第十章 曲线积分与曲面积分
- 格式:doc
- 大小:902.00 KB
- 文档页数:17
第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
2.掌握计算两类曲线积分的方法.3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数.4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。
【教学重点】1。
两类曲线积分的计算方法;2。
格林公式及其应用;3。
第一类曲面积分的计算方法;【教学难点】1。
两类曲线积分的关系及第一类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3。
应用格林公式计算对坐标的曲线积分;6.两类曲线积分的计算方法;7.格林公式及其应用格林公式计算对坐标的曲线积分;【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社。
[2]同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3]同济大学数学系。
《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy面内的一段曲线弧L上,已知曲线形构件在点(x,y)处的线密度为μ(x,y)。
求曲线形构件的质量.把曲线分成n小段,∆s1,∆s2,⋅⋅⋅,∆s n(∆s i也表示弧长);任取(ξi,ηi)∈∆s i,得第i小段质量的近似值μ(ξi,ηi)∆s i;整个物质曲线的质量近似为;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n}→0,则整个物质曲线的质量为.这种和的极限在研究其它问题时也会遇到。
定义设函数f(x,y)定义在可求长度的曲线L上,并且有界。
,将L任意分成n个弧段:∆s1,∆s2,⋅⋅⋅,∆s n,并用∆s i表示第i段的弧长;在每一弧段∆s i上任取一点(ξi,ηi),作和;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n},如果当λ→0时,这和的极限总存在,则称此极限为函数f(x,y)在曲线弧L上对弧长的曲线积分或第一类曲线积分,记作,即.其中f(x,y)叫做被积函数,L叫做积分弧段。
第十章曲线积分与曲面积分§ 1对弧长地曲线积分计算公式:无论是对弧长还是对坐标地曲线积分重要地是写出曲线地参数方程x =x t L :y =y tx = x(t ) L:<y = y(t )"z(t )Lf x,y,z ds - 注意:上限一定要大于下限1.计算下列对弧长地曲线积分<1) \(x 2y 2)2ds ,其中 L 为圆周 x 2y 2=a 2; 解:法一:Q|jx2+y 2)2ds = |J L (a 2)2ds二玄仁 ds =a 4(2二a) =2二a 5法二:_L x =acosv L: 0 心::2二,匸(x 2 y 2)2ds2二 2 2 2 2 2[a cos : a si n ] -asi na cos d :2二 5 . 5ad^ - 2「a<2) \e x yds ,其中L 为圆周x 2■ y 2=a 2,直线y=x 及x 轴在第一象限内所围成地扇形ba 兰t 兰b ,则(f (x, y ps= f a f(x (t ), y(tddbafxt ,y t ,zt解:忆e 拧%s = ( & +廟+ J BO 卅“ ds ,其中故口 e^iyds=e a(2+ — a) -2匕 4<3) L xds ,其中L 为抛物线y =2x 2-1上介于x =0与x=1之间地一段弧;「X =x解:由 L:20<x<1,得、y=2x -1l xds 二 ° x 1亠〔4x 2dx2 3_2(1+16x)2o_17用-1 -32-48<4) L y 2ds ,其中 L 为摆线地一拱 x =a(t - si nt), y =a(1 - cost)(0 — t — 2二); 解: .L y 2ds = :0〔a(1-cost)『」a 1-cost ]2a si nt^dt2TI 5=V2a 3「(1 —cost)2dtx = x x = a cos—— x = x 、2 OA: ,0_x_a ,AB:,0, BO: 0_x a y =0 y =as in 4 y = x 2f e x 旳 ds =『少尺 J 12 +02 dxoA-0aoa二ABey ds 二ABe ds二 e ABds4<或]e x 七ds■AB=[4 e ' 严"巧塔“巧 J (一 a sin 盯 + (acos日 j d 日JI4 e a ad ) 4a 二 BO-a-2-2匸2a 一2 2 -------- ■ 2 e x 2 x 2,12 12dx 0-1 a二5二 迈a 3 : (2sin 2*)2dt =8a 3J6a 3siJI353= 32a 2sin 如-32a」0x 2+y 2+z 2=22 2]x = cosT解:由」 丫,得2X 2+Z2=2,令 < 厂 0兰日兰2兀y = xz = \ 2 sin 71x= cos 日sin 5 -dt <令—-v4 2 256 3a5 3 15<5) “L xyds ,其中L 为圆周x 2 y 2 =a 2 ; 解:利用对称性J |xyds = 4jJxyds ,其中 Lix = a cos 日 0<6y = a sinJI< 一2[xy ds = 4『xy ds = 4 fxyds迟,=4 02 (acos R(asin v) (-asin v)2 (acosv)2dv"a 3jcosrsin=2a 3sin =-2a 3<6)-x 2y 22ds ,其中-为曲线 z 2X =e t cost ,y =e t si nt ,z =e t 上相应于 t 从 0 变到 2 地------ 2 -- 1 ---- 2 ---- cost )]2 +[(£ sin t )]2 +e 2t dte tcost ]亠[d sin t ]亠[d =—fe^dt =^(1 —e‘) 2 02<7)广yds ,其中-为空间圆周:x 2 + y 2 + z 2 =2』=x弧段; 解:故丫: * y = cos日0兰日乞2兀.故z = J2s in。
第十章曲线积分与曲面积分习题简答习题10—11 计算下列对弧长的曲线积分:(1)LIxds ,其中L 是圆221xy中(0,1)A 到11(,)22B 之间的一段劣弧;解:1(1)2.(2)(1)Lx y ds,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解:(1)322Lxyds.(3)22Lxy ds,其中L 为圆周22x yx ;解:222Lxy ds.(4)2Lx yzds ,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C (1,2,3)D ;解:2853Lx yzds .2 求八分之一球面2221(0,0,0)xyzx y z 的边界曲线的重心,设曲线的密度1。
解故所求重心坐标为444,,333.习题10—21 设L 为xOy 面内一直线y b (b 为常数),证明xyz(0,0,0)A (0,0,2)B (1,0,2)C (1,2,3)D xyoABC(,)0LQ x y dy 。
证明:略.2 计算下列对坐标的曲线积分:(1)Lxydx ,其中L 为抛物线2yx 上从点(1,1)A 到点(1,1)B 的一段弧。
解:45Lxydx 。
(2)Ldy y xdx y x 2222)()(,其中L 是曲线x y11从对应于0x 时的点到2x 时的点的一段弧;解34)()(2222Ldyy xdxy x.(3),Lydx xdy L 是从点(,0)A a 沿上半圆周222xya 到点(,0)B a 的一段弧;解0.Lydxxdy(4)22Lxy dyx ydx ,其中L 沿右半圆222xya 以点(0,)A a 为起点,经过点(,0)C a 到终点(0,)B a 的路径;解22Lxy dyx ydx44a 。
(5)3223Lx dx zy dy x ydz ,其中L 为从点(3,2,1)A 到点(0,0,0)B 的直线段AB ;解3223Lx dx zy dy x ydz3187874t dt。
第十章 曲线积分与曲面积分曲线积分一 基本概念定义1 第一类曲线积分(对弧长的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d lim(,)nkkkL AB T k f x y s f sλξη→==∆∑⎰(2)空间曲线()L AB 的积分:()()01(,,)d lim(,,)nkkkk L AB T k f x y z s f s λξηζ→==∆∑⎰其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段曲线弧长的最大值,(,)k k ξη或(,,)k k k ξηζ是第k 段弧上的任意一点。
物理意义:第一类曲线积分表示物质曲线L 的质量,其中被积函数(,)f x y 或(,,)f x y z 表示曲线的线密度。
定义2 第二类曲线积分(对坐标的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d (,)d lim[(,)(,)]nkkkk k k L AB T k P x y x Q x y y f xf y λξηξη→=+=∆+∆∑⎰(2)空间曲线()L AB 的积分:()(,,)d (,,)d (,,)d L AB P x y z x Q x y z y R x y z z ++⎰()01lim[(,,)(,,)(,,)]nkkkk k k k k k k k k T k f x f y f z λξηζξηζξηζ→==∆+∆+∆∑其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段的最大弧长,(,)k k ξη是第k 段弧上的任意一点。
物理意义:第二类曲线积分表示变力F 沿曲线L 所作的功,被积函数(,),(,)P x y Q x y 或(,,),(,,),(,,)P x y z Q x y z R x y z 表示力F 在各坐标轴上的分量。
二 基本结论定理1 (第一类曲线积分的性质) (1)无向性()()(,)d (,)d L AB L BA f x y s f x y s =⎰⎰.(2)线性性质 (1)(,)d (,)d LLk f x y s k f x y s =⎰⎰;(2)[(,)(,)]d (,)d (,)d LLLf x yg x y s f x y s g x y s ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y s f x y s f x y s =+⎰⎰⎰.(4)弧长公式d Ls L =⎰(L 表示曲线L 的弧长).(5)恒等变换 积函数可用积分曲线方程作变换. (6)奇偶性与对称性 如果积分弧段()L AB 关于y 轴对称,()(,)d L AB f x y s ⎰存在,则()()0,(,)(,)d 2(,)d (,)L AB L OB f x y x f x y s f x y s f x y x ⎧⎪=⎨⎪⎩⎰⎰关于是奇函数,,关于是偶函数.其中O 点是曲线弧段()L AB 与y 轴的交点.定理2 (第二类曲线积分的性质) (1)有向性()()(,)d (,)d L AB L BA P x y x P x y x =-⎰⎰.(2)线性性质 (1)(,)d (,)d LLkf x y x k f x y x =⎰⎰;(2) [(,)(,)]d (,)d (,)d L L Lf x yg x y x f x y x g x y x ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y x f x y x f x y x =+⎰⎰⎰.定理3 (第一类曲线积分与第二类曲线积分的关系)()()d d d d d d d d d d L AB L AB xy z P x Q y R z P Q R s ss s ⎛⎫++=++ ⎪⎝⎭⎰⎰()(cos cos cos )d L AB P Q R s αβγ=++⎰()d L AB =⋅⎰F s其中cos ,cos ,cos αβγ是曲线AB 上的点的切线的方向余弦,且d cos d ,d cos d ,d cos d x s y s z s αβγ===一般地,积分曲线的方向余弦是变量。
第十章曲线积分与曲面积分10.1 对弧长的曲线积分一、求曲线cos,sin,t t tx e t y e t z e===从0t=到任意点间的那段弧的质量,设它各点的密度与该点到原点的距离的平方成反比,且在点(1,0,1)处的密度为1。
1)te-)二、计算下列曲线积分:1. L⎰,其中L为旋轮线:(sin)(1cos)x a t ty a t=-⎧⎨=-⎩(0tπ≤≤2)。
(324aπ)2.()Lx y ds+⎰,其中L是顶点为(0,0),(1,0),(0,1)O A B的三角形边界。
(13. L⎰,其中L是由极坐标曲线,0,r aπθθ===4所围成的区域的边界曲线。
(2(1)a ae aeπ-+4)4.()Lx y z ds++⎰,其中L由直线AB:(1,1,0),(1,0,0)A B及螺线cos,sin,(02)x t y t z t tπ===≤≤组成。
(322+)三、计算L⎰,其中L是由,0y x y y===所围成的第一象限部分的边界。
(2sin cosR R Rπ+4)四、计算L,其中L是圆:2222x y z ax y⎧++=⎨=⎩。
(2aπ2)五、 计算Lxds⎰Ñ,其中L 由直线0,x y x ==及曲线22y x -=所围成的第一象限部分的整个边界。
(+) 10.2 对坐标的曲线积分一、设一质点处于弹性力场中,弹力方向指向原点,弹力大小与质点到原点的距离成正比,比例系数为k 。
若质点从点(0,)a 沿椭圆22221x y a b +=在第一象限部分移动到点(0,)b ,求弹力所做的功。
(221()2k a b -)二、计算曲线积分22(2)(2)Lx xy dx y xy dy ++-⎰,其中L 是抛物线2(11)y x x =-≤≤沿x增加的方向。
(1415-) 三、 计算2y Lxe dy+⎰,其中L是曲线y =从点(0,0)O 到点(1,1)的一段弧。
(2322)四、 计算2222()()Lx y dx x y dy ++-⎰,其中L 是曲线11y x =--从点(0,0)到点(2,0)的一段。
第十章曲线积分与曲面积分习题简答习题10—11 计算下列对弧长的曲线积分: (1)LI xds =⎰,其中L 是圆221x y +=中(0,1)A到B 之间的一段劣弧; 解:(1+.(2)(1)L x y ds ++⎰,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解:(1)3Lx y ds -+=+⎰.(3)22Lx y ds +⎰,其中L 为圆周22x y x +=;解:222Lx y ds +=⎰.(4)2 Lx yzds ⎰,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C(1,2,3)D ;解: 2Lx y z d =⎰2 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥度1ρ=。
解 故所求重心坐标为444,,333πππ⎛⎫⎪⎝⎭.习题10—21 设L 为xOy 面内一直线y b =(b 为常数),证明xyoABC(,)0LQ x y dy =⎰。
证明:略.2 计算下列对坐标的曲线积分: (1)Lxydx ⎰,其中L 为抛物线2y x =上从点(1,1)A -到点(1,1)B 的一段弧。
解 :45Lxydx =⎰。
(2)⎰-++Ldy y x dx y x 2222)()(,其中L 是曲线x y --=11从对应于0=x 时的点到2=x 时的点的一段弧;解34)()( 2222=-++⎰Ldy y x dx y x .(3),Lydx xdy +⎰L 是从点(,0)A a -沿上半圆周222x y a +=到点(,0)B a 的一段弧;解 0.Lydx xdy +=⎰(4)22Lxy dy x ydx -⎰,其中L 沿右半圆222x y a +=以点(0,)A a 为起点,经过点(,0)C a 到终点(0,)B a -的路径;解 22Lxy dy x ydx -⎰44a π=-。
(5)3223Lx dx zy dy x ydz +-⎰,其中L 为从点(3,2,1)A 到点(0,0,0)B 的直线段AB ;解 3223Lx dx zy dy x ydz +-⎰3187874t dt ==-⎰。
(二) 线面积分的计算方法 1.曲线积分的计算⑴ 基本方法:曲线积分−−−→转化定积分 第一类线积分:设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为(),(),x t y t ϕψ=⎧⎨=⎩,()t αβ≤≤,(要解决1、积分限,2、被积函数,3、弧微分) 其中(),()t t ϕψ在[,]αβ上具有一阶连续导数,且'2'2()()0t t ϕψ+≠,则(,)[(),(,()Lf x y ds f t t βαϕψαβ=<⎰⎰【例1】 求yL xe ds ⎰,其中L 是由cos (0)sin x a t a y a t=⎧>⎨=⎩所表示的曲线上相应于233t ππ≤≤的一段弧. 解(法一)ds adt ==,故 原式=22sin sin 3333cos |0a ta ta t e adt aeππππ⋅⋅==⎰.(法二)容易看出积分弧段关于y 轴对称,而被积函数是关于变量x 的奇函数,故0y Lxe ds =⎰【例2】 求()Lx y ds +⎰,其中L 是以(0,0),(1,0),(0,1)O A B 为顶点的三角形(图10.1)边界. 解()()()()LOAABBOx y ds x y ds x y ds x y ds+=+++++⎰⎰⎰⎰1101xdx ydy =++=⎰⎰⎰【例3】求⎰,式中L 为圆周22(0)x y ax a +=>解 L 的极坐标方程为cos (),22r a ds ad ππθθθθ=-≤≤==则222cos 2a ad a ππθθ-=⋅=⎰⎰【例4】求22()Lx y ds +⎰,其中L 是曲线(cos sin ),x a t t t =+(sin cos ),(02,0)y a t t t t a π=-≤≤≥解 ds atdt =,于是22222220()[(cos sin )(sin cos )]Lx y ds a t t t a t t t atdt π+=++-⎰⎰232320(1)2(12)a t t dt a πππ=+=+⎰第二类线积分:设(,),(,)P x y Q x y 在有向曲线弧L 上有定义且连续,L 的参数方程为(),(),x t y t ϕψ=⎧⎨=⎩,当t 单调地αβ→时,(要解决1、积分限,2、被积函数,3、弧微分) 点(,)M x y 从L 的起点A 沿L 运动到终点B ,(),()t t ϕψ在以α及β为端点的闭区间上具有一阶连续导数,且'2'2()()0t t ϕψ+≠,则''(,)(,){[(),()]()[(),()]()}LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ+=+⎰⎰【例1】 求2L ydx xdy x +⎰,其中L 是曲线ln y x =上从点(1,0)到点(,1)e 的一段弧.解 由ln y x =得1,ydx dy x e x==,故原式=1121002()|y y ydy e dy y e e +=+=⎰⎰【例2】求ABC dx dy x y ++⎰,其中ABC 如图10.2所示解(法一):,:10,,1:,:01,1x x AB x dy dx y x x x BC x dy dxy x =⎧→=-⎨=-⎩=⎧→-=⎨=+⎩原式=0110()2(1)1AB BC dx dy dx dy dx dx dx dx x y x y x x x x-+++-++=+=-+++--++⎰⎰⎰⎰ 解(法二) 因为 1x y +=,又 ()dx dy d x y +=+,故 原式=(1,0)(1,0)()2x y -+=-【例3】 求2222()()Cx y dx x y dy ++-⎰,其中C 为曲线11y x =--,(02)x ≤≤解 当01x ≤≤时,1(1)y x x =--=,则dy dx =; 当12x ≤≤时,1(1)2y x x =--=-,则dy dx =-;12222222222014()()2[(2)(2)]3Cx y dx x y dy x dx x x x x dx ++-=++--+-=⎰⎰⎰ B(0,1)B(0,1) A(1,0)C(-1,0)xy图10.2⑵ 基本技巧① 利用对称性简化计算; 【例1】 求2()Lx y ds +⎰,其中L 为圆周222x y a +=.解 由对称性得0Lxyds =⎰,故22222()(2)()2LLLLx y ds x xy y ds x y ds xyds +=++=++⎰⎰⎰⎰2223022LLa ds a ds a a a ππ=+==⋅=⎰⎰【例2】求221[()(1)]22Cy I x ds =+++⎰,其中22:1C x y += 解 利用对称性2222222255[()()]()(()0)444451155515()2()284282424C C C C C y y I x x y ds x ds x y ds x y x y ds ds πππππ=++++=+++=++=++=++=+=⎰⎰⎰⎰⎰② 利用格林公式(注意:添加辅助线的技巧);【定理10.1】 格林(Green )公式 设函数(,)P x y 和(,)Q x y 在分段光滑的闭曲线L 所围成的闭区域D 上具有一阶连续偏导数,则有()LDQ Pdxdy Pdx Qdy x y∂∂-=+∂∂⎰⎰⎰其中L 是D 的正向边界.【例1】计算22222222sin x L e x y xy y dx dy x y x y--+++⎰,其中L 是222x y a +=,顺时针方向 ● 计算对于坐标的曲线积分第二种解法: 利用格林公式求解,计算前必须使用代入技巧,消去分母,否则工作量太大.因为L 是反向的,所以使用格林公式是需要补加一个负号.解 将222x y a +=代入被积分式中,22222222sin x L e x y xy y dx dy x y x y --+++⎰=()()222221sin x L e x y dx xy y dy a -+-⎰ 2222,sin ,x P e x y Q xy y =-=- 22.Q P y x x y∂∂-=+∂∂ 根据格林公式, 原式()2222221x y a xy d a σ+≤=-+⎰⎰232001a d r dra πθ=-⎰⎰22a π=-。
【例2】计算(ln x y x dy ⎡⎤++⎢⎥⎣⎦⎰,其中L 是()()22111x y -+-=的上半圆周,顺时针方向. ● 不易直接计算,应该检验0Q Px y∂∂-≠∂∂.补充:1,AB y x =由2至0, 原式=L ABAB+-⎰⎰.然后利用格林公式.解设P =(ln .Q x y x =+1Q Px y∂∂=+=∂∂1Q P x y∂∂-=∂∂. 补::1,AB y x =由2至0,AB 与L 所围成的区域记为D .原式=L ABAB+-⎰⎰(021ln 22x π⎤=--+⎥⎦(1ln 222π=-B③ 利用积分与路径无关的等价条件【定理10.3】(积分与路径无关的条件)设函数(,)P x y 和(,)Q x y 在单连通区域D 内具有一阶连续偏导数,则下列四个条件相互等价,即互为充要条件: (1)ABL Pdx Qdy +⎰在D 内与路径无关;(2)在D 内存在一个函数(,)u x y ,使 du Pdx Qdy =+,其中00(,)(,)(,)(,)(,)xy x yx y x y u x y P x y dx Q x y dy P x y dx Q x y dy =+=+⎰⎰⎰⎰00(,)x y 为D 内任一取定的点.(3)0LPdx Qdy +=⎰,其中L 为D 内任一分段光滑的闭曲线(4)在D 内等式P Qy x∂∂=∂∂恒成立 【例1】求3222(2cos )(12sin 3)Lxyy x dx y x x y dy -+-+⎰,其中L 为22x y π=从点(0,0)O 到点(,1)2B π的一段弧解 3222(,)2cos ,(,)12sin 3P x y xy y x Q x y y x x y =-=-+262cos Q Pxy y x x y∂∂==-∂∂, 故积分与路径无关,选取折线路径 (0,0)(,0)(,1)22O C B ππ→→ 原式=2211222003[12sin 3()](12)2244y y dy y y dy ππππ-+=-+=⎰⎰【例2】适当选取,a b ,使2222222(2)(2)()y xy ax dx x xy by dyx y ++-+++是某个函数(,)u x y 的全微分,并求出(,)u x y解 因为322332232222223(21)(12)32,2()()Q x x y b xy y P x a x y xy y x x y y x y ∂++--∂+---==∂+∂+ 令Q P x y∂∂=∂∂,比较系数得 1,1a b =-=-2222(,)222(1,1)222222222211(2)(2)(,)()122(1)()x y xy y xy x dx x xy y dyu x y x y x x x x y x y dx dy C x x y x y+--+-=++-+-- =-=++++⎰⎰⎰【例3】试确定可导函数()f x ,使积分()()[()]()B x A e f x ydx f x dy +-⎰与路径无关,且求,A B为(0,0),(1,1)时的积分值.此处1(0)2f = 解 [()],(),(),()xx Q PP e f x y Q f x f x e f x x y∂∂'=+=-=-=+∂∂ 令Q P x y∂∂=∂∂,则有 ()()xf x f x e '+=-,解一阶线性非齐次微分方程得 2()()2xxe f x e C -=-+,代入 1(0)2f =得,1C =,即 1()2xx f x e e -=-. 当,A B 为(0,0),(1,1)时,积分为(1,1)11(0,0)01111()()()2222x x x x e e e ydx e e dy e e dy e ---+--=--=-⎰⎰ 【例4】 计算224L xdy ydxx y -+⎰,其中L 为任意一条不通过原点的简单光滑正向的封闭曲线. 解 设2222,,44y xP Q x y x y-==++ 则222224(4)Q y x P x x y y∂-∂==∂+∂,除去原点(0,0)O 以外一切点上式都成立. ①当曲线L 的内部不含原点时22()004L D Dxdy ydx Q Pdxdy dxdy x y x y -∂∂=-==+∂∂⎰⎰⎰⎰⎰. ②当曲线L 的内部含原点时,可在L 的内部做一个充分小的椭圆:2cos ,sin c x a t y a t ==,从0t =到2t π=.利用复连通域上的格林公式,有 222221444L c cxdy ydxxdy ydx xdy ydxx y x y a --==-++⎰⎰⎰221122244Ddxdy a a a a ππ=⋅=⋅⋅⋅⋅=⎰⎰④ 利用两类曲线积分的联系公式 【定理10.2】(两类曲线积分之间的关系) (cos cos )LLPdx Qdy P Q ds αβ+=+⎰⎰其中cos ,cos dx dyds dsαβ==,α和β表示曲线的切向量的方向角.2.曲面积分的计算⑴ 基本方法:曲面积分−−−→转化二重积分 第一类面积分:当曲面∑由方程(,)z z x y =给出,(,,)[,,(,xyD f x y z dS f x y z x y ∑=⎰⎰⎰⎰,(xy D 为∑在xoy 面上的投影区域)要解决 1、曲面方程如(,)z z x y =及投影区域xy D ,2、被积函数[,,(,)]f x y z x y ,3)注:如果积分曲面∑由方程(,)x x y z =或(,)y y z x =给出,也可类似地把对面积的曲面积分化为相应的二重积分. 【例1】求∑⎰⎰,其中∑为锥面z =介于0z =及1z =之间的部分.解 曲面∑在xoy 坐标平面上的投影为22:1xy D x y +≤.x z =,y z =,故∑xyD =2222xyD dxd y dxdyππ∑===⋅=⎰⎰⎰⎰【例2】求xyz dS ∑⎰⎰,∑为曲面22z x y =+被平面1z =割下的部分解 设1∑表示∑在第一卦限内部分,则2212210,01122044(14cos sin 2420x y x y xyz dS xyzdS xy x y d r r r πθθθ∑∑+≤≥≥==+===⎰⎰⎰⎰⎰⎰⎰⎰⎰第二类面积分:(,,)[(,),,]yzD P x y z dydz P x y z y z dydz ∑=±⎰⎰⎰⎰,(其中∑由方程(,)x x y z =给出前侧取正,后侧取负)(,,)[,(,),]yzD Q x y z dzdx Q x y x z z dzdx ∑=±⎰⎰⎰⎰,(其中∑由方程(,)y y x z =给出右侧取正,左侧取负)(,,)[,,(,)]yzD R x y z dxdy R x y z x y dxdy ∑=±⎰⎰⎰⎰,(其中∑由方程(,)z z x y =给出上侧取正,下侧取负) 【例1】求z ∑∑为锥面z =及平面1z =和2z =所围成的立体表面的外侧解 设 123∑=∑+∑+∑,其中 221:2,4z x y ∑=+≤,2:2,z z ∑=≤≤223:1,1z x y ∑=+≤在面上的投影分别为222222123:4,:14,:1D x y D x y D x y +≤≤+≤+≤123z z z z ∑∑∑∑=++12322222212201001()()2D D D r e d rdr d e dr e d dr e rπππθθθπ=--=+-+-=⎰⎰⎰⎰⎰⎰【例2】设∑是椭球面2222221x y z a b c ++=的外侧(0,0,0)a b c >>>,求111I dydz dzdx dxdy x y z∑=++⎰⎰. 解 设12,∑∑是∑的上半椭球面的上侧和下半椭球面的下侧,12,∑∑在xoy 面的投影为22221x y a b +≤,则 12111dxdy dxdy dxdy z z z ∑∑∑=+⎰⎰⎰⎰⎰⎰222202224840ax y a b adx c c abc dx c c π+≤====⎰⎰⎰⎰⎰同理得221414,abc abc dydz dzdx x a y b ππ∑∑==⎰⎰⎰⎰,所以2221114()I abc a b cπ=++⑵ 基本技巧① 利用对称性及重心公式简化计算; 【例1】求222x dydz y dxdz z dxdy ∑++⎰⎰,∑为球面22()()x a y b -+-+22()z c R -=的外侧.解 记 2222:()()()x a y b z c R Ω-+-+-≤,利用Gauss 公式,有原式=2()x y z dxdydz Ω++⎰⎰⎰,由重心坐标(,,)(,,)x y z a b c =得 原式=382()()3a b c dxdydz a b c R πΩ++=++⎰⎰⎰② 利用高斯公式(注意公式使用条件,添加辅助面的技巧); 【定理10.5】高斯(Gauss)公式设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,则有(),P Q R dxdydz Pdydz Qdzdx Rdxdy x y zΩ∑∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰或()(cos cos cos ),P Q R dxdydz P Q R dS x y zαβγΩ∑∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos ,cos ,cos αβγ是∑在点(,,)x y z 处的法向量的方向余弦【例1】 求222()xy z dydz ∑++⎰⎰,其中∑是球面2222x y z a ++=内侧.解22222()x y z dydz a dydz a dydz ∑∑∑++==⎰⎰⎰⎰⎰⎰ 2222200x y z a Gauss a dxdydz ++≤-=⎰⎰⎰公式【例2】 求zdxdy ydzdx xdydz ∑++⎰⎰,其中∑是球面2222xy z a ++=外侧.解 由已知得 ,,P x Q y R z ===,则1P Q Rx y z∂∂∂===∂∂∂ 由Gauss 公式得 原式=22222222()3x y z a x y z a P Q Rdxdydz dxdydz x y z ++≤++≤∂∂∂++=∂∂∂⎰⎰⎰⎰⎰⎰334343a a ππ=⋅=【例3】 求2232(1)(9)xz dydz y z dzdx z dxdy ∑+++-⎰⎰,其中∑是曲面 221(12)z x y z =++≤≤的下侧.解 补充 1222:1z x y =⎧∑⎨+≤⎩,取上侧 2232(1)(9)xz dydz y z dzdx z dxdy ∑+++-⎰⎰ 11223{}2(1)(9)xz dydz y z dzdx z dxdy ∑+∑∑=-+++-⎰⎰⎰⎰231(92)(1)2xyD dv dxdy z dz πππΩ=--=--=-⎰⎰⎰⎰⎰⎰③ 两类曲面积分的转化.【定理10.4】两类曲面积分之间的联系(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑++=++⎰⎰⎰⎰,其中cos ,cos ,cos αβγ是有向曲面∑在点(,,)x y z 处的法向量的方向余弦.【例1】 计算[(,,)][2(,,)][(,,)]f x y z x dydz f x y z y dzdx f x y z z dxdy∑+++++⎰⎰,其中(,,)f x y z 为连续函数,∑为平面1x y z -+=在第四卦限部分的上侧.解 化为第一类曲面积分,因为∑的正法线n 的方向余弦为cosαβγ===所以cos ,cos ,cosdydz dS dxdz dS dxdy dS αβγ====== 其中dS 为平面∑上的面积元素原式(,,)](,,)](,,)]}f x y z x f x y z y f x y z z dS ∑=++++⎰⎰ 1()2xyx y z dS dS σ∑∑=-+===⎰⎰。