建立数学模型原则
- 格式:ppt
- 大小:631.50 KB
- 文档页数:21
1.试述模型的概念、特征和分类。
概念:模型是对现实世界某些属性的抽象特征:(1)模型是现实世界一部分的抽象或模仿;(2)模型是由那些与问题有关的因素组成;(3)模型表明了有关因素之间的关系分类:图形与实物模型;分析模型;仿真模型;博弈模型;判断模型2.模型构建的原则和主要步骤是什么?原则:(1)建立方框图;(2)考虑信息相关性;(3)考虑信息准确性;(4)考虑信息结集性步骤:(1)形成问题;(2)确定系统的特征因素;(3)确定模型的结构;(4)构建模型;(5)模型真实性检验3.建立模型必须有赖于反映系统特征的各种因素,根据因素在模型中所起的作用不同,可以将因素划分为哪3类?(1)可忽略其影响的因素;(2)对模型起作用但不属于模型描述范围的因素;(3)模型所需研究的因素4.试说明结构模型具有什么样的基本性质。
(1)结构模型是一种图形模型(2)结构模型是一种定性分析为主的模型(3)结构模型可以用矩阵形式来描述,从而使得定性分析和定量分析得到有效结合(4)结构模型作为对系统进行描述的一种形式,正好处在自然科学领域用的数学模型形式和社会科学领域用的以文字表现的逻辑分析形式之间5.试分析邻接矩阵和可达矩阵各自的特点以及二者的区别。
邻接矩阵的特点:(1)矩阵中元素全为零的行对应的节点称作汇点,即只有有向边进入而没有有向边离开该节点;(2)矩阵中元素全为零的列对应的节点称作源点,即只有有向边离开而没有有向边进入该节点;(3)对应每一节点的行中,其元素值为1的数量,就是离开该节点的有向边数;(4)对应每一节点的列中,其元素值为1的数量,就是进入该节点的有向边数。
可达矩阵的特点:推移规律性,即如果Si 经过长度为1的通路直接到达Sk ,而Sk 经过长度为1的通路直接到达Si ,那么,经过长度为2的通路就可直接到达Sj 。
二者的区别:邻接矩阵描述了系统各要素两两之间的直接关系。
若在矩阵A 中第i 行和第j 列的元素aij=1,则表明节点Si 和Si 有关系,即表明从Si 到Si 有一长度为1的通路,Si 可以直接到达Si 。
数学建模的原理
数学建模是一种以数学方法和工具为基础,对现实问题进行抽象和表达的过程。
其原理可以简单概括为以下几个步骤。
1. 问题抽象:将现实问题转化为数学模型。
在这一步骤中,需要明确问题的目标、限制条件和相关因素,并对它们进行数学化的描述。
2. 假设建立:基于对问题的理解和分析,提出相关的假设并建立相应的数学关系。
这些数学关系可以是方程、函数、概率模型等,用来表达问题中的变量间的关系。
3. 模型求解:利用数学方法,对所建立的数学模型进行求解。
这包括求解方程组、优化问题、概率分布等。
通常需要运用数学分析、优化方法、概率统计等工具以及计算机编程进行模型求解。
4. 模型评价:对得到的解进行评价,检验模型的有效性和可行性。
这可以通过与现实数据对比、敏感性分析、误差分析等方式来进行。
5. 结果分析:根据模型的求解结果,对问题的解释和分析。
分析模型的局限性、推断模型的适用范围,探究问题的深层次原因等。
6. 结论表达:将建模过程和结果进行总结和表达。
可以通过报告、论文、演示等形式对建模过程和结果进行系统化的呈现。
在数学建模过程中,需要深入理解问题本质和实际应用背景,结合数学理论和方法,进行抽象和简化,以符合现实问题的特点和需求。
同时,建模者需要具备良好的数学基础、逻辑思维能力、计算机编程技能等,并注重模型的可靠性、有效性和实用性。
如何在小学一年级数学教学中帮助学生建立数学模型小学一年级是数学学习的起点,对于学生来说,建立数学模型是一个良好的学习习惯和思维方式。
通过数学模型,学生可以将抽象的数学概念与真实生活中的问题相联系,更好地理解和应用数学知识。
本文将介绍在小学一年级数学教学中如何帮助学生建立数学模型。
一、培养学生的观察能力观察是建立数学模型的第一步,学生需要通过观察现实中的问题,寻找数学模型的应用场景。
教师可以通过布置观察任务、提供真实情境等方式,引导学生主动发现周围的数学问题。
例如,老师可以要求学生观察日常生活中的物体形状、大小、数量等,培养学生的观察能力。
二、引导学生提出问题在学生观察到问题后,教师需要指导学生提出相关的问题。
问题提出的好坏直接关系到数学模型的建立和解决。
教师可以通过启发式提问的方式,帮助学生主动思考并提问。
例如,教师可以问学生:“你观察到的这个问题有哪些数学特征?有什么规律?”通过引导学生思考,培养他们的问题意识和数学思维。
三、激发学生的兴趣建立数学模型需要学生对数学的兴趣和热情。
作为教师,我们应该注重培养学生对数学的兴趣,使他们能够主动参与到数学学习中来。
教师可以通过丰富的教学资源、趣味性的教学活动等方式,激发学生的兴趣。
四、让学生参与实践实践是建立数学模型的重要环节。
学生通过实践活动,将抽象的数学概念与具体的实际问题相结合,形成数学模型。
例如,教师可以给学生提供一些实际问题,鼓励他们思考并找到解决问题的方法。
同时,学生可以利用各种教具,如计算器、尺子等,辅助他们进行实践操作。
五、培养学生的逻辑思维能力逻辑思维是建立数学模型的基本能力。
学生需要通过逻辑推理和分析,将问题拆解成小问题,再进行综合。
教师可以通过训练学生的逻辑思维能力,提高其建立数学模型的能力。
例如,教师可以设计一些逻辑思维训练题,让学生进行思维锻炼。
六、鼓励学生合作学习数学模型的建立可以通过合作学习的方式展开。
学生可以在小组内相互讨论、交流,并共同解决问题。
第六章数学模型的概念建立模型必须具备两个条件:(1)模型和原型之间有相似关系;(2)模型在科学认识过程中是被研究客体的代表者,可以从对模型的研究中获得关于原型的信息。
模型的特征:(1)目的性.每一个模型,都是人们为了解决某一实际问题,自觉使用相应的工具建构而成的.因此,目的性是模型的一个基本特征.(2)清晰性.在建构模型时,有意识地舍弃了原型的一些不合目的性的非本质属性,从而使事物的本质属性在模型中比在原型中体现得更为清晰,也更便于研究和运用.(3)准确性.模型必须准确反映原型的本质属性(4)经济性数学模型及其类型:数学模型按其性能可以分为概念性数学模型、方法性数学模型和结构性数学模型.数学模型按其性能还可分为应用性数学模型、概括性数学模型和抽象性数学模型. 以函数为例,我们对这三类数学模型加以说明:例:设一学生大学毕业后的四年中,用于买书的钱分别为:196,231,268,302元,根据这四年他用于买书的钱,试估计他第五年用于买书的钱.这4年该生用于买书的钱每年分别增加35,37,34元,基本上每年增加35元.可以认为时间与书费基本上是成线性关系的.这就可求出时间和书费之间的一个函数关系为用这一函数关系,可以估计出该生第五年用于买书的钱为337元.这一函数式是一个应用性数学模型.这一类的函数式又被概括为一般的线性函数y kx b=+,它就是一个概括性数学模型。
而各种各样不同种类的函数,通过进一步的抽象,就得到了函数的概念.那么,函数概念就是一个抽象性数学模型.函数概念就是一个抽象性数学模型.上述三类模型,实际上正是数学与其他学科及生产实际之间、纯数学和应用数学之间互相关系的缩影.数学模型的特征:数学模型具有一般模型的性质,更为基本的性质是高度的抽象性和经济性.数学模型建构步骤1.掌握和分析客观原型的各种关系、数量形式。
2.确定所研究原形的本质属性,从而抓住问题的实质。
3.在数学概念、语言表述、符号等基础上,建立数学模型。
数学模型在小学数学教学中的作用结构一、数学模型的简介。
二、建立数学模型的基本原则三、建立数学模型的基本方法四、小学数学中基本模型五、模型在小学数学小数学习中的体现六、小学数学教学中的小学教学中的实录正文一、数学模型的简介。
1 什么是数学模型?数学模型,一般是指用数学语言、符号或图形等形式来刻画、描述、反映特定的问题或具体事物之间关系的数学结构。
小学数学中的数学模型,主要的是确定性数学模型,广义地讲,一般表现为数学的概念、法则、公式、性质、数量关系等。
数学模型具有一般化、典型化和精确化的特点。
2 数学模型的意义(1)建立数学模型是数学教学本质特征的反映。
①数学模型是对客观事物的一般关系的反映,也是人们以数学方式认识具体事物、描述客观现象的最基本的形式。
例如,舍去一切具体情景,行程问题的基本模型是:路程=速度×时间(s=vt),只不过在具体问题解决时,需要对这个模型进行一次构建还是多次构建的问题。
因此,数学模型有效地反映了思维的过程,是将思维过程用语言符号外化的结果。
显然,学生对数学模型的理解、把握与构建的能力,在很大程度上反映了他的数学思维能力、数学观念及意识。
②人们在以数学方式研究具体问题时,是通过分析、比较、判断、推理等思维活动,来探究、挖掘具体事物的本质及关系的,而最终以符号、模型等方式将其间的规律揭示出来,使复杂的问题本质化、简洁化,甚至将其一般化,使某类问题的解决有了共同的程序与方法。
因此,可以说,数学模型不仅反映了数学思维的过程,而且是高级的、高效的数学思维的反映。
2建立数学模型是数学问题解决的有效形式。
①数学模型是数学基础知识与数学应用之间的桥梁,建立和处理数学模型的过程,就是将数学理论知识应用于实际问题的过程。
并且,建立模型更为重要的是,学生能体会到从实际情景中发展数学,获得再创造数学的绝好机会,在建立模型,形成新的数学知识的过程中,学生能更加体会到数学与大自然和社会的天然联系。
数学中的数学模型建立在数学领域中,数学模型被广泛应用于解决各种实际问题。
通过建立数学模型,我们能够简化真实世界的复杂情况,将其转化为数学问题,并通过分析和计算来获得预测结果。
本文将介绍数学中的数学模型建立的基本方法和应用领域。
一、数学模型的基本构成1.问题的抽象化在建立数学模型之前,首先需要对待解问题进行抽象化。
抽象化是将实际问题中的关键要素提取出来,并将其转化为数学符号和表达式。
通过这种方式,我们可以将复杂的问题简化为数学问题。
2.建立数学表达式在数学模型中,数学表达式是非常重要的部分。
数学表达式可以用来描述问题的特性、关系和约束条件。
常见的数学表达式包括方程、不等式、函数等。
通过合理选择和构建数学表达式,可以准确地刻画问题的本质和特点。
3.参数的确定数学模型中的参数是指那些在问题求解过程中需要给定的常量或变量。
参数的确定对于模型的有效性和准确性有重要影响。
参数的选择需要考虑实际问题的特点和要求,并通过实验、观察或数据分析等手段来确定。
4.模型的求解建立数学模型后,我们需要对模型进行求解,以获得问题的解答或预测结果。
模型的求解可以采用不同的方法,例如解析解、数值解或模拟仿真等。
根据问题的特点和要求,选择合适的求解方法对于模型的成功应用至关重要。
二、数学模型的应用领域1.物理学领域中的数学模型物理学是最早采用数学模型进行研究的学科之一。
在物理学中,很多现象都可以通过数学模型进行描述和解释。
例如,牛顿的力学定律可以通过建立动力学方程来描述;热传导现象可以通过建立热传导方程来描述。
数学模型在物理学中的应用不仅扩展了我们对自然世界的认识,也为科学技术的发展提供了重要的支持。
2.生物学领域中的数学模型生物学是研究生命现象和生物系统的学科,也离不开数学模型的应用。
生物学中的数学模型可以用来研究生物体的生长、繁殖、迁徙等行为,以及生物系统的动力学特性。
例如,建立动力学方程可以帮助我们理解种群数量的变化规律;建立生物过程的数学模型可以用来预测疾病的传播和控制。