第四节 垂直地震剖面法
- 格式:ppt
- 大小:2.06 MB
- 文档页数:14
VSP测井基础理论及其应用贺小黑,孟召平,薛鲜群中国矿业大学资源与地球科学系,北京 (100083)E-mail: lanchaoheiniang@摘要: 垂直地震剖面法(VSP)是一种井中地震观测技术,即激发震源位于地表,在井中不同深度进行观测,研究井附近地质剖面的垂直变化。
VSP较地面地震信噪比、分辨率更高,波的运动学和动力学特征更明显,但也有井场时间长,经费开支大,接收器组合级数少,叠加次数低,处理流程不完善等缺点。
本文采用了地质学、岩体(石)力学和地震波动力学等方法,结合前人研究成果,探索了一条应用VSP测井信息来计算岩体物理力学参数,进而得出地下岩层的岩石物理性质的途径;系统总结了VSP测井原理;并对影响VSP测井的控制因素进行了分析,得出影响VSP测井的控制因素有深度、岩性、频率、视速度、岩石密度等。
这为本区岩性反演和岩体物理力学参数计算提供理论了依据,适应了当前发展的需要。
关键词:VSP;岩体物理力学参数;影响因素;层速度1. 引言多年以来,地震勘探工作一直是在地面布置测线,设置排列,这种方法称为水平地震勘探方法,所得剖面是常规的地震剖面。
随着时代的发展,我们的勘探技术水平也在不断提高。
近些年来,出现了在井中与地面结合起来设置观测系统的地震勘探方法。
该方法在地表附近激发,在井中不同深度布置一些多级多分量的检波器进行观测。
即:检波器放在井中,测线沿井孔垂向布置,所以这种方法称为垂直地震剖面法,简称为VSP(Vertical Seismic Profiling)。
地震源放置于地面,接收的检波器置于深井中,地面激发震动后由不同深度的检波器接收地震波讯号,减少了表层干扰和吸收,可获得较高频段信息。
这种方法获得的地震波讯号是单程的,而不是反射或折射回来的,对分析和认识地下地质构造情况更为准确。
与常规的水平地震勘探相比,VSP资料具有信噪比高、分辨率高、波的运动学和动力学特征明显等优点,由下行P波和转换SV 波下行波场,求得各地层纵、横波速度比、泊松比以及各种弹性模量参数,与地层岩性进行比较,可对储集层含油气特征予以评价。
VSP技术综述1前言垂直地震剖面技术(简称VSP技术)是一种垂直地震剖面是一种地面激发、井中接收的地震观测技术。
与地面地震相比, VSP技术中,地震波少经过一次地表低速带,其得到的地震资料的信噪比要好, 分辨率高, 波的运动学和动力学特征更加明显。
本文综合了一部分前人的研究成果,简要介绍了vsp技术的原理、采集和处理等方面的内容,并阐述了VSP的一些优缺点。
1.1研究目的及意义常规地震勘探是在地面激发地震波、地面布置检波器接收的一种勘探手段,这种勘探手段所得的剖面是常规地震剖面。
随着油田勘探开发难度的增大,常规勘探手段所得到的地震资料精度已经无法满足勘探的需要。
因此,出现了在地面激发、井中接收,利用直达波和反射波研究井旁构造和岩性的地震勘探方法。
这种方法就是垂直地震剖面法,简称为VSP(Vertical Seismic Profiling)方法。
VSP技术是一种检波器沿井孔放置,在地层内部接收地震波的方法。
与地面地震相比,VSP资料具有信噪比高、分辨率高、波的运动学和动力学特征明显等优点。
由于VSP观测系统中接收到的地震记录只穿过一次低降速带,地震波能量特别是高频成分相对于地面地震损失减少,具有更高的分辨率;VSP记录中既包含上行波,又包含下行波,波场信息丰富;VSP技术提供了地下地层结构同地面测量参数之间最直接的对应关系,可以为地面地震资料处理解释提供精确的时深转换及速度模型,可以可靠地识别地震反射层的地质层位,改善地面地震资料的解释效果,甚至可以利用VSP资料直接研究岩性和储层物性。
所以,VSP技术是一种很有前途的地震观测技术,研究VSP技术的理论及应用也有很重要的实际意义[3]。
1.2国内外研究及应用现状40 年代,一些前苏联科学家研制了体系完全的VSP野外采集系统及其相应的处理、解释理论,这使VSP 技术发展成为了一套完整的、独立的、新颖的观测体系。
在1973 年,加尔彼林院士出版了专著《垂直地震剖面》,这本书对前苏联十多年的研究工作做了很好的总结,为VSP 技术的发展奠定了坚实的基础[3]。
地震勘探资料整理..地震勘探原理(上)---------陆基孟主编(精华部分)⼀、名词解释1.综合平⾯法:在平⾯图上,表⽰出激发点和接收点的相对位置关系,同时也显⽰观测到的地段。
2.偏移距:为炮点与最近检波点的距离。
3.波剖⾯:在某时刻,以质点所在的位置为横坐标,以质点离开平衡位置的距离为纵坐标,画出某时刻振动情况(波形曲线),称为波剖⾯。
4.道间距:埋置在排列上的各道检波器之间的距离。
5.⼲扰波:指妨碍追踪和识别有效波的波。
如⾯波、多次反射波。
6.(⾮)纵测线:⼀般炮点和接收点都放在同⼀测线上叫作纵测线,炮点与接收点不在同⼀测线上,叫⾮纵测线。
7波前(后):振动刚开始与静⽌时的分界⾯,即刚要开始扰动的那⼀时刻。
同样,振动刚停⽌时刻的分界⾯为波后。
波前或波后是⽤⾯表⽰的,不是曲线。
⼆、简答题1、共炮点与共中⼼点的区别:1)共反射点时距曲线只反映界⾯上的⼀个点R的情况,⽽共炮点反射波的时距曲线反映的是⼀段反射界⾯的情况。
2)地震勘探上习惯把x=0时的反射波传播时间叫做t0,即t0=2h0/V。
在共炮点反射波时距曲线上,这个t0反映激发点O处反射波的垂直反射时间(也叫做回声时间),在共反射点时距曲线上,t0时间代表共中⼼点M处的垂直反射时间。
2、动静校正的区别:动校正:在⽔平界⾯的情况下,从观测纵到反射波旅⾏时中减去正常时差Δt,得到x/2处的t0时间。
这⼀过程叫做正常时差校正,或称动校正。
不同位置(偏移距x),不同的深度(h),动校正量不同,校正量均为正值。
静校正:为了改善地震剖⾯的质量,需要表层因素的校正,即为静校正。
不同位置(偏移距x),不同的深度(h),动校正量不同,静校正量可为负值。
3、组合与叠加在压制⼲扰波上的区别:在实际效果中,n 次叠加的统计效果要⽐n 个检波器组合的好。
原因在于组合是同⼀次激发,由n 个检波器接收到的信号的叠加,检波器接收到的随机⼲扰是由同⼀震源在同⼀时间产⽣的。
⽽多次叠加中⼀个共反射点道集的各道,是在各次激发时分别接收到的,因⽽记录下的随机⼲扰是由震源在不同时间、不同地点激发,不同时间、不同地点接收的,多次叠加中各道的随机⼲扰更符合“互不相关”的条件。
106 垂直剖面法一、第一节VSP 野外资料采集(一)垂直剖面法的基本概念在地表附近一些点激发地震波,沿井孔不同深度布置检波器观测,这种方法称为垂直剖面法(vertical seisic profiling )突部就是一种井中观测方法。
它是地震测井的一个发展,地震测井100-200米。
特点(1)每次按收一个检波器的记录,之后依次向上提检波器,得到多次记录 (2)上行波,下行波时距曲线对称。
优点:(1)通过观测波场在垂直方向的分布来研究地质剖面垂向变化,波的运动学,动力学特征更明显,更直接。
(2)检波器离目的层很近,可记录到较准确的地震子波波形,便于反褶积。
(3)避开地表,低降速带变化的干扰,随机噪声小,易于准确识别各种波 (4)可以接收上行波,下行波,转换波向,地面按收只能利用上行波。
(5)准确地观测质点偏振的方向,这一参数可用来研究波的性质和地层岩性的性质。
发展趋势:地表地震记录联合反X地下参数,识别岩性,研究波的性质,井间层等方向有很大的作用。
(二)VSP震源1、 选择震源的一般原则(1)其震源最好与井旁地震剖面震源波形一致。
VSP资料的应用之一就是帮助地面地震资料的解释,当两者即用震源一致时,同样的震源子波表现出的反射特征也一样,这就容易实现地表资料和VSP资料的统一解释,不一致时,可通过子波互等化反褶积等使两种子波等价(2)各次激发的震源子波应具有高度的一致性和重复性。
目前除苏联使用多道井下仪以外,其它都使用每次激发井下检波器只在一个深度上记录,因此为了以较小的深度间隔在整个井式一段井上进行观测,就需要在地表同一位置激发数十到数百次,这些多次激发,先后在各个深度观测,最后拼成的VSP地震记录,只有当震源子波互相一致时才便于对比。
震源 井H107(3)输出强度适中在记录地表地震资料时,很多地球物理学家已经发现震源输出越强越好的观点并不正确,VSP中更是这样,如图三,表明,垂直地震剖面的下行波通常比上行波强得多,但VSP资料的大部分应用都涉及到对X上行波的分析和解释,另外,随着震源强度增加,线部交混器响也明 显增强,因而引起下行波的数目增 多和振幅增强,上行波被这些下行 波淹没所带来坏处或许比上行波本 身能量增强的影响更大,因此应选 强度适中的震源为宜。
第五章三维地震勘探及垂直地震剖面法(9学时)三维地震技术的兴起是在70年代末,正值世界范围内出现石油供应紧张的尖锐矛盾时期,当时由于二维地震方法的局限性,即使仅复加密测浅、增加覆盖次数,也难于查明较复杂的油气田地地质问题。
因此,钻探成功率很低,或本人幅度上升。
在这种形势下,已经从试验阶段发展到理论与实践都较成熟的三维地震技术得到了迅速发展。
与此同时,适应于三维地震勘探的技术设备——多道数字仪和大型数字处理计算机的发展,也为三维地震技术的发展创造了必要条件。
从此以后,地震勘探技术进入了一个全新的水平。
由于三维地震具有高密度,三维空间成像归位以及多种灵活的显示方式寻优点。
因此,外已卓有成效地用于查明各种复杂地质结构和陷蔽油气芷。
地震勘探的目的是通过地震观测获取反映地下界面真实位置和地下岩性、物性等地质信息。
然而,二维地震观测只能获取反映(x,t)平面内的地质信息。
即使在实际生产中,二维观测有时也在地表按面积布置测线,但每一条测线都是按二维采集数据并按二维偏移处理。
由于二维偏移是沿着测线的视倾角方向进行的,偏移结果不完全,也不准确,尤其对于地下复杂的地质构造进行二维地震勘探。
二维归位处理就不能反映地下界面的真实产状。
三维地震采集的数据是一个三维数据体(x,yct,A),三维偏移是□□进行的,各点都是按照它们真倾角方向偏移。
因此可以回到它们各自的□□位置上去三维偏移的结果与真深度是一致的。
在国外,自1974年W.S.FRENCH用三维模型实验有为地证明了“只有□□”观点和方法研究地下三维问题,才能得出对于地质结构的全面正确认识,这一著名的模型试验结果引起了地震界同行们的广泛重视,从而开始三维地震技术的理论到实践的不断探索历程。
此后,美国地球物理服务公司(GSI)、西方地球物理服务公司、西德普拉克拉塞兹其斯(Prakla-seismos)地球物理公司、普劳塞路(Proussag)石油天然气公司等为解决复杂地震地质条件下的构造问题,首先开展了三维地震工作,采用这种技术公司还有埃克森、阿莫科、壳牌、德士古和黑西哥国家石油公司等,经过近十年的努力,大量的实例证明,三维地震在解决复杂地质问题以及在油气回开发的作用,无一便外地都收到了二维地震无法比拟的地质效果和经济效益。