新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](基础)
- 格式:docx
- 大小:121.83 KB
- 文档页数:8
新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](基础)本文是一份新人教版八年级上册数学知识点梳理及巩固练重难点突破的精品文档,主要讲解了三角形的相关概念和性质。
研究目标包括:认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系;理解三角形的高、中线、角平分线的概念,通过作图提高学生的基本作图能力,并能运用图形解决问题;能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题;通过观察和实地操作知道三角形具有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用;了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力。
重点梳理了三角形的相关概念和性质,其中包括三角形三边的关系,三角形按“边”分类,三角形的重要线段(包括高、中线、角平分线)等。
三角形三边关系的应用包括判断三条线段能否组成三角形,求已知两边长的第三边长的取值范围等。
同时,三角形还可以按边分类,分为不等边三角形、底边和腰不相等的等腰三角形和等边三角形。
三角形的重要线段包括高、中线和角平分线,它们的作用分别是作垂线、分割三角形、平分角度等。
此外,三角形的三条高所在的直线相交于一点的位置情况有三种,分别是锐角三角形交点在三角形内、直角三角形交点在直角顶点、钝角三角形交点在三角形外。
最后,本文还提到了多边形、多边形的对角线、正多边形以及镶嵌等有关的概念,以及多边形内角和及外角和的计算方法,帮助学生掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力。
已知一个多边形的边数,可以求出它的内角和。
反之,已知一个多边形的内角和,可以求出它的边数。
多边形的外角和恒等于360°,与边数无关。
根据外角和公式,可以求出正多边形的边数,也可以根据正多边形的边数求出外角度数。
FA B C DE11题三角形全章复习知识点一:1.三角形的定义:由不在同一条_________上的三条线段___________组成的图形叫做三角形.2.三角形的分类(1)按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形__________ ______________(2)按角分类: 3.三角形三边间的关系定理:三角形任意两边之和__________第三边.任意两边之差___________第三边。
即已知三角形两边的长,可以确定第三边的取值范围:设三角形的两边的长为a 、b ,则第三边的长c 的取值范围是_______________________. 基础知识训练练习1.下列长度的各组线段中,能组成三角形的是( )A .3cm ,12cm ,8cmB .6cm ,8cm ,15cmC .2.5cm ,3cm ,5cmD .6.3cm ,6.3cm ,12.6cm 【变式1】五条线段的长分别是1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边可构成__个三角形. 【变式2】已知三角形的两边长分别4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cm B .6cm C .5cm D .4cm【变式3】已知a 、b 、c 是△ABC 的三边,化简|a+b-c|+|b-a-c|-|c+b-a|.练习2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是___________. 【变式1】如果三角形的两边长分别为2和6,则周长L 的取值范围是( ) A .6<L<15 B .6<L<16 C .11<L<13 D .12<L<16【变式2】已知等腰三角形的两边长分别为4cm 和7cm ,且它的周长大于16cm ,则第三边长为_________________.【变式】如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为( ) A 、5 B 、6 C 、7 D 、8【变式】小芳要画一个有两边长分别为5cm 和6cm 的等腰三角形,则这个等腰三角形的周长是( ) A .16cm B .17cm C .16cm 或17cm D .11cm【变式】小芳要画一个有两边长分别为2cm 和6cm 的等腰三角形,则这个等腰三角形的周长是( ) A .10cm B .14cm C .10cm 或14cm D .12cm 知识点二:三角形的高、中线、角平分线 1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,_____和___之间的线段叫做三角形的高 ①锐角三角形的三条高在三角形_______部,三条高的交点也在三角形_______部;②钝角三角形有两条高在三角形的___部,另一条高在三角形的____部,三条高的交点在三角形的__ 部; ③直角三角形有两条高在三角形的__ _,另一条高在三角形的____部,三角三条高的交点是直角三角形的____________.2、三角形的中线:三角形的一个顶点与它的对边___________的连线叫三角形的中线. (1)三角形的中线是___________;(2)三角形三条中线全在三角形____________部; (3)三角形三条中线交于三角形_________部一点,这一点叫三角形的____________. (4)中线把三角形分成面积_______________的两个三角形.3、三角形的角平分线从三角形一个角的平分线与这个角的对边相交,那么这个角的顶点与交点的连线叫三角形的角平分线 (1)三角形的角平分线是___________;(2)一个三角形有__________条角平分线,并且都在三角形的___________部; (3)三角形三条角平分线的交点到三角形____________的距离相等. 知识点四:三角形具有__________性. 基础知识练习 :1.、对应练习:如图所示,画△ABC 的BC 边上的高,下列画法正确的是( ).2.将三角形面积四等分(至少四种)3.如图1所示,在△ABC 中,∠ACB=90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B ′的位置,则线段AC 具有性质( )A.是边BB ′上的中线 B.是边BB ′上的高 C.是∠BAB ′的角平分线 D.以上三种都是4.不是利用三角形稳定性的是( ) A.自行车的三角形车架 B.三角形房架 C.照相机的三角架 D.矩形门框的斜拉条5.已知等腰三角形一腰上的中线将这个三角形的周长分为9cm 和15cm 两部分,求这个三角形的腰长和底边的长.知识点五:1:三角形的内角和定理:三角形内角和为 °2:三角形外角的性质(1)三角形的一个外角与相邻的内角 ;(2)三角形的一个外角等于不相邻的 ;(3) 三角形的一个外角大于任何一个 的内角.(4)三角形外角和为 °3.直角三角形两锐角 ,反之对应练习1、△ABC 中,若∠A =350,∠B =650,则∠C =___;若∠A =1200,∠B =2∠C ,则∠C =___2、三角形的三个内角之比为1∶3∶5,那么这个三角形的最大内角为_______; 3.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE= ° 3.在△ABC 中,若∠A+∠B=∠C,则此三角形为_______三角形4.△ABC 中,∠B,∠C 的平分线交于点O,若∠BOC=132°,则∠A=____5..△ABC 中,∠B =40°,∠C =60°,AD 是∠A 的平分线,则∠DAC 的度数为_____. 6.如图,点D 在△ABC 边BC 的延长线上,DE ⊥AB 于E ,交AC 于F ,∠B =50°,∠CFD =60°,则∠ACB =________.7.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )A.90°B.110°C.100° D.120° 8.(1) 如图1,123456+++++∠∠∠∠∠∠ _____. (2). 如图2,A B C D E ++++=∠∠∠∠∠ =_____. (3).如图3,1234+++=∠∠∠∠_____.9.如图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向。
新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](提高)本文介绍了八年级上册数学中三角形的相关知识点。
研究目标包括正确表示三角形,理解三角形三边之间的关系,掌握三角形内角和定理及三角形的外角性质进行相关的计算,了解稳定性与没有稳定性在生产、生活中的广泛应用,掌握多边形内角和及外角和,并能灵活运用公式解决有关问题。
首先,文章介绍了三角形三边之间的关系,即任意两边之和大于第三边,任意两边之差小于第三边。
这一定理的应用可以判断三条线段能否组成三角形,同时可以求出第三边长的取值范围。
接着,文章将三角形按边分类,分为不等边三角形、底边和腰不相等的等腰三角形、等边三角形。
同时,文章介绍了三角形的重要线段,包括三角形的高、中线、角平分线。
三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外。
一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心。
三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心。
最后,文章提到了多边形、多边形的对角线、正多边形以及镶嵌等有关的概念,探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力。
在解决多边形问题时,可以先将多边形分割成若干个三角形,然后利用三角形的内角和公式求解;3)内角和公式的推导:将多边形分割成(n-2)个三角形,每个三角形的内角和为180°,因此n边形的内角和为(n-2)·180°.2.外角和公式:n边形的外角和为360°(n≥3,n是正整数).要点诠释:(1)外角和公式的推导:每个顶点的外角之和为360°,因此n边形的外角和为n·360°;2)外角和公式的应用:在解决多边形问题时,可以利用外角和公式求解一些问题,如求一个n边形的某个内角的补角或余角等.1.已知多边形的边数,可通过公式计算出其内角和;已知多边形的内角和,可通过公式计算出其边数。
2023-2024年人教版八年级上册数学的第五章三角形知识点总结一、三角形的定义与分类-定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
-分类:-按边分类:不等边三角形、等腰三角形(两边相等)、等边三角形(三边相等)。
-按角分类:锐角三角形(三个角均小于90°)、直角三角形(有一个角为90°)、钝角三角形(有一个角大于90°)。
-特殊三角形:等腰直角三角形(既是等腰三角形又是直角三角形)。
二、三角形的特性与三边关系-特性:-封闭图形。
-稳定性(在生产生活中应用广泛)。
-三边关系:-两边之和大于第三边。
-两边之差小于第三边。
-作用:判断三条线段能否组成三角形,确定第三边的范围,证明线段不等关系。
三、三角形的内角与外角-内角和定理:三角形三个内角和等于180°。
-推论:直角三角形的两个锐角互余。
-外角定义:三角形一边与另一边的延长线组成的角。
-外角性质:-一个外角等于和它不相邻的两个内角的和。
-一个外角大于任何一个和它不相邻的内角。
四、三角形中的主要线段-角平分线:一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段。
性质:角平分线上的点到角的两边的距离相等。
-中线:连接一个顶点和它对边中点的线段。
-高线:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段。
注意:三角形的高不一定在三角形内部。
-交点:-三条角平分线交于一点(内心)。
-三条中线交于一点(重心)。
-三条高线所在直线交于一点(垂心,锐角三角形在内部,钝角三角形在外部,直角三角形在直角顶点)。
五、多边形-定义:由三条或三条以上的线段首尾顺次相接所组成的平面图形。
-内角与外角:-内角和:n边形的内角和= 180°×(n - 2)。
-外角和:多边形的外角和总是360°。
新人教版八年级数学上册知识点总结归纳+重点整理新人教版八年级上册数学各章节知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.n-·180°⑶多边形内角和公式:n边形的内角和等于(2)⑷多边形的外角和:多边形的外角和为360°.n-条对角线,⑸多边形对角线的条数:从n边形的一个顶点出发可以引(3)第十二章全等三角形第一节:全等三角形形状大小放在一起完全重合的图形,叫做全等形。
换句话说,全等形就是能够完全重合的图形。
能够完全重合的两个三角形叫做全等三角形。
两个全等的三角形重合放在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
(人教版)初中八年级数学上册《三角形》重要知识点梳理详解(汇编)11.1 与三角形有关的线段 一、三角形的边三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形,叫做三角形。
注意点:(1)三条线段(2)不在同一直线上 (3)首尾顺次相接三角形的表示:三角形用符号“△”表示,记作“△ ABC ”, 读作“三角形ABC ”,除此△ ABC 还可记作△BCA, △ CAB, △ ACB 等.三角形的分类:按角分 按边分等腰三角形:两边相等的三角形叫等腰三角形。
相等的两边都叫腰,另一边叫做底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
三角形中三边的关系:三角形两边的和大于第三边,三角形两边的差小于第三边。
(在做题时,不仅要考虑到两边之和大于第三边,还必须考虑到两边之差小 于第三边.)直角三角形 不等边三角形锐角三角形 等腰三角形钝角三角形 底和腰不相等的等腰三角形 等边三角形二、三角形的高、中线与角平分线三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段,叫做三角形这边的高,简称三角形的高。
1、 锐角三角形的三条高交于同一点。
三条高都在三角形的内部。
2、 直角三角形的三条高交于直角顶点.3、 钝角三角形的三条高不相交于一点。
钝角三角形的三条高所在直线交于一点。
总结:三角形的三条高的特性锐角三角形直角三角形钝角三角形高在三角形内部的数量 3 1 1 高所在的直线是否相交 相交 相交 相交 高之间是否相交 相交 相交 不相交 三条高所在直线的交点的位置 三角形内部直角顶点三角形外部三角形的中线:在三角形中,连结一个顶点和它对边中点的线段叫做这个三角形这边的中线.三角形中线的符号语言:∵AD 是△ABC 的中线 ∴BD=CD =1/2 BC三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段,叫做三角形的角平分线。
∵AD 是 △ ABC 的角平分线 ∴∠BAD = ∠CAD =1/2∠BAC 三角形的三条角平分线相交于一点,交点在三角形的内部三、三角形的稳定性三角形的三条高所在直线交于一点三角形的三条中线相交于一点,交点在三角形的内部。
人教版八年级数学上册知识点总结和复习要点一、全等三角形1全等三角形的概念与性质概念:能够完全重合的两个三角形叫做全等三角形。
性质:全等三角形的对应边相等,对应角相等。
2全等三角形的判定条件SSS(边边边):三边对应相等的两个三角形全等。
SAS(边角边):两边及其夹角对应相等的两个三角形全等。
ASA(角边角):两角及其夹边对应相等的两个三角形全等。
AAS(角角边):两角及其一角的对边对应相等的两个三角形全等。
HL(直角、斜边):在一对直角三角形中,斜边及另一条直角边相等。
例子:若△ABC与△DEF中,AB = DE,AC = DF,∠A = ∠D,则根据SAS判定条件,△ABC ≌△DEF。
二、轴对称1轴对称的概念概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2轴对称的性质性质:轴对称图形上对应点到对称轴的距离相等;对应点的连线与对称轴垂直。
例子:等腰三角形是轴对称图形,其对称轴是底边上的高(中线或顶角平分线)。
三、实数1平方根与立方根的概念平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或三次方根)。
2实数的分类与性质实数可以分为有理数和无理数两大类。
有理数包括整数和分数,而无理数则是无限不循环小数。
实数具有封闭性、有序性和传递性等性质。
例子:√4 = 2,是4的平方根;∛8 = 2,是8的立方根。
四、一次函数1一次函数的概念概念:一般地,形如y = kx + b(k,b是常数,k ≠0)的函数,叫做一次函数。
2一次函数的性质性质:一次函数的图像是一条直线;当k > 0时,函数值y随x的增大而增大;当k < 0时,函数值y随x的增大而减小。
例子:函数y = 2x + 1是一次函数,其图像是一条斜率为2、截距为1的直线。
五、整式的乘法与因式分解1整式的乘法整式的乘法包括单项式乘单项式、单项式乘多项式、多项式乘多项式等。
新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和: 三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1. (2016•丰润区二模)若三角形的两条边长分别为6cm和10cm,则它的第三边长不可能为()A.5cm B.8cm C.10cm D.17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【答案与解析】解:∵三角形的两条边长分别为6cm和10cm,∴第三边长的取值范围是:4<x<16,∴它的第三边长不可能为:17cm.故选:D.【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键.【与三角形有关的线段例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能;(2)不能;(3)能.2.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.【答案】59<<c【解析】三角形的两边长分别是2和7, 则第三边长c的取值范围是│2-7│<c<2+7,即5<c<9.【总结升华】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD 为△ABC 的AB 边上的中线,△BCD 的周长比△ACD 的周长大3cm ,BC =8cm ,求边AC 的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD =BD ,②△BCD 的周长比 △ACD 的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm ,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3.又∵ BC =8,∴ AC =5.答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°,(1)求∠BAE 的度数;(2)求∠C 的度数.【思路点拨】(1)根据AD是BC边上的高和∠DAE=10°,求得∠AED的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC的度数,再根据三角形的内角和定理就可求得∠C的度数.【答案与解析】解:(1)∵AD是BC边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°.∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°.(2)∵AE是∠BAC平分线,∴∠BAC=2∠BAE=2×30°=60°.∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质.【与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。