分∠BOC,OD BOC,OD 平分∠平分∠AOC,AOC,AOC,∠∠BOE=20BOE=20°°,∠AOD=40•AOD=40•°°,•,•求∠求∠求∠DOE DOE 的度数的度数. .●中考在线12.12.用一副三角尺用一副三角尺用一副三角尺,,可以拼出小于180180°的角有°的角有n 个,则n 等于等于( ). A.4 B.6 C.11 D.13 ( ). A.4 B.6 C.11 D.13 13.13.已知已知α、β都是钝角都是钝角,,甲、乙、丙、丁四人计算16(α+β)的结果依次是5050°°,26,26°°,72•,72•°°,90,90°°,那么结果正确的可能是果正确的可能是( ). A.( ). A.( ). A.甲甲 B. B.乙乙 C. C.丙丙 D. D.丁丁14.14.点点P 在∠在∠MAN MAN 内部内部,,现在四个等式现在四个等式::①∠①∠PAM=PAM=PAM=∠∠MAP;MAP;②∠②∠②∠PAN=PAN=12∠A;•A;•③∠③∠③∠MAP=MAP=12∠MAN,MAN,④∠④∠④∠MAN=2MAN=2MAN=2∠∠MAP,其中能表示AP 是角平分线的等式有是角平分线的等式有( ). A.1( ). A.1个 B.2个 C.3个 D.4个15.15.如图如图如图,,∠AOD=AOD=∠∠BOC=90BOC=90°°,∠COD=42COD=42°°,求∠求∠AOC AOC AOC、∠、∠、∠AOB AOB 的度数的度数. .O C ADB16.16.如图如图如图,OA ,OA ,OA⊥⊥OB OB、、OC OC⊥⊥OD,OE 是OD 的反向延长线的反向延长线. .(1) (1)试说明∠试说明∠试说明∠AOC=AOC=AOC=∠∠BOD.(2) (2)若∠若∠若∠BOD=50BOD=50BOD=50°°,求∠求∠AOE. AOE.O CAE DB17.17.如图如图如图,AO ,AO ,AO⊥⊥CO,BO CO,BO⊥⊥DO,DO,∠∠BOC=30BOC=30°°,求∠求∠AOD AOD 的度数的度数..O CADB18.18.如图所示如图所示如图所示,OE ,OE 平分∠平分∠BOC,OD BOC,OD 平分∠平分∠AOC,AOC,AOC,∠∠BOE=20BOE=20°°,∠AOD=40•AOD=40•°°,•,•求∠求∠求∠DOE DOE 的度数的度数..E CB ADO19.19.如图如图如图,AO ,AO ,AO⊥⊥CO,BO CO,BO⊥⊥DO,DO,∠∠BOC=30BOC=30°°,求∠求∠AOD AOD 的度数的度数..OCA DB4.5 多边形和圆的初步认识※课时达标1.________1.________,,__________________,,__________________,,__________________等都是多边形等都是多边形等都是多边形. .2.2.各边相等,各角也相等的多边形叫做各边相等,各角也相等的多边形叫做各边相等,各角也相等的多边形叫做____________. ____________.3.3.下列说法中正确的是下列说法中正确的是下列说法中正确的是( ( ).A.A.圆上任意两点间的部分叫做圆弧圆上任意两点间的部分叫做圆弧圆上任意两点间的部分叫做圆弧B. B. B.圆上任意两点间的线段叫做弧圆上任意两点间的线段叫做弧圆上任意两点间的线段叫做弧C. C.圆上任意两点间的线段长度叫做弧圆上任意两点间的线段长度叫做弧圆上任意两点间的线段长度叫做弧D. D. D.任意两点间的部分叫做弧任意两点间的部分叫做弧任意两点间的部分叫做弧4.4.将一个圆分割成三个扇形,它们的圆心角的度数比为将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,则这三个扇形的圆心,则这三个扇形的圆心角的度数分别是角的度数分别是角的度数分别是( ( ).A.30 A.30°,°,°,606060°,°,°,909090°°B.60 B.60°,°,°,120120120°,°,°,180180180°°C.40 C.40°,°,°,808080°,°,°,120120120°°D.50 D.50°,°,°,100100100°,°,°,150150150°°5.5.如图如图如图,,从四边形ABCD 的顶点A 出发,可以画出出发,可以画出__________________对角线对角线对角线,,是线段是线段____. ____.6.6.将一个圆分成三个大小相同扇形,则它们的圆心角是将一个圆分成三个大小相同扇形,则它们的圆心角是将一个圆分成三个大小相同扇形,则它们的圆心角是__________________°。
第五章 基本平面图形 知识点
一、线段、射线、直线
1、线段、射线、直线的异同点
2、线段、射线、直线的表示方法:
(1)线段有两种表示方法:线段AB 与线段BA ,表示同一条线段。
或用一个小写字母表示,线段a 。
(2)射线的表示方法:端点在前,任意点在后。
射线OP
(3)直线也有两种表示方法:直线MN 或直线NM ,或用一个小写字母表示:直线a
3、经过一点可以画_________条直线;经过两点能且只能画________条直线,即________确定一条之间。
在直线上任取一点可得到________条射线,在直线上任取________点可得到一条线段,在射线上任取一点可得到一条________。
二、线段的性质:
1、两点之间的所有连线中,线段最短。
2、两点之间的距离
两点之间线段的长度,叫做这两点之间的距离。
如图线段AB 的长就是点A 、B 之间的距离。
3、线段中点的定义
在线段上,能够把这条线段分成相等的两条线段的点,叫做这条线段的中点。
如图,点O 把线段MN 分成两条相等的线段,OM=ON ,点O 就是线段MN 的中点。
注意:线段的中点是一个非常重要的点,在以后学习几何计算和证明中会经常用到,关键要弄清几个等式。
OM=ON=21
MN ,MN=2OM=2ON 。
三、角
1、角的定义
(从静止的角度看)有公共端点的两条射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边。
如图
所示,∠AOB 中,点O 是角的顶点,OA ,OB 是它的两边。
2、角的度量单位:
角的度量单位是:度、分、秒 10=60‘
1’=60"
1″=601′ 1′=60
1
°
3、平角和周角的定义
名 称 图形及表示法
不同点 联系
共同点
延伸性
端点数 与实物联系
线段 不能延伸 2 真尺
线段向一方延长就成射线,
向两方延
长就成直
线
都是直的线
射线
只能向一方延伸 1 电筒发生的光
线
直线
可向两方延
伸
无
笔直的公路 A B a O P M N a
A
B
a
M
N
O
O
A B
角可以看做是一条射线绕着它的端点旋转而成的,当始边和终边成一条直线时,所成的角是平角,当它的终边旋转到和始边重合时,所成的角是周角。
4、角的分类
按角的大小分为:锐角、直角、钝角、平角、周角。
1直角=90° ,1平角=180° ,1周角=360° 。
锐角<钝角 , 0°<锐角<90° 。
5、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
四、多边形和圆的初步认识 1、多边形的定义:
三角形、四边形、五边形等都是多边形,它们都是由若干条不在同一直线上的线段首尾依次相连组成的封闭平面图形。
2、多边形的基本元素
顶点:如图,在多边形ABCDE 中,点A,B,C,D,E 是多边形的顶点; 边:线段AB,BC,CD,DE,EA 是多边形的边;
内角:∠EAB, ∠ABC, ∠BCD, ∠CDE, ∠DEC 是多边形的内角(可简称为多边形的角)。
对角线:如图,AC,AD 3、正多边形
各边相等,各角也相等的多边形叫做正多边形。
例如:正方形是正四边形,它的各边都相等,各角都是90°;等边三角形即正三角形,它的各边都相等,各角都是60°。
4、圆的概念
(1)如图,平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点 形成的图形叫做圆。
固定的端点O 称为圆心;线段OA 称为半径。
(2)相关概念
弧:圆上任意两点A ,B 之间的部分叫做圆弧,简称弧,记做⌒ AB
,读作“圆弧AB ”或“弧AB ”。
扇形:由一条弧AB 和经过这条弧的端点的两条半径OA,OB 所组成的图形叫做扇形。
圆心角:顶点在圆心的角叫做圆心角。
D
E
A
B
C
O
A
B。