非线性元件的伏安特性
- 格式:doc
- 大小:47.50 KB
- 文档页数:3
图 1-2实验一 线性与非线性元件伏安特性的测绘一.实验目的1.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法。
2.学习恒电源、直流电压表、电流表的使用方法。
二.原理说明任一二端电阻元件的特性可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系U =f(I )来表示,即用U -I 平面上的一条曲线来表征,这条曲线称为该电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1中(a )所示,该直线的斜率只由电阻元件的电阻值R 决定,其阻值为常数,与元件两端的电压U 和通过该元件的电流I 无关;非线性电阻元件的伏安特性是一条经过坐标原点的曲线,其阻值R 不是常数,即在不同的电压作用下,电阻值是不同的,常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性如图5-1中(b )、(c )、(d )。
在图1-1中,U 〉0的部分为正向特性,U〈 0的部分为反向特性。
绘制伏安特性曲线通常采用逐点测试法,即在不同的端电压作用下,测量出相应的电流,然后逐点绘制出伏安特性曲线,根据伏安特性曲线便可计算其电阻值。
三.实验设备1.直流电压、电流表;2.电压源(双路0~30V 可调);3.MEEL -04组件、MEEL -05组件。
四.实验内容1.测定线性电阻的伏安特性 按图1-2接线,图中的电源U 选用恒压源的可调稳压输出端,通过直流数字毫安表与1kΩ(d)(b)(c)U UUIII (a)U I 0000图1-1mAVU++_030~VIN4007200VD图 1-3直流数字电压表测量。
调节恒压源可调稳压电源的输出电压U ,从0伏开始缓慢地增加(不能超过10V ),在表1-1中记下相应的电压表和电流表的读数。
表1-1 线性电阻伏安特性数据U (V) 0 246 8 10I (mA)2.测定6.3V 白炽灯泡的伏安特性将图1-2中的1kΩ线性电阻换成一只6.3V 的灯泡,重复1的步骤,电压不能超过6.3V ,在表1-2中记下相应的电压表和电流表的读数。
非线性元件伏安特性的测量实验报告一、实验目的1、了解非线性元件的伏安特性曲线。
2、掌握测量非线性元件伏安特性的基本方法。
3、学会使用相关仪器,如电压表、电流表、电源等。
4、通过实验数据的处理和分析,加深对非线性元件电学特性的理解。
二、实验原理非线性元件的电阻值不是一个恒定值,而是随着电压或电流的变化而变化。
常见的非线性元件有二极管、三极管、热敏电阻等。
在本次实验中,我们以二极管为例来测量其伏安特性。
当给二极管加上正向电压时,在电压较低时,电流很小,几乎为零。
当电压超过一定值(称为开启电压)后,电流迅速增加。
而当给二极管加上反向电压时,在一定的反向电压范围内,反向电流很小,且基本不随反向电压的变化而变化。
当反向电压超过某一值(称为反向击穿电压)时,反向电流急剧增加。
通过测量二极管在不同电压下的电流值,就可以得到其伏安特性曲线。
三、实验仪器1、直流电源:提供稳定的电压输出。
2、电压表:测量二极管两端的电压。
3、电流表:测量通过二极管的电流。
4、电阻箱:用于调节电路中的电阻值。
5、二极管:实验对象。
6、导线若干:连接电路。
四、实验步骤1、按照电路图连接实验电路,将电源、电阻箱、二极管、电压表和电流表依次连接。
2、调节电阻箱,使电路中的初始电阻较大,以保护电流表和二极管。
3、接通电源,缓慢调节电源的输出电压,从 0 开始逐渐增加。
在每个电压值下,记录电压表和电流表的读数。
4、测量正向伏安特性时,电压逐渐增加到一定值,注意观察电流的变化。
当电流急剧增加时,停止增加电压。
5、测量反向伏安特性时,将电源极性反转,同样从 0 开始逐渐增加反向电压,记录相应的电压和电流值。
6、重复测量多次,以减小误差。
五、实验数据记录与处理|电压(V)|正向电流(mA)|反向电流(μA)|||||| 00 | 00 | 00 || 02 | 00 | 00 || 04 | 00 | 00 || 06 | 10 | 00 || 08 | 50 | 00 || 10 | 100 | 00 || 12 | 200 | 00 || 14 | 400 | 00 || 16 | 800 | 00 || 18 | 1200 | 00 || 20 | 1600 | 00 || 22 | 2000 | 00 ||-05 | 00 | 00 ||-10 | 00 | 00 ||-15 | 00 | 00 ||-20 | 00 | 00 ||-25 | 00 | 00 ||-30 | 00 | 00 ||-35 | 00 | 00 ||-40 | 00 | 00 |根据上述实验数据,以电压为横坐标,电流为纵坐标,分别绘制出二极管的正向伏安特性曲线和反向伏安特性曲线。
非线性元件伏安特性的测量在电子电路的设计过程中,非线性元件的特性参数对电路的性能影响很大。
因此,对非线性元件的特性参数进行准确测量与分析,是电子电路设计的必要内容。
而电路中常见的非线性元件有二极管、晶体管、场效应管、二极管管、三极管、MOSFET等。
其中,二极管是最基本的非线性元件,所以我们以二极管为例,介绍非线性元件伏安特性的测量。
1. 二极管的基本特性二极管是最基本的非线性元件之一,它是一种电路元件,在电路中广泛应用于能源转换、射频电路、数字电路等领域。
二极管的特性与材料和器件制备技术密切相关。
正向特性:在正向偏置条件下,二极管的阻抗较小,电流可以流过,可以发光。
2. 如何测量二极管的伏安特性?伏安特性是指元件的电流随电压的变化曲线,是非线性元件的一种重要特性。
测量二极管的伏安特性需要用到万用表和电源,具体的步骤如下:步骤1:将用于测量的二极管连接好,其中黑色的导线连接到二极管的负极,红色的导线连接到二极管的正极。
步骤2:接通电源,确保电压源的电压调节在0V以下。
步骤3:使用万用表测量电阻值,将电源的电压慢慢调高,注意保持电压范围在一定范围内。
步骤4:将测量得到的数据写下来,在Excel表格中绘制二极管的电流电压曲线。
3. 二极管伏安特性曲线分析通过测量得到的数据,我们可以分析二极管的伏安特性曲线。
在正向偏置时,二极管电流呈指数增长,这是由于载流子在PN结内部被拍散形成少子空穴,少子空穴受到势垒的作用立即跨过势垒流入N区,形成电流。
当负载电阻较小时,这种指数增长往往导致二极管烧坏。
在反向偏置时,二极管电流呈指数衰减,二极管的反向电阻十分大,无法形成电流。
当反向电压达到某些值时,二极管将出现击穿,形成反向电流,这通常被称为“反向击穿”,并且会让二极管损坏。
总之,测量非线性元件伏安特性是电子电路设计中一项重要的测试工作,通过对其特性曲线的分析可以了解其性能,影响电路性能的参数并做出优化。
非线性元件伏安特性的测量实验报告-基本模板.docx非线性元件伏安特性的测量实验报告一、实验目的1. 掌握伏安特性测量的基本原理和方法;2. 了解非线性元件的基本特性和使用条件;3. 通过实验观察非线性元件的伏安特性,探究其非线性特性。
二、实验仪器1. 直流稳压电源;2. 电流表、电压表;3. 变阻器;4. 二极管;5. 晶体管等元件。
三、实验原理1. 二极管伏安特性二极管是一种具有非线性电性质的半导体元件,其伏安特性呈现出一定的折线性。
正向电压增加,二极管导通电流增加,其电压降逐渐减小,最终趋近于一个稳定的干接触电压;反向电压增加,二极管截止,几乎无表观电流。
因此,在二极管正向伏安特性曲线上,一段电压范围内表现为导通状态,称为“正导区”;另一段电压范围内表现为截止状态,称为“反向截止区”。
2. 晶体管伏安特性晶体管是一种受控的半导体放大器,其伏安特性是非线性的。
晶体管的输出电流与输入电压及偏置电压有关,而晶体管的输入电阻和输出电阻受到偏置电压的影响,具有较大的变化。
因此,晶体管的伏安特性存在多种类型,如单调式、双调式、S 型等,具有一定的特征。
四、实验步骤1. 准备实验仪器和元件。
2. 组装实验电路,如图所示。
3. 调节直流稳压电源的输出电压为所需电压,如0.1V、0.2V 等。
4. 用电压表测量二极管正反向电压,用电流表测量二极管正向电流。
5. 记录实验数据,绘制二极管正向伏安特性曲线,观察其特性,并测量二极管的大量反向电压。
6. 更换为晶体管等元件重复上述步骤,观察不同类型晶体管的伏安特性曲线,分析其性质。
五、实验结果与分析二极管、晶体管伏安特性曲线如下图所示:通过二极管、晶体管的伏安特性曲线可以看出,二极管在正向电压范围内,其电流随电压增加而增加,直到饱和状态,形成正向电流;而在反向电压范围内,其发生突变,极性反转,电流几乎为0;晶体管的伏安特性曲线则显示出不同类型晶体管的特征,如单调式晶体管的特征为输出电流与输入电压成正比,输出VS输入为线性,而双调式晶体管的电流输出与偏置电压存在双簇,输出与输入有一定的非线性关系。
非线性元件伏安特性测量一.实验目的1、学习测量非线性元件的伏安特性,针对所给各种非线性元件的特点,选择一定的实验方?法,选用配套的实验仪器,测绘出它们的伏安特性曲线。
2、学习从实验曲线获取有关信息的方法。
二.实验原理1.检波和整流二极管检波二极管和整流二极管都工作在1、4 象限.第1 象限区又称为正向工作区.当所加的电压较低时,流通的电流很小,继续增加电压时,电流急剧上升.这个转折点对应的电压称为二极管的开启电压,它与所用的半导体材料的禁带宽度有关.在常温下,一般为0.2~0.7V.第4 象限区又称为反向工作区,其特点是加一个相当高的电压时,电流会突然增大,导致损坏,这种现象称为击穿.检波二极管和整流二极管工作范围不能超过击穿区.检波二极管的PN 结是针形接触,其特点是工作电流小,工作频率范围的宽,但反向耐压低.整流二极管的PN 结是面形接触,其特点是工作电流大,工作频率低,反向耐压可达上千压.它们的共同特点是要求反向工作时流过的电流越小越好.2.稳压二极管稳压二极管工作在第4 象限.而且工作在击穿区.其特点是反向工作电压加到一定值时,电流突然增大,在此基础上再加大电压时,电流的变化非常剧烈,这时稳压二极管承受的功率急剧增大,若不加限流措施,PN 结极易烧毁.3.发光二极管发光二极管由半导体发光材料制成,工作在第1 象限.要发的光的波长与材料的禁带宽度E 对应.根据量子力学原理E = eV = hυ可知,对于可见光,开启电压V约在2~3V.当加在发光二极管两端的电压小于开启电压时,发光二极管不会发光,也没有电流流过.电压一旦超过开启电压,电流急剧上升,二极管处于导通状态并发光,此时电流与电压呈线性关系,直线与电压坐标的交点可以认为是开启电压.三.实验步骤1.普通二极管正向伏安特性:测量电路见图1,二极管两端电压V ≤3 V.电压表内接。
2.稳压二极管.测量稳压二极管的反向伏安特性曲线.测量电路见图2, 稳压二极管的最大反向电流小于30 mA,工作电压约为5 V左右.电压表外接。
非线性元件伏安特性实验非线性元件伏安特性的测量【目的要求】1(掌握非线性元件伏安特性的测量方法、基本电路。
2(掌握二极管、稳压二极管、发光二极管的基本特性。
准确测量其正向导通阈值电压。
3(画出以上三种元件的伏安特性曲线。
【实验仪器】非线性元件伏安特性实验仪。
仪器由直流稳压电源、数字电压表、数字电流表、多圈可变电阻器、普通二极管、稳压二极管、发光二极管、钨丝灯泡等组成。
【实验原理】1.伏安特性给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。
通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。
这种研究元件电学特性的方法称为伏安法。
伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。
伏安法的主要用途是测量研究线性和非线性元件的电特性。
有些元件伏安特性除了与电压、电流有关,还与某一物理量的变化呈规律性变化,例如温度、光照度、磁场强度等,这就是各种物理量的传感元件,本实验不研究此类变化。
根据欧姆定律,电阻R、电压U、电流I,有如下关系:(1) R,UI由电压表和电流表的示值U和I计算可得到待测元件Rx的阻值。
但非线性元件的R是一个变量,因此分析它的阻值必须指出其工作电压(或电流)。
非线性元件的电阻有两种方法表示,一种称为静态电阻(或称为直流电阻),用RD表示;另一种称为动态电阻用rD表示,它等于工作点附近的电压改变量与电流改变量之比。
动态电阻可通过伏安曲线求出,如图1所示,图中Q点的静态电阻RD=UQ/IQ,动态电阻rD=dUQ/dIQ图1动态电阻表示图测量伏安特性时,受电压表、电流表内阻接入影响会引入一定的系统误差,由于数字式电压表内阻很高、数字式电流表内阻很小,在测量低、中值电阻时引入系统误差较小,本实验将其忽略不计。
2.半导体二极管半导体二极管是一种常用的非线性元件,由P型、N型半导体材料制成PN结,经欧姆接触引出电极,封装而成。
非线性元件的伏安特性实验心得非线性元件的伏安特性是电路中非常重要的一个参数,它描述了元件电流和电压之间的关系。
本次实验我们选择了PN结二极管和锗线调制器进行了测试,并得出了它们的伏安特性曲线。
以下是本人对此实验的心得体会。
首先,我们需要清楚非线性元件的伏安特性是怎么样的。
在理论上,伏安特性不应该是一条直线,而是一条弯曲的曲线。
这是因为随着电压的逐渐增加,电阻值并不是不变的,而是在某一点突然发生变化,这种变化导致了伏安特性曲线的弯曲。
同时,由于PN结二极管和锗线调制器都是非线性元件,因此它们的伏安特性曲线也应该是弯曲的,但是曲线的形状可能不尽相同。
在实验中,我们首先需要搭建电路并对电路进行调整。
有时,我们需要使用一些其他的元件和仪器来协助我们测量伏安特性曲线。
例如,在测量PN结二极管时,我们需要使用一个电流源和一个电压源,以便在不同的电压和电流下测量二极管的电阻。
在测量锗线调制器时,我们需要使用一个示波器以便观察调制器输出波形的变化情况。
在实验过程中,我们需要关注一些要点。
首先,我们需要保证电路的稳定性,以便准确测量伏安特性曲线。
其次,我们需要在电路的不同电压下,对元件的电流进行测量,并记录下不同电流下的电压值。
最后,我们需要对测量数据进行处理和分析,以便得出元件的伏安特性曲线。
通过本次实验,我对非线性元件和伏安特性有了更深入的了解。
我了解到非线性元件伏安特性曲线的弯曲是由元件内部电阻的变化导致的。
我还了解到不同的非线性元件可能会具有不同的伏安特性曲线,这通常取决于该元件的材料和制造工艺。
最后,我认识到测量伏安特性曲线时需要注意实验环境的稳定性以及实验数据的准确性,并且需要对数据进行处理以便得出准确的结果。
非线性元件伏安特性实验报告实验目的:1. 掌握非线性元件的基本概念和特性;2. 理解伏安特性的基本原理;3. 通过实验,掌握非线性电阻、非线性电容、稳压二极管等器件的伏安特性曲线和工作原理;4. 初步掌握利用稳压二极管构建稳压电源电路的方法。
实验原理:1. 非线性元件的基本概念和特性非线性元件即其电阻、电容、电感等参数随电压、电流等其它条件的变化而产生不线性变化的元器件。
非线性元件的特性曲线通常呈现出一定的曲线特征,分段近似线性,分段也可能非线性。
2. 伏安特性的基本原理伏安特性曲线是用来表示电子部件(如电阻、电容、二极管等)的电流大小与所施加的电压大小之间的关系的曲线图形。
伏安特性曲线可以表现所研究的器件的电压、电流、功率等的关系,并提供有关该元件开阻状态以及其稳定性和限制性的信息。
3. 非线性电阻的特性非线性电阻是一种电子元器件,其电阻值随电压或电流的变化而变化,通常用来对信号进行限制或削弱。
非线性电阻的特点是电阻不是恒定的,而是随电压的变化而变化,其曲线通常呈非线性。
非线性电容是与电容器电容有类似关系的非线性电路元件。
非线性电容器材料有着特殊的电学特性,使得它具有比一般电容器更加广泛的应用领域,如电源滤波器、律波器、调频电台等等。
5. 稳压二极管的特性稳压二极管相当于一个正向电压降为固定值的电压源,可用于电源电压稳定和调节,提供一个稳定的恒定电压值。
实验内容:实验设备:成组非线性电阻、成组非线性电容、多用电表、电压表和电流表、稳压二极管等器件。
实验步骤:1. 连接非线性电阻,依次施加不同的电压值,记录每个电压值下的电流值,绘制电流-电压特性曲线,并分析曲线特性;3. 连接稳压二极管,将电压表和稳压二极管并联,用多用电表测量稳压二极管正向电流随电压的变化情况,记录数据并绘制伏安特性曲线;4. 利用稳压二极管构建稳压电源电路,观察电源电压的稳定性并换算出稳定的输出电压值。
实验结果:1. 绘制的非线性电阻的电流-电压曲线呈现出一定的分段非线性性质,电阻随电压变化的特性明显,如下图所示:3. 绘制的稳压二极管的伏安特性曲线呈现出一个稳定的电压值,在正向电压较小时电流增长比较缓慢,当电压升高到一定值后,电流就会急剧增长,如下图所示:。
实验二非线性元件的伏安特性
【一】实验目的
电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三极管、光敏和热敏元件等。
人们常需要了解它们的伏安特性,以便正确的选用它们。
通常以电压为横坐标,电流为纵坐标作出元件的电压—电流关系曲线,叫做该元件的伏安特性曲线。
如果元件的伏安特性曲线是一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则称其为非线性元件(例如晶体二极管、三极管)。
本实验通过测量二极管的伏安特性曲线,了解二极管的单向导电性的实质。
【二】实验装置
直流稳压电源、直流电压表2个、直流电流表2个、滑线变阻器、待测二极管、开关、导线等。
注意事项:
1.为保护直流稳压电源,接通或断开电源前均需先使其输出为零;对输出调节旋钮的调节必须轻而缓慢。
2.更换测量内容前,必须使电源输出为零,然后再逐步增加至需要值,以免损坏元件。
3.测定2AP型锗二极管的正、反向伏安特性曲线时,注意正向电流不要超过20mA,反向电压不要超过25V。
4.开始实验时,作为分压器的滑线变阻器的滑动触头C应置于使输出电压为最小值处。
【三】实验原理
晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。
当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二极管为0.2左右,硅二极管为0.7左右时),电流明显变化。
在导通后,电压变化少许,电流就会急剧变化。
当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。
该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电
压时,电流剧增,二极管PN 结被反向击穿。
二极管一般工作在正向导通或反向截止状态。
当正向导通时,注意不要超过其规定的额定电流;当反向截止时,更要注意加在该管的反向偏置电压应小于其反向击穿电压。
但是,稳压二极管却利用二极管的反向击穿特性而恰恰工作于反向击穿状态。
本实验用伏安法测定二极管的伏安特性,测量电路如图2所示。
测定二极管的电压与电流时,电压表与电流表有两种不同的接法。
如图2,电压表接A 、D 两端叫做电流表外接;电压表接A 、D ′端叫做电流表内接。
电流表外接时,其读数为流过二极管的电流I D 与流过电压表电流I V 之和,即测得的电流偏大;电流表内接时,电压表读数为二极管电压V D 与电流表电压V A 之和,即测得的电压偏大。
因此,这两种接法都有测量误差。
这种由于电表接入电路而引起的测量误差叫做接入误差。
接入误差是系统误差,只要知道电压表的内阻R V 或电流表的内阻R A ,就可以把接法造成的测量误差算出来,然后选用测量误差较小的那种接法。
电流表外接,造成的电流测量误差为:
V
D D V D D R R I I I I ==∆
电流表内接,造成的电压测量误差为:
D A
D A D D R R V V V V ==∆
其中R D 、R V 、R A 、分别是二极管的内阻,电压表的内阻和电流表的内阻。
测量时究竟选用
哪种接法,要看R D 、R V 、R A 的大小而定。
显然,若R D /R V >R A /R D 应选用电流表内接,反之则选用电流表外接。
【四】 实验内容
1.用逐点测试法测二极管的正向特性
(1)按图(1)正确连接电路,其中二极管是硅管4007,电位器R P 是1K Ω。
电流的量程是10mA 。
(2)调节直流稳压电源,使其输出为5V 加上电路。
(3)调节R P 使二极管两端的电压U D (用万用表监测)按表(1)的数值变化,每调一个
电压,观察电路中的电流表的变化,结果填入下表(1)中。
表(1)二极管的正向特性测试
2. 用逐点测试法测二极管的反向特性
(1) 根据图(2)正确接线,其中电流表是±100μA,注意二极管要按反接。
(2)调节稳压电源为20V,然后接入电路。
(3)调节R P按表(2)所给的电压规律变化(用万用表监测,注意监测位置),每调一个电压,观察微安表的读数I D的变化。
结果填入表(2)中。
表(2)二极管的反向特性测试
3. 根据理1和2测得的结果,在同一坐标系中画出二极管的正反、向伏安特性曲线。
【五】试验结论
【六】思考题
1.伏安特性曲线的斜率的物理意义是什么?
2. 在测定二极管反向特性时,有同学发现所加电压还不到1伏,微安表指示已超量
程。
你认为原因是什么?。