激光原理教案第五章
- 格式:ppt
- 大小:247.50 KB
- 文档页数:38
高斯光束的振幅和强度分布——激光原理及应用教案章节:一、引言1.1 激光的概念与发展历程1.2 高斯光束的基本特性1.3 激光在现代科技中的应用二、高斯光束的数学描述2.1 高斯函数及其特性2.2 高斯光束的振幅分布2.3 高斯光束的强度分布三、高斯光束的传输规律3.1 自由空间中的光传播3.2 介质中的光传播3.3 高斯光束的聚焦与发散四、激光器的工作原理4.1 激光器的类型与结构4.2 阈值条件与增益介质4.3 激光器的模式匹配与输出特性五、激光应用实例解析5.1 激光通信5.2 激光切割与焊接5.3 激光医疗与生物成像本教案将围绕高斯光束的振幅和强度分布,深入解析激光原理及应用。
从引言部分了解激光的概念、发展历程以及高斯光束的基本特性。
接着,通过数学描述部分,掌握高斯光束的振幅和强度分布公式。
基础上,分析高斯光束在自由空间和介质中的传输规律,探讨激光器的工作原理及其在实际应用中的重要作用。
通过实例解析,了解激光在通信、切割、医疗等领域的应用。
在教学过程中,注重理论联系实际,引导学生从数学描述转向实际应用,提高学生对激光技术及其应用的认识和理解。
结合现代科技发展趋势,展望激光技术在未来的发展前景。
六、高斯光束的衍射与模式转换6.1 衍射的基本概念6.2 高斯光束的夫琅禾费衍射6.3 高斯光束的夫琅禾费-菲涅尔衍射七、高斯光束的聚焦与发散特性7.1 聚焦特性7.2 发散特性7.3 高斯光束聚焦与发散的数学描述八、激光器的工作物质与谐振腔8.1 工作物质的选择8.2 谐振腔的类型与设计8.3 激光器的工作原理与性能评估九、激光的放大与模式锁定9.1 激光的放大原理9.2 模式锁定技术9.3 激光放大器的性能优化十、激光技术在现代科技领域的应用10.1 激光在信息技术中的应用10.2 激光在精密制造中的应用10.3 激光在医疗、生物科学和科研中的应用在的五个章节中,我们将进一步探讨高斯光束的衍射与模式转换、聚焦与发散特性,详细解析激光器的工作物质、谐振腔、放大与模式锁定等关键技术与原理。
第一章 光学谐振腔理论光学谐振腔是激光器不可缺少的组成部分。
它的作用是提供激光振荡所必需的负反馈,选择振荡模式,并且为激光输出腔外提供一定的耦合。
本章主要研究开放式光腔。
这类光学谐振腔通常由线度有限的两面光学反射镜相距一段距离共轴放置而形成。
与微波波段的封闭式谐振腔相比较,光学开腔敞开了侧面边界,以降低振荡的本征模式数目。
两面反射镜之间的轴向距离,称为腔长。
腔长远大于波长,也远大于反射镜的线度,一般为厘米或米的量级。
一面反射镜的反射率尽量接近1,以减小能量的损失,另一方面反射镜具有适当的透过率,以便能够输出一定的能量。
对于开腔式光腔的处理方法主要有两种,一种是建立在衍射理论基础上的,另一种是建立在几何理论基础上的。
为了对谐振腔理论有个较全面的理解,本章对那些不能用几何光学理论研究的谐振腔,则以方形对称共焦腔为例,采用衍射理论进行研究讨论,对于两面球面腔等,采用几何光学理论的处理方法,其中包括一些等效方法。
第一节 光学谐振腔概论如图1-1所示,考虑一个长、宽、高分别为l b a ,,矩形谐振腔中的本征模式,麦克斯韦方程的本征解的电场分量为:t i z t i y t i x p n m p n m p n m e z l p y b n x a m E t z y x E e z l p y b n x a m E t z y x E e z lp y b n x a m E t z y x E ,,,,,,sin cos sin ),,,(sin sin cos ),,,(cos sin sin ),,,(000ωωωπππππππππ---⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛= (1.1-1) 其中波矢z z y y x x e k e k e k k ++=,lp k b n k a m k z y x /,/,/πππ===( ,3,2,1,0,,=p n m ),谐振角频率: ()()()222,,////l p b n a m ck c p n m πππω++== (1.1-2)(1.1.1)式表明在x ,y ,z 三个方向上,每一个本征模式的空间分布都是稳定的驻波分布,任意(m ,n ,p )表征一种空间驻波分布。
激光原理与应用教案一. 绪论本节课教学目标:让学生了解激光的历史,激光形成及发展、理论体系的形成。
让学生了解激光科学的分支及激光在军事、信息技术、医疗等方面的应用;本节课教学内容:1.激光的概念:激光——利用受激辐射的光放大。
LASER——Light Amplification by Stimulated Emission of Radiation2.激光的发现:最早在1917年——Einstein首次预言受激辐射激光,历史上首先在微波波段实现量子放大(1953),1954年——C. H. Townes, I. P. Gorden, H. J. Zeiger 使用NH3分子射束实现Maser向更短波长进发——ammonia beam maser,1958年——A. L. Schawlow, C. H. Townes, A. M. PoxopoB提出将Maser原理推广到光波段——laser,1960年——T. H. Maiman of Bell Lab 红宝石首次实现laser l=6943Å 红光(早期的名称:莱塞、光量子振荡器、光激射器受激光,“激光”——钱学森在1963年提出。
61年中国(亚洲)第一台激光器诞生在长春(长春光机所和光机学院),由王之江院士发明。
激光科学技术发展的基础学科——光谱学,物理光学,固体物理,物质结构,无线电电子学。
推动力——广阔的应用领域:核聚变,加工,热处理,通讯,测距,计量,医疗可调谐性和超短脉冲——高时间、空间分辨、能量分辨。
3.激光与普通光源的区别?(1)良好的单色性。
单色性指光源发射的光波长范围很小,测距。
(2)良好的方向性。
激光的光束几乎只沿着一个方向传输。
测距,通信。
(3)高亮度。
激光功率集中在极小的空间范围内。
切割,手术,军事。
(4)极好的相干性。
各列波在很长的时间内存在恒定的相位差。
精确测距。
4.激光的应用。
(1)信息科学领域。
激光雷达,空间通信。
光的受激辐射激光原理及应用第一章:激光概述1.1 激光的定义激光的中文全称:Light Amplification Stimulated Emission of Radiation 激光的特点:相干性好、平行度好、亮度高、单色性好1.2 激光的产生原理受激辐射:外来的光子与一个束缚电子发生能量交换,使电子从较低能级跃迁到较高能级,成为激发态电子。
激发态电子回到较低能级时,会释放出一个与外来光子频率、相位、偏振方向相同的光子,这就是受激辐射。
激光的放大过程:受激辐射产生的光子与入射光子具有相同的频率和相位,导致更多的束缚电子发生受激辐射,从而实现光的放大。
1.3 激光的应用领域科研领域:光谱分析、激光干涉、激光雷达等。
工业领域:激光切割、激光焊接、激光打标等。
医疗领域:激光手术、激光治疗、激光美容等。
生活领域:激光打印、激光投影、激光视盘等。
第二章:激光器的基本原理2.1 激光器的组成激光介质:产生激光的物质,如半导体、气体、固体等。
泵浦源:提供能量,使激光介质中的电子发生跃迁。
光学谐振腔:限制激光的传播方向,增强激光的放大效果。
输出耦合器:将激光输出到外部。
2.2 激光的产生过程泵浦源激发激光介质,使电子从基态跃迁到激发态。
激发态电子回到基态时,发生受激辐射,产生激光。
激光在光学谐振腔内多次反射,实现光的放大。
输出耦合器将激光输出到外部。
2.3 激光器的类型及特点气体激光器:采用气体作为激光介质,如二氧化碳激光器、氦氖激光器等。
固体激光器:采用固体材料作为激光介质,如钕激光器、钇铝石榴石激光器等。
半导体激光器:采用半导体材料作为激光介质,如激光二极管等。
光纤激光器:采用光纤作为激光介质,具有高亮度、低阈值等优点。
第三章:激光的性质与应用3.1 激光的相干性3.2 激光的平行度3.3 激光的亮度亮度高的特点:可用于激光投影、激光显示等。
3.4 激光的单色性3.5 激光的应用实例激光切割:用于金属和非金属材料的切割加工。
《激光原理》教案激光原理教案第 2 页组织教学〗调节课堂气氛调动学生积极性, 共同创设和谐活跃的课堂气氛〖导入任务〗各位同学大家好,欢迎来到“激光原理”课程。
光是我们获取外界信息的源泉,如这张M51星云的天文照片所示,由星体发出光经历3100万年的长途“奔波”才来到我们的地球,被我们所观察到,3100万年的历史也在光的传播路径上逐渐展开。
通过我们在大学物理课程的基本学习,我们了解到光是我们电磁波谱中的一段,那么除了我们自然中存在的天然光线,有没有与自然光完全不同的人造线呢?这里我们来看一段视频。
任务 播放电影片段播放电影《星球大战前传2:西斯的复仇》电影片段任务 提问任务 激光名称的由来讲解“激光”名称的由来:“死光”:引入式教学,发引导学生思考:与众不同的人造光线? 学习的目标对象与需要注意的重点:独特特点。
多媒体演示启发学生思考:自己概念中的激光是什么?童恩正,《珊瑚岛上的死光》,1978年 “镭射” :LASER 的音译 • LASER :– Light Amplification by Stimulated Emission of Radiation• 激光:– 受激辐射光放大任务 激光名称的由来 讲解激光发明史,将光学的最初发展与近现代物理的相关成就进行展示,讲解对于光的认识的发展历程: 17世纪 惠更斯, 虎克 19世纪 麦克斯韦 19世纪末 电磁场理论19世纪末 “两朵乌云 1900年 普朗克 “量子” 1905年 普朗克 “光子” 1913年 玻尔 “原子结构” 1917年 爱因斯坦 “受激辐射” 1928年 Landenburg “受激辐射” “负吸收” 1947年 Lamb“氢原子光谱” 1954年 Townes“Maser” 1960年 Maiman “Laser” 着重讲解梅曼的发明历史故事: • 1960年5月,休斯实验室的Maiman 和Lamb 共同研制的红宝石激光器发出了694.3nm 的红色激光,这是公认的世界上第一台激光器。
第五章 激光振荡特性2.长度为10cm 的红宝石棒置于长度为20cm 的光谐振腔中,红宝石694.3nm 谱线的自发辐射寿命3410s s τ-≈⨯,均匀加宽线宽为5210MHz ⨯。
光腔单程损耗0.2δ=。
求(1)阈值反转粒子数t n ∆;(2)当光泵激励产生反转粒子数 1.2t n n ∆=∆时,有多少个纵模可以振荡?(红宝石折射率为1.76)解:(1) 阈值反转粒子数为:222212112337217344210 1.764100.2 cm 10(694.310) 4.0610cm H s t n l l πνητδδσλπ----∆∆==⨯⨯⨯⨯⨯⨯=⨯⨯=⨯ (2) 按照题意 1.2m t g g =,若振荡带宽为osc ν∆,则应该有22221.222H t t osc H g g ννν∆⎛⎫ ⎪⎝⎭=∆∆⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭ 由上式可以得到108.9410Hz osc H νν∆==⨯相邻纵模频率间隔为10831022( 1.76())2(10 1.7610) 5.4310Hzq c c l l L l ν⨯∆==='⨯+-⨯+=⨯ 所以1088.9410164.65.4310osc q νν∆⨯==∆⨯ 所以有164~165个纵模可以起振。
3.在一理想的三能级系统如红宝石中,令泵浦激励几率在t =0瞬间达到一定值13W ,1313()t W W >[13()t W 为长脉冲激励时的阈值泵浦激励几率]。
经d τ时间后系统达到反转状态并产生振荡。
试求1313/()d t W W τ-的函数关系,并画出归一化1313//()d s t W W ττ-的示意关系曲线(令1F η=)。
解:根据速率方程(忽略受激跃迁),可以知道在达到阈值之前,在t 时刻上能级的粒子数密度2()n t 与时间t 的关系为2113()1322113()1 (1)A W tnW n t e A W -+⎡⎤=-⎣⎦+ 当d t τ=时,t n n ∆=∆,即2113()1322113()1 (2)22d A W d t nW ne A W n n nττ-+⎡⎤=-⎣⎦++∆=≈由(1)可知,当时间t 足够长的时候1322113()nW n t A W ≈+由上式可知1321()t W A =由(2)式可得13211313211313131313131321ln 2()1 ln 1()1()()d tt t W A W W A W W W W W W W τ⎛⎫= ⎪+-⎝⎭⎛⎫ ⎪⎪=⎡⎤ ⎪-+ ⎪⎢⎥⎝⎭⎣⎦ 所以1313131313132()1ln 11()()d ts t t W W W W W W ττ⎛⎫⎪⎪= ⎪+- ⎪⎝⎭所以归一化1313//()d s t W W ττ-的示意关系曲线为sd ττ/tW W )/(13134.脉冲掺钕钇屡石榴石激光器的两个反射镜透过率1T 、2T 分别为0和0.5。
光的受激辐射——激光原理及应用第一章:激光概述1.1 激光的定义1.2 激光的特点1.3 激光的发展历程第二章:光的受激辐射2.1 受激辐射的概念2.2 激光的产生原理2.3 激光的放大原理第三章:激光器的工作原理3.1 激光器的类型3.2 气体激光器3.3 固体激光器3.4 半导体激光器第四章:激光的应用领域4.1 激光在工业中的应用4.2 激光在医疗领域的应用4.3 激光在科研领域的应用4.4 激光在信息技术领域的应用第五章:激光技术的发展趋势5.1 激光技术的创新点5.2 我国激光技术的发展现状5.3 激光技术的发展前景第六章:激光在通信技术中的应用6.1 激光通信的基本原理6.2 激光通信的优势与挑战6.3 光纤通信技术的发展6.4 卫星激光通信的应用前景第七章:激光在材料加工中的应用7.1 激光切割与焊接7.2 激光打标与雕刻7.3 激光烧蚀与表面处理7.4 激光加工技术的创新与发展第八章:激光在生物医学领域的应用8.1 激光手术与治疗8.2 激光诊断与成像8.3 激光生物传感器与检测技术8.4 激光在基因工程与药物研发中的应用第九章:激光在科研与探索中的应用9.1 激光光谱分析与计量9.2 激光加速与粒子物理研究9.3 激光在天文观测中的应用9.4 激光在地球与环境科学研究中的作用第十章:未来激光技术的发展趋势与挑战10.1 激光技术在新能源领域的应用前景10.2 激光技术在智能制造中的应用与挑战10.3 激光技术在国防科技中的应用与发展10.4 激光技术在太空探索与星际通信中的潜在价值重点和难点解析1. 激光的定义与特点:理解激光的特定波长、相干性、平行性、亮度等特点,以及激光与普通光线的区别。
2. 激光的产生原理:掌握激光产生的基本过程,包括受激辐射、增益介质、光学谐振腔的作用。
3. 激光器的工作原理:了解不同类型激光器(气体、固体、半导体)的结构和工作机制,特别是半导体激光器的广泛应用。
激光原理课程设计一、课程目标知识目标:1. 理解激光的基本原理,掌握激光产生的物理机制;2. 掌握激光的特性和应用领域,了解激光在科学技术中的重要性;3. 掌握激光器的分类和基本构成,了解不同类型激光器的工作原理。
技能目标:1. 能够运用激光原理分析实际问题,提出合理的解决方案;2. 培养学生实验操作能力,熟练使用激光实验设备进行基本实验操作;3. 培养学生查阅资料、整理信息的能力,能够独立完成与激光相关的课题研究。
情感态度价值观目标:1. 培养学生对激光科学的兴趣,激发学生探索未知世界的热情;2. 增强学生的团队合作意识,培养学生在学术讨论中尊重他人观点的良好品质;3. 提高学生的环保意识,了解激光技术在环保领域的应用,培养学生关爱环境的责任感。
课程性质:本课程为物理学科选修课程,以理论讲授和实验操作相结合的方式进行。
学生特点:学生处于高中年级,具有一定的物理基础和实验操作能力,对激光技术感兴趣,但可能对激光原理的理解有限。
教学要求:结合学生特点,注重理论联系实际,以生动有趣的方式讲解激光原理,加强实验环节,提高学生的实践能力。
同时,注重培养学生的创新意识和科学素养,使学生在掌握激光知识的同时,能够将其应用于实际问题分析和解决。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关领域的学习和研究打下坚实基础。
二、教学内容1. 激光基本原理:激光的产生、放大和发射过程,涉及受激辐射、能级跃迁等物理概念。
- 教材章节:第二章“激光的基本原理”2. 激光特性与应用:激光的相干性、平行性、单色性等特点及其在工业、医疗、通信等领域的应用。
- 教材章节:第三章“激光的特性与应用”3. 激光器类型与工作原理:气体激光器、固体激光器、半导体激光器等常见激光器的工作原理及特点。
- 教材章节:第四章“激光器的类型与工作原理”4. 激光实验操作:基本实验技能训练,包括激光器的使用、光路调整、激光测量等。
- 教材章节:第五章“激光实验技术”5. 激光技术在环保领域的应用:介绍激光技术在环境监测、治理等方面的应用案例。
激光热加工原理激光原理及应用第一章:激光概述1.1 激光的概念激光的定义激光的特点1.2 激光的产生原理激光的工作原理激光的产生过程1.3 激光的性质激光的单色性激光的方向性激光的相干性第二章:激光热加工原理2.1 激光加热原理激光加热的过程激光加热的机制2.2 激光热加工的特点高能量密度局部加热快速加工2.3 激光热加工的应用范围材料加工生物医学能源领域第三章:激光切割与焊接3.1 激光切割原理及设备激光切割的原理激光切割设备的组成3.2 激光切割的应用金属材料切割非金属材料切割3.3 激光焊接原理及设备激光焊接的原理激光焊接设备的组成3.4 激光焊接的应用金属材料焊接微电子器件焊接第四章:激光表面处理4.1 激光熔覆原理及工艺激光熔覆的原理激光熔覆的工艺参数4.2 激光熔覆的应用改善材料性能修复磨损零件4.3 激光打标原理及工艺激光打标的原理激光打标的工艺参数4.4 激光打标的应用产品标识防伪技术第五章:激光加工技术的未来发展5.1 激光加工技术的发展趋势激光器技术的进步激光加工技术的创新应用5.2 激光加工技术在制造业的应用自动化生产智能制造5.3 激光加工技术在科研领域的应用生物医学研究新材料研究第六章:激光热加工技术在材料加工领域的应用6.1 金属材料加工激光切割、焊接、打标、雕刻在金属加工中的应用激光熔覆技术在改善金属表面性能中的应用6.2 非金属材料加工激光切割、打标在塑料、玻璃、陶瓷等非金属材料中的应用激光雕刻在木材、皮革等材料加工中的应用6.3 复合材料加工激光加工技术在复合材料切割、焊接、打标等中的应用激光加工技术在复合材料结构件制造中的应用第七章:激光热加工技术在生物医学领域的应用7.1 激光切割、焊接在生物医学中的应用激光加工技术在生物医学器械制造中的应用激光加工技术在组织切割、焊接中的应用7.2 激光打标、雕刻在生物医学中的应用激光打标技术在生物医学器械标识中的应用激光雕刻技术在生物医学模型制造中的应用7.3 激光热加工技术在生物组织工程中的应用激光熔覆技术在生物支架制造中的应用激光加工技术在生物医用材料表面改性中的应用第八章:激光热加工技术在能源领域的应用8.1 激光切割、焊接在能源领域的应用激光加工技术在太阳能电池板制造中的应用激光加工技术在燃料电池制造中的应用8.2 激光打标、雕刻在能源领域的应用激光打标技术在能源设备标识中的应用激光雕刻技术在能源器件制造中的应用8.3 激光热加工技术在新型能源材料加工中的应用激光熔覆技术在制备新型能源材料中的应用激光加工技术在能源材料表面改性中的应用第九章:激光热加工技术的环境保护与安全9.1 激光加工技术对环境的影响激光加工技术的环境友好性激光加工技术的环保措施9.2 激光加工技术的安全问题激光加工过程中的安全防护激光加工设备的安全操作9.3 激光加工技术的环保与安全监管激光加工技术的环保法规与标准激光加工技术的安全管理制度第十章:激光热加工技术的创新与发展趋势10.1 激光加工技术的创新新型激光器的研究与应用激光加工技术的集成与自动化10.2 激光加工技术的发展趋势激光加工技术在更多领域的应用激光加工技术与其他制造技术的融合发展10.3 激光加工技术的产业化与商业化激光加工技术的产业化进程激光加工技术的商业化前景重点和难点解析重点环节1:激光的产生原理及过程激光的产生原理涉及到光学、物理学等多个领域的知识,对于理解激光热加工原理至关重要。
《激光原理技术及应用》讲义(第5章典型激光器)王菲长春理工大学2007年5月第五章 典型激光器(2学时)§1. 气体激光器一、 氦氖激光器He-Ne 激光器:连续光,波长:红632.8nm ,1.15um,3.39um,橙(612nm,604nm ),黄594nm,绿543nm1. 结构组成:放电管、电极和光学谐振腔。
增益低,多采用平凹腔,平面镜为输出镜,T=1-2%。
放电管由毛细管和贮气管构成,是产生激光的地方。
毛细管的尺寸和质量是决定激光器输出性能的关键因素,放电只限于毛细管,贮气管里不发生放电,贮气管的作用是增加了放电管的工作气体总量。
电极采用冷阴极材料。
按放电管和谐振腔的放置方式分为内腔式、外腔式、半内腔式。
2.工作原理工作物质是He 原子和Ne 原子混合气体。
激光跃迁产生于Ne 原子的不同激发态间,He 原子是辅助气体,用作对Ne 原子的共振激发能量转移。
共振激发能量转移:亚稳态原子A *与基态原子B 相碰撞,使B 变为受激原子B ’,而A *变为基态原子A 的过程。
He 的亚稳能级23S 1、21S 0分别和Ne 的亚稳能级2S 2、3S 2重合。
混合气直流放电时,高能电子把He 原子由基态激发到各种激发态,在衰变过程中大部分被23S 1、21S 0收集,通过共振能量转移,使Ne 原子被激发到2S 2、3S 2中。
二、CO 2激光器CO 2激光器的工作气体是CO 2、N 2和He 的混合气体。
波长9-11um 间,处于大气传输窗口(吸收小,2-2.5um;3-5um;8-14um )。
利用同一电子态的不同振动态(对称、弯曲和反对称振动)的转动能级间的跃迁。
CO 2激光器中与激光跃迁有关的能级是由CO 2分子和N 2分子的电子基态的低振动能级构成的。
CO 2振动模型如图。
工作原理:激光跃迁主要发生在0001→1000和0001→0200两个过程,泵浦过程:1)电子碰撞激发e *+CO 2(0000) →CO 2(0001)+e受到电子碰撞的CO 2分子被激发到高振动激发态通过振动模间能量交换,被能级0001收集。