建立数学模型的方法步骤特点及分类
- 格式:doc
- 大小:23.00 KB
- 文档页数:5
数字系统设计建模的种类及特点
数字系统设计建模的特点
逼真性和可行性:建立的数学模型需要尽可能逼近实际的研究对象,使得建立的数学模型能够起到分析,预测或者决策的目的,在实际中具有可行性与执行意义。
渐进性:建立数学模型是一个由简入繁的过程,要进行多次的修改,使得模型更加可行和完善。
因此在建立数学模型时要具有耐心,循序渐进。
强健性:模型建立时很可能会出现,假设不准确,观测数据具有误差的现象,而优秀的数学模型在观测数据发生微小改变时,应当也只具有微小的改变。
可转移性:数学模型是一个抽象的概念,是对现实情况的模拟和简化,对于相似的问题类型应当具有一定的拟合能力,及可以使用于其他的领域。
局限性:数学模型得到的模型只是对现实对象的简化,跟真实情况始终具有差异性,具有一定的局限性。
数字系统设计建模的分类
按应用领域:交通模型,人口模型,城镇规划模型,环境模型
等。
按数学方法:初等模型,几何模型,微分方程模型,统计回归模型等。
按表现特性:
确定性模型和随机性模型:是否考虑随机因素影响。
静态模型和动态模型:是否考虑时间因素的影响。
线性模型和非线性模型:取决于模型中各个因素的关系,如微分方程是否为线性的。
离散模型和连续模型:模型中的变量(主要为时间变量)是否连续。
按建模目的:预测模型,优化模型,决策模型,控制模型等
按对模型的了解程度:白箱模型,灰箱模型,黑箱模型。
白箱模型大多已经确立,主要需要优化和控制。
灰箱模型主要指生态,气候,经济等领域尚不明确的现象,在建立和改善模型仍需要很多工作黑箱模型主要指生命科学和社会科学等领域中的一些机理不清楚现象。
数学建立模型知识点总结一、数学建立模型的基本概念1. 模型的定义模型是对于特定对象或系统的数学表达式或描述。
它是一个用来代表真实事物、预测未来情况或解决实际问题的简化抽象。
模型可以是数学方程、图表、图形或者计算机程序等形式。
2. 模型的分类根据模型的形式和特点,可以将模型分为不同的类别,主要包括数学模型、物理模型、统计模型、仿真模型等。
3. 建立模型的目的建立模型的目的是为了更好地理解现实世界中的复杂问题,预测未来的发展趋势,进行决策分析和问题求解等。
二、数学建立模型的方法1. 建立模型的一般步骤通常建立模型的一般步骤包括问题分析、模型建立、模型求解、模型验证和结果分析等。
2. 建立模型的数学方法建立数学模型的数学方法主要包括差分方程模型、微分方程模型、优化模型、概率模型和统计模型等。
三、数学模型的应用1. 数学模型在自然科学领域的应用数学模型在物理学、化学、生物学等领域都有着广泛的应用,例如在物理学中用来研究物体的运动规律、在生物学中用来研究生物体的生长和繁殖规律等。
2. 数学模型在社会科学领域的应用数学模型在经济学、管理学、社会学等领域也有很多应用,例如在经济学中用来研究市场供求关系、在管理学中用来研究企业运营规律等。
3. 数学模型在工程技术领域的应用数学模型在工程技术领域中常常用来研究工程结构、流体力学、材料科学等诸多问题,例如在建筑工程中用来研究房屋结构的稳定性、在交通工程中用来研究交通流量规律等。
四、数学建立模型的典型案例1. 鱼群扩散模型鱼群扩散模型是用来研究在外界环境条件下鱼群扩散的问题,通常采用微分方程模型进行描述。
2. 物体自由落体模型物体自由落体模型是用来研究物体在重力作用下的运动规律,通常采用差分方程模型进行描述。
3. 经济增长模型经济增长模型常用来研究经济系统的增长规律,通常采用优化模型进行描述。
五、数学建立模型的发展趋势1. 多学科交叉融合数学建立模型的发展趋势是多学科交叉融合,即将数学模型与物理、化学、生物、经济、管理等学科相结合,以更好地解决现实世界中的复杂问题。
数学模型与数学建模数学模型数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。
它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。
一、建立数学模型的要求:1、真实完整。
1)真实的、系统的、完整的,形象的映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。
2、简明实用。
在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。
3、适应变化。
随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。
根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。
数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。
在体育实践中常常提到优秀运动员的数学模型。
如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。
数学建模介绍1.1 数学模型及其分类数学建模作为用数学方法解决问题的第一步,它与数学本身有着同样悠久的历史。
一个羊倌看着他的羊群进入羊圈,为了确信他的羊没有丢失,他在每只羊进入羊圈时,则在旁边放一颗小石子,如果每天羊全部入圈而他那堆小石子刚好全部放完,则表示他的羊和以前一样多。
究竟羊倌数的是石子还是羊,那是毫无区别的,因为羊的数目同石子的数目彼此相等。
这实际上就使石子与羊“联系”起来,建立了一个使石子与羊一一对应的数学模型。
(1)什么是数学模型人们在认识研究现实世界里的客观对象时,常常不是直接面对那个对象的原形,有些是不方便,有些甚至是不可能直接面对原形,因此,常常设计、构造它的各种各样的模型。
如各式各样的玩具模型、展览厅里的三峡大坝模型、化学上的分子结构模型等。
这些模型都是人们为了一定目的,对客观事物的某一部分进行简化、抽象、提炼出来的原形替代物,集中反映了原形中人们需要的那一部分特征,因而有利于人们对客观对象的认识。
数学模型也是反映客观对象特征的,只不过它刻画的是事物在数量方面的特征或数学结构及其变化规律。
数学模型是人们为了认识客观对象在数量方面的特征、定量地分析对象的内在规律、用数学的语言和符号去近似地刻画要研究的那一部分现象时,所得到的一个数学表述。
建立数学模型的过程称为数学建模。
(2) 数学模型的重要作用进入20世纪以来,数学以空前的广度和深度向一切领域渗透,作为数学的应用,数学建模也越来越受到人们的重视。
在一般工程技术领域,数学模型仍是工程技术人员定量研究有关工程技术问题的重要工具;而随着数学与其他学科领域诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生;计算机的发展给数学及作为数学应用的数学建模带来了前所未有的机遇和挑战。
计算机改变了人类的生活方式、思考方式和研究方式,极大地提高了人们的计算能力、搜索和分析海量数据和信息的能力。
建立数学模型的方法步骤特点及分类方法:1.归纳法:通过观察和分析问题的特点,总结规律,建立数学模型。
这种方法适用于一些具有规律性的问题。
2.拟合法:通过收集和分析实际数据,找到数据之间的关系,并用数学函数来拟合数据,建立数学模型。
这种方法常用于实际问题中的数据分析和预测。
3.分析法:通过对问题进行分析,找出问题的关键因素和数学关系,建立数学模型。
这种方法适用于复杂和抽象的问题。
步骤:1.确定问题:明确问题的背景、条件和目标。
2.收集数据:收集相关的实际数据,了解问题的现状。
3.建立假设:对问题进行分析,提出一些可能的假设。
4.建立模型:根据问题的性质和假设,选择合适的数学方法和函数,建立数学模型,将实际问题转化为数学问题。
5.求解模型:通过数学计算和推理,解决建立的数学模型,得出结论。
6.模型验证:将模型的结果与实际情况进行比较和分析,检验模型的准确性和可靠性。
7.结果解释:将模型的结果解释给决策者或用户,提供对问题的认识和决策依据。
特点:1.抽象性:数学模型对实际问题进行了抽象和简化,从而能够更好地描述和解决问题。
2.精确性:数学模型具有精确的语言和推理,能够给出准确的数值结果。
3.可行性:数学模型能够通过计算和推理得出结果,帮助解决实际问题。
4.替代性:数学模型可以替代实验或观测,节省时间和成本。
分类:1.数量模型:用数学表达式和符号来描述问题的数量关系,包括线性模型、非线性模型、离散模型、连续模型等。
2.质量模型:用数学方法描述问题的质量关系,包括概率模型、统计模型、优化模型等。
3.动态模型:描述问题随时间变化的规律和趋势,包括微分方程模型、差分方程模型、随机过程模型等。
4.静态模型:描述问题的状态和平衡点,包括线性规划模型、非线性规划模型、输入输出模型等。
总之,建立数学模型是解决实际问题的重要方法之一、根据问题的性质和要求,选择合适的建模方法和模型类型,通过建立、求解和验证数学模型,可以得出有关问题的结论和解决方案。
模型构建的概念模型构建是指为了解决某个具体问题,通过收集、整理和分析相关数据,建立一个能够反映问题本质特征及关联关系的数学或统计学模型的过程。
模型构建是应用数学和统计学方法的一种重要手段,可以帮助我们更好地理解问题,预测未来情况并做出相应决策。
在模型构建过程中,一般包括以下几个关键步骤:1. 定义问题:明确需要解决的问题及其背景,明确目标和需求。
2. 收集数据:根据问题需要,获取相关的数据,并正确处理和整理数据。
3. 确定变量:根据问题和数据,选择合适的自变量和因变量,并明确它们之间的关系。
4. 选择模型:根据问题的特点,选择合适的数学或统计学模型进行建模。
常见的模型包括线性回归模型、逻辑回归模型、决策树模型、神经网络模型等。
5. 参数估计:根据选定的模型,通过最小二乘法、极大似然估计等方法,估计模型中的未知参数。
6. 模型评估:使用一些性能度量指标,如均方误差、准确率等,评估模型的拟合优度和预测能力。
7. 模型优化:根据评估结果,对模型进行调整和优化,提高模型的性能。
8. 模型应用:将建立好的模型应用于实际问题中,进行预测、决策等。
在模型构建过程中,模型的选择是非常重要的一步。
模型的选择应该根据问题的性质、数据的特点以及建模的目的来确定。
如果问题是连续的、线性的,可以选择线性回归模型;如果问题是离散的、分类的,可以选择逻辑回归模型;如果问题是非线性的,可以选择决策树或神经网络等模型。
另外,在模型构建过程中,数据的准确性和完整性也非常重要。
数据质量的好坏直接影响到模型的准确性和可靠性。
因此,在模型构建之前,需要对数据进行预处理,包括数据清洗、缺失值处理、异常值处理等,以确保数据的质量。
模型的评估也是一个重要的环节。
评估模型的好坏可以通过拟合优度和预测能力来衡量。
如果模型的预测准确率较高,拟合优度较好,则说明该模型具有较好的性能。
最后,模型构建不是一个一次性的过程,而是一个迭代的过程。
在实际应用中,模型可能需要不断地进行调整和优化,以适应不断变化的情况。
建立数学模型的基本步骤和技巧在现代科学和工程领域中,数学模型是解决问题和预测现象的重要工具。
建立一个准确有效的数学模型,不仅需要深厚的数学功底,还需要一定的实践经验和创造力。
本文将介绍建立数学模型的基本步骤和技巧,帮助读者更好地理解和应用数学模型。
第一步:问题定义和背景分析建立数学模型的第一步是明确问题的定义和背景分析。
我们需要了解问题的起源、目标和约束条件,以及问题所涉及的物理、化学或生物过程。
通过深入分析问题的本质和特点,我们可以确定适用的数学方法和模型类型。
第二步:建立假设和简化在建立数学模型时,我们通常需要进行一些假设和简化。
这些假设和简化可以使问题更易于处理,但也可能导致模型与实际情况存在一定差异。
因此,在建立模型时,我们需要权衡精确性和可行性,并确保模型的假设和简化与问题的实际情况相符合。
第三步:选择数学方法和模型类型根据问题的特点和要求,我们需要选择适当的数学方法和模型类型。
常见的数学方法包括微积分、线性代数、概率论和统计学等。
而模型类型则包括差分方程、微分方程、优化模型和统计模型等。
选择合适的数学方法和模型类型是建立准确有效模型的关键一步。
第四步:建立数学方程和关系在建立数学模型时,我们需要根据问题的特点和数学方法的要求,建立相应的数学方程和关系。
这些方程和关系可以描述问题中的物理规律、动力学过程或统计关系。
我们可以利用已有的数学理论和公式,或者根据问题的特点和需求,自行推导和建立数学方程和关系。
第五步:参数估计和模型验证在建立数学模型后,我们需要进行参数估计和模型验证。
参数估计是指根据实验数据或观测结果,估计模型中的未知参数值。
而模型验证则是通过与实际数据的比较,评估模型的准确性和可靠性。
参数估计和模型验证可以帮助我们优化模型,提高模型的预测能力和适用性。
第六步:模型分析和应用建立数学模型后,我们可以进行模型分析和应用。
模型分析可以帮助我们理解模型的行为和特性,探索模型的稳定性、收敛性和灵敏度等。
数学建模实验教学大纲一、引言数学建模是一门涉及数学、计算机科学和实际问题解决的跨学科课程。
通过数学建模实验教学,学生将学习如何将实际问题抽象化、建立模型,并运用数学方法进行问题求解。
本教学大纲旨在为数学建模实验课程提供指导,帮助教师和学生达到教育目标。
二、课程目标1. 培养学生的科学思维和实际问题解决能力。
2. 掌握各种数学模型的建立与求解方法。
3. 学习数据分析技术和模型验证方法。
4. 提高学生的团队合作和沟通能力。
三、教学内容1. 数学建模的基础知识(1) 数学建模的定义和基本步骤。
(2) 常见数学模型的分类和特点。
2. 实际问题抽象化和模型建立(1) 学习如何从实际问题中提取关键信息。
(2) 学习如何建立数学模型,选择合适的数学方法和假设。
3. 数学模型求解(1) 学习常见数学方法的应用,如线性规划、微分方程等。
(2) 掌握数学软件工具的使用,如Matlab、Python等。
4. 数据分析和模型验证(1) 学习数据收集和处理的基本技巧。
(2) 学习如何验证数学模型的准确性和可靠性。
5. 团队合作和沟通(1) 学习如何分工合作,形成高效的团队。
(2) 提高表达和演示能力,培养良好的沟通能力。
四、教学方法1. 理论授课:通过讲授基础知识,引导学生了解数学建模的概念和步骤。
2. 实践操作:组织学生动手实践,参与实际问题的建模和求解过程。
3. 小组讨论:鼓励学生在小组内讨论并解决问题,加强团队合作和沟通能力。
4. 作业练习:布置作业练习,提供问题求解的机会,巩固学生的知识和技能。
五、教学评估1. 课堂表现:考察学生的参与度、思维逻辑和问题解决能力。
2. 作业考核:通过作业的完成情况,评估学生对知识的掌握程度。
3. 实践项目:组织学生实施实际项目,并对项目结果进行评估。
4. 小组评价:学生之间进行互评,评估团队合作和沟通效果。
六、教学资源1. 教材:提供适合教学内容的教材,包括数学建模原理和实例分析。
1.1 关于数学建模一、数学、数学模型、数学建模的定义二、数学建模过程流程图三、数学建模的特点和分类四、数学建模的应用和现代科学五、历年全国和美国大学生数学建模竞赛六、如何学好数学建模七、数学建模的例子:火炮的射击、椅子能在不平的地上放稳吗、人中预报问题一、数学、数学模型、数学建模的定义数学――是一门研究数量关系和空间变化关系的学科数学模型――对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
数学建模――构造数学模型的过程,利用数学方法解决实际问题的一种实践。
即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,得到定量的结果,以供人们作分析、预报、决策和控制。
例1:火炮的射击―――数学建模的大致全过程模型一:假设不考虑空气的阻力、重力影响――抛物运动模型二:假设不考虑重力影响,并且空气的阻力与速度成正比。
模型三:假设不考虑重力影响,并且空气的阻力与速度的平方成正比。
――适用于火炮的射击模型四:考虑重力影响,并且空气的阻力与速度的平方成正比。
―――适用于卫星的发射。
二、数学建模过程流程图众多的因素(主要和次要)--合理的假设――建立数学模型――用数学方法(或数学软件)求解模型――检验(得解与实际问题作比较)――修改完善模型。
上述数学建模过程可用流程图表述如下:三、数学建模的特点和分类数学建模是一个实践性很强的学科,它具有以下特点:1.应用领域广,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等.而不少完全不同的实际问题,在一定的简化层次下,它们的模型是相同或相似的.这就要求我们培养广泛的兴趣,拓宽知识面,从而发展联想能力,通过对各种问题的分析、研究、比较,逐步达到触类旁通的境界.2.需要各种数学知识,应用已学到的数学方法和思想进行综合应用和分析,进行合理的抽象及简化的能力如微分方程、运筹学、概率统计、图论、层次分析、变分法等,去描述和解决实际问题.3.需要各种技术手段的配合,如查阅各种文献资料、使用计算机和各种数学软件包等.4.与求解数学题目的差别.求解数学题目往往有唯一正确的答案,而数学建模没有唯一正确的答案。
建立数学模型的方法步骤特点及分类一、建立数学模型的方法1.形象化方法:通过对问题的直观观察和理解,用图表、关系、函数等形式来表示问题,并通过观察找出问题中的数学关系。
2.分解合成方法:将复杂的问题分解成若干个相对简单的子问题,通过研究每个子问题建立相应的数学关系,最后通过合成得到整体问题的数学模型。
3.类比方法:将问题和已有的类似问题进行比较,找出相似之处,借鉴已有模型的建模思路和方法。
4.假设推理方法:根据对问题的了解和背景知识,提出假设并进行推理,从而建立相应的数学模型。
二、建立数学模型的步骤1.确定问题:明确问题的背景、目标和限制条件,明确问题的具体要求。
2.分析问题:对问题进行归纳、提炼和分析,找出问题的关键要素和数学关系。
3.建立假设:根据对问题的了解和分析,提出相应的假设,假设可能对解决问题有帮助。
4.建立数学模型:根据问题的关键要素和数学关系,选取适当的数学方法和理论,建立数学模型。
5.模型求解:对建立的数学模型进行求解,得到问题的解析解或近似解。
6.模型评估:对求解结果进行评估,比较模型的合理性和可行性。
7.模型验证:利用实际数据和实验进行模型验证,检验模型的有效性和准确性。
8.模型应用:将建立好的数学模型与实际问题相结合,进行实际应用和测试。
三、建立数学模型的特点1.抽象化:数学模型通过抽象化将实际问题转化为数学语言和符号,简化问题的复杂性,更容易进行分析和求解。
2.理论性:数学模型建立在数学理论的基础上,具有一定的科学性和理论支持。
3.系统性:数学模型采用系统的方法,通过建立各个部分之间的关系,形成一个完整的系统。
4.程序化:数学模型具有可操作性,可以通过特定的数学方法和算法来进行求解和分析。
5.可变性:数学模型可以根据问题的不同,采用不同的数学方法和参数进行调整和改进。
四、建立数学模型的分类根据研究对象和数学描述的方法,数学模型可以分为以下几类:1.静态模型和动态模型:静态模型是在特定时间点观察系统状态的模型,动态模型是研究系统随时间变化的模型。
数学中的数学模型建立在数学领域中,数学模型被广泛应用于解决各种实际问题。
通过建立数学模型,我们能够简化真实世界的复杂情况,将其转化为数学问题,并通过分析和计算来获得预测结果。
本文将介绍数学中的数学模型建立的基本方法和应用领域。
一、数学模型的基本构成1.问题的抽象化在建立数学模型之前,首先需要对待解问题进行抽象化。
抽象化是将实际问题中的关键要素提取出来,并将其转化为数学符号和表达式。
通过这种方式,我们可以将复杂的问题简化为数学问题。
2.建立数学表达式在数学模型中,数学表达式是非常重要的部分。
数学表达式可以用来描述问题的特性、关系和约束条件。
常见的数学表达式包括方程、不等式、函数等。
通过合理选择和构建数学表达式,可以准确地刻画问题的本质和特点。
3.参数的确定数学模型中的参数是指那些在问题求解过程中需要给定的常量或变量。
参数的确定对于模型的有效性和准确性有重要影响。
参数的选择需要考虑实际问题的特点和要求,并通过实验、观察或数据分析等手段来确定。
4.模型的求解建立数学模型后,我们需要对模型进行求解,以获得问题的解答或预测结果。
模型的求解可以采用不同的方法,例如解析解、数值解或模拟仿真等。
根据问题的特点和要求,选择合适的求解方法对于模型的成功应用至关重要。
二、数学模型的应用领域1.物理学领域中的数学模型物理学是最早采用数学模型进行研究的学科之一。
在物理学中,很多现象都可以通过数学模型进行描述和解释。
例如,牛顿的力学定律可以通过建立动力学方程来描述;热传导现象可以通过建立热传导方程来描述。
数学模型在物理学中的应用不仅扩展了我们对自然世界的认识,也为科学技术的发展提供了重要的支持。
2.生物学领域中的数学模型生物学是研究生命现象和生物系统的学科,也离不开数学模型的应用。
生物学中的数学模型可以用来研究生物体的生长、繁殖、迁徙等行为,以及生物系统的动力学特性。
例如,建立动力学方程可以帮助我们理解种群数量的变化规律;建立生物过程的数学模型可以用来预测疾病的传播和控制。
§16.3 建立数学模型的方法、步骤、特点及分类[学习目标]1.能表述建立数学模型的方法、步骤;2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;;3.能表述数学建模的分类;4.会采用灵活的表述方法建立数学模型;5.培养建模的想象力和洞察力。
一、建立数学模型的方法和步骤—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。
测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。
这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。
即用机理分析建立模型的结构,用系统辨识确定模型的参数.可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。
那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。
建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示.图16-5 建模步骤示意图模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料.模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏.模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等.模型检验把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.模型应用应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。
数学建模的一般步骤建立数学模型与其说是一门技术,不如说是一门艺术。
成功建立一个好的模型,就如同完成一件杰出的艺术品,是一种复杂的创造性劳动。
正因为如此,这里介绍的步骤只能是一种大致上的规范。
1.模型准备:在建模前应对实际背景有尽可能深入的了解,明确所要解决问题的目的和要求,收集必要的数据。
归纳为一句话:深入了解背景,明确目的要求,收集有关数据。
2.模型假设:在充分消化信息的基础上,将实际问题理想化、简单化、线性化,紧紧抓住问题的本质及主要因素,作出既合情合理,又便于数学处理的假设。
归纳为一句话:充分消化信息,抓住主要因素,作出恰当假设。
3.模型建立:①用数学语言描述问题。
②根据变量类型及问题目标选择适当数学工具。
③注意模型的完整性与正确性。
④模型要充分简化,以便于求解;同时要保证模型与实际问题有足够的贴近度。
正确翻译问题,合理简化模型,选择适当方法。
4.模型求解:就复杂一些的实际问题而言,能得到解析解更好,但更多情形是求数值解。
对计算方法与应用软件掌握的程度,以及编程能力的高低,将决定求解结果的优化程度及精度。
掌握计算方法,应用数学软件,提高编程能力。
5.模型检验与分析:模型建立后,可根据需要进行以下检验分析。
①结果检验:将求解结果“翻译”回实际问题中,检验模型的合理性与适用性。
②敏感性分析:分析目标函数对各变量变化的敏感性。
③稳定性分析:分析模型对参数变化的“容忍”程度。
④误差分析:对近似计算结果的误差作出估计。
概括地说,数学建模是一个迭代的过程,其一般步骤可用流程图表示:数学建模论文的撰写及格式撰写数学建模论文和通常完成数学建模竞赛的答卷是类似的, 都是在完成了一个数学建模问题的全部过程后, 把所作的工作进行小结, 以有清楚定义的格式写出解法论文,用于交流或给有关部门、人员汇报。
数学建模论文的结构:一份完整的答卷应包含以下内容:论文题目;摘要;问题的重述;模型的假设、符号约定和名词解释;模型的建立、模型的求解、模型的结果和检验;模型的评价和改进;参考文献;附录。
数学模型教案一、引言数学模型是数学与实际问题解决的桥梁,它不仅在科学研究中有着广泛的应用,也在各行各业的实际工作中发挥着重要作用。
为了帮助学生更好地理解和应用数学模型,本教案旨在提供一种结构化的教学方法,以帮助学生培养模型建立和求解的能力。
二、教学目标1. 理解数学模型的基本概念和应用领域。
2. 掌握数学模型的建立方法和求解技巧。
3. 培养学生的创造思维和问题解决能力。
4. 培养学生的团队合作和沟通能力。
三、教学内容1. 数学模型的基本概念1.1 数学模型的定义和特点1.2 数学模型的分类及应用领域2. 数学模型的建立方法2.1 确定问题2.2 收集数据2.3 建立数学模型2.4 模型验证和修正3. 数学模型的求解技巧3.1 解析方法3.2 近似方法3.3 优化方法4. 数学模型的应用举例4.1 人口增长模型4.2 疾病传播模型4.3 交通流量模型4.4 经济增长模型4.5 环境污染模型四、教学方法1. 探究式教学学生通过实际问题的分析和解决,主动探索数学模型的建立与求解过程,培养创造思维和问题解决能力。
2. 合作学习分组合作进行模型建立和求解,促进学生的团队合作和沟通能力。
3. 多媒体辅助教学利用投影仪、电脑等多媒体设备展示具体问题和解决过程,提高学生的理解和学习效果。
4. 实践应用结合实际案例,让学生将学到的数学模型应用于实际问题解决,增强学生的实践能力和应用能力。
五、教学评估1. 小组项目作业学生以小组形式完成给定的数学模型设计和求解任务,包括问题的分析、模型的建立、求解方法的选择等,并撰写小组报告。
2. 个人综合评价考察学生在教学过程中的表现,包括课堂参与、合作学习、讨论能力等方面,评价学生的综合素质和能力发展。
六、教学资源1. 数学教科书2. 多媒体设备3. 实例案例和习题七、教学进程本教案根据教学目标和内容设计了如下的教学进程:1. 导入:通过引入实际问题,培养学生对数学模型的兴趣并了解教学内容。
论文模型建立一、介绍在学术研究领域中,论文模型的建立是一个重要的步骤。
它为研究者提供了一个框架,用于分析和解决问题。
本文将介绍论文模型的建立过程,并探讨一些常见的模型类型。
二、模型建立的步骤1. 确定研究问题:在建立模型之前,研究者需要明确研究问题的目标和范围。
这个步骤涉及对现有研究的文献综述,以便确定研究问题的研究空白。
2. 收集数据:根据研究问题的特点和需求,研究者需要采集和整理相关的数据。
这些数据可以是实验数据、统计数据或其他可证实的数据来源。
3. 建立概念框架:在建立模型之前,研究者需要提出一个概念框架,用于解释研究问题。
概念框架是对研究问题的理论解释和观点描述。
它为后续的模型建立提供了理论基础。
4. 确定变量和参数:在建立模型时,研究者需要确定变量和参数。
变量是可以被测量或操纵的因素,而参数是用于描述变量之间关系的数值。
研究者需要审慎选择和定义变量和参数,以确保模型的准确性和可行性。
5. 建立数学模型:在确定了变量和参数后,研究者需要选择合适的数学方法和工具,建立模型方程或表达式。
这些数学模型可以是线性模型、非线性模型、概率模型等。
6. 模型验证与修正:完成模型建立后,研究者需要对模型进行验证和修正。
验证是通过对实际数据的比较来评估模型的准确性和适应性。
根据验证结果,研究者可以对模型进行修正和改进。
三、常见的模型类型1. 数理模型:这种模型使用数学方程和公式来描述和解释现实世界中的问题。
它可以是线性方程模型、非线性方程模型、微分方程模型等。
2. 统计模型:统计模型基于统计原理和方法,通过对样本数据的分析来进行推断和预测。
它可以是回归模型、时间序列模型、分类模型等。
3. 计算机模型:计算机模型使用计算机算法和技术来模拟和仿真复杂的现实系统。
它可以是离散事件模型、连续系统模型、智能优化模型等。
4. 优化模型:优化模型用于在给定的约束条件下,最大化或最小化目标函数。
它可以是线性规划模型、整数规划模型、多目标规划模型等。
数学模型的特点与分类
数学模型是将现实世界的问题或系统抽象为符号形式的数学表达式或方程组,以便于对其进行定量分析、预测和优化。
数学模型具有以下特点:
抽象性:数学模型是对现实世界的抽象描述,通过数学语言表达现象和规律。
简化性:数学模型通常对实际问题进行简化处理,去除一些不必要的细节和复杂性,从而使问题更容易被理解和计算。
精确性:数学模型可以精确地表示问题或系统的各种属性和关系,以提高分析和预测的准确性。
可计算性:数学模型可通过计算机等工具进行求解和模拟,以获得问题的定量解和验证。
实用性:数学模型具有广泛的应用价值,可用于经济、管理、医学、环境、工程等众多领域中的问题求解。
根据数学模型的建立方式和特点,可以将其分类为以下几类:
统计模型:基于数据的统计分析方法,通过对概率分布、假设检验等进行建模,来分析和预测实际问题。
优化模型:基于最优化理论的方法,通过建立目标函数和约束条件,寻找最优解或最优方案。
系统动力学模型:基于系统理论和控制论的方法,对系统进行分析和预测,从而指导决策和管理。
数学规划模型:基于线性规划、整数规划、非线性规划等方法,对问题进行数学建模和求解。
模拟模型:基于计算机仿真技术,通过对问题进行虚拟实验和模拟,来得到问题的解决方案和预测结论。
§16.3 建立数学模型的方法、步骤、特点及分类[学习目标]1.能表述建立数学模型的方法、步骤;2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;;3.能表述数学建模的分类;4.会采用灵活的表述方法建立数学模型;5.培养建模的想象力和洞察力。
一、建立数学模型的方法和步骤—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。
测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。
这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。
即用机理分析建立模型的结构,用系统辨识确定模型的参数.可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。
那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。
建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示.图16-5 建模步骤示意图模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料.模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏.模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等.模型检验把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.模型应用应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。
应当指出,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班,本书的建模实例就采取了灵活的表述方式.二、数学模型的特点我们已经看到建模是利用数学工具解决实际问题的重要手段。
数学模型有许多优点,也有弱点。
建模需要相当丰富的知识、经验和各方面的能力,同时应注意掌握分寸.下面归纳出数学模型的若干特点,以期在学习过程中逐步领会.模型的逼真性和可行性一般说来总是希望模型尽可能逼近研究对象,但是一个非常逼真的模型在数学上常常是难于处理的,因而不容易达到通过建模对现实对象进行分析、预报、决策或者控制的目的,即实用上不可行.另一方面,越逼真的模型常常越复杂,即使数学上能处理,这样的模型应用时所需要的“费用”也相当高,而高“费用”不一定与复杂模型取得的“效益”相匹配.所以建模时往往需要在模型的逼真性与可行性,“费用”与“效益”之间做出折衷和抉择.模型的渐进性稍微复杂一些的实际问题的建模通常不可能一次成功,要经过上一节描述的建模过程的反复迭代,包括由简到繁,也包括删繁就简,以获得越来越满意的模型.在科学发展过程中随着人们认识和实践能力的提高,各门学科中的数学模型也存在着一个不断完善或者推陈出新的过程.从19世纪力学、热学、电学等许多学科由牛顿力学的模型主宰,到20世纪爱因斯坦相对论模型的建立,是模型渐进性的明显例证.模型的强健性模型的结构和参数常常是由对象的信息如观测数据确定的,而观测数据是允许有误差的.一个好的模型应该具有下述意义的强健性:当观测数据(或其他信息)有微小改变时,模型结构和参数只有微小变化,并且一般也应导致模型求解的结果有微小变化.模型的可转移性模型是现实对象抽象化、理想化的产物,它不为对象的所属领域所独有,可以转移到另外的领域.在生态、经济、社会等领域内建模就常常借用物理领域中的模型.模型的这种性质显示了它的应用的极端广泛性.模型的非预制性虽然已经发展了许多应用广泛的模型,但是实际问题是各种各样、变化万千的,不可能要求把各种模型做成预制品供你在建模时使用。
模型的这种非预制性使得建模本身常常是事先没有答案的问题(Open—end problem).在建立新的模型的过程中甚至会伴随着新的数学方法或数学概念的产生.模型的条理性从建模的角度考虑问题可以促使人们对现实对象的分析更全面、更深入、更具条理性,这样即使建立的模型由于种种原因尚未达到实用的程度,对问题的研究也是有利的。
模型的技艺性建模的方法与其他一些数学方法如方程解法、规划解法等是根本不同的,无法归纳出若干条普遍适用的建模准则和技巧.有入说。
建模目前与其是一门技术、不如说是一种艺术.是技艺性很强的技巧.经验、想象力、洞察力、判断力以及直觉、灵感等在建模过程中起的作用往往比一些具体的数学知识更大.模型的局限性这里有几方面的含义.第一,由数学模型得到的结论虽然具有通用性和精确性,但是因为模型是现实对象简化、理想化的产物,所以一旦将模型的结论应用于实际问题,就回到了现实世界,那些被忽视、简化的因素必须考虑,于是结论的通用性和精确性只是相对的和近似的.第二,由于人们认识能力和科学技术包括数学本身发展水平的限制,还有不少实际问题很难得到有着实用价值的数学模型.如一些内部机理复杂、影响因素众多、测量手段不够完善、技艺性较强的生产过程,像生铁冶炼过程,需要开发专家系统,与建立数学模型相结合才能获得较满意的应用效果.专家系统是一种计算机软件系统,它总结专家的知识和经验,模拟人类的逻辑思维过程,建立若干规则和推理途径,主要是定性地分析各种实际现象并做出判断.专家系统可以看成计算机模拟的新发展.第三,还有些领域中的问题今天尚未发展到用建模方法寻求数量规律的阶段,如中医诊断过程,目前所谓计算机辅助诊断也是属于总结著名中医的丰富临床经验的专家系统.建模过程是一种创造性思维过程,除了想象、洞察、判断这些属于形象思维、逻辑思维范畴的能力之外,直觉和灵感往往也起着不可忽视的作用。
当由于各种限制利用已有知识难以对研究对象做出有效的推理和判断时,凭借相似、类比、猜测、外推等思维方式及不完整、不连续、不严密的,带启发性的直觉和灵感,去“战略性”地认识对象,是人类创造性思维的特点之一,也是人脑比按程序逻辑工作的计算机、机器人的高明之处.历史上不乏在科学家的直觉和灵感的火花中诞生的假说、论证和定律.当然,直觉和灵感不是凭空产生的,它要求人们具有丰富的背景知识,对问题进行反复思考和艰苦探索,对各种思维方法运用娴熟.相互讨论和思想交锋,特别是不同专业的成员之间的探讨,是激发直觉和灵感的重要因素.所以由各种专门人才组成的所谓团队工作方式(Team work)越来越受到重视.前面说过,建模可以看成一门艺术.艺术在某种意义下是无法归纳出几条准则或方法的.一名出色的艺术家需要大量的观摩和前辈的指教,更需要亲身的实践.类似地,掌握建模这门艺术培养想象力和洞察力,一要大量阅读、思考别人做过的模型,二要亲自动手,认真做几个实际题目.三、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分.如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等.范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分.如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化.线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的、动态的、非线性的,但是由于确定性、静态、线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性、静态、线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分.有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等.5.按照对模型结构的了解程度分.有所谓白箱模型、灰箱模型、黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学、热学、电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态、气象、经济、交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理、化学原理,但由于因素众多、关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白、灰、黑之间并没有明显的界限,而且随着科学技术的发展,箱子的“颜色”必然是逐渐由暗变亮的.习题16.3为了培养想象力、洞察力和判断力,考察对象时除了从正面分析外还常常需要从侧面或反面思考.试尽可能迅速地回答下面的问题:1、某甲早8时从山下旅店出发沿一条路径上山,下午5时到达山顶并留宿.次日早8时沿同一路径下山,下午5时回到旅店.某乙说,甲必在两天中的同一时刻经过路径中的同一地点.为什么?2、37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束。