差压式流量计应用的优缺点
- 格式:docx
- 大小:36.81 KB
- 文档页数:2
姓名:见习单位:论文指导:主要内容:差压式流量计在天然气产销厂的应用分析差压式流量计的应用分析1.差压式流量计介绍1.1结构差压式流量计主要由差压装置、差压变送器和流量积算仪组成。
1.2测量原理当流体流经管道内的节流件时,流速将在节流件处形成局部收缩,因而流速增加,静压力降低,于是在节流件前后便产生了压差。
流体流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。
1.3理论基础差压式流量计是以伯努利方程和流动连续性方程为依据,当被测介质流经差压件时,在其两侧产生差压,由差压与流量的关系,通过测量差压确定流体的流量。
1.4差压式流量计与其他类型流量计的比较2.常见差压式流量计2.1常用节流装置标准节流装置:按照标准文件设计、制造、安装和使用,无须经实流校准即可确定其流量值并估算流量测量误差。
①孔板:具有测量精度高、安装方便、使用范围广、造价低、无需实流校准等特点,广泛应用于各种介质的流量测量。
适用介质:各种液体、气体、蒸汽等在管道中安装一个孔板(节流板),流体流经孔板时,速度增加,压强减小。
孔板两侧的静压头之差正好是管中动压头之差:(P1-P0)/ρ=(U02-U12)/2。
②喷嘴和文丘里喷嘴是一个以管道中心线为旋转轴的对称体。
具有结构简单、牢固,稳定可靠,寿命长,价格低廉、无须实流校准等特点。
很适用于高压、大流量工况的测量。
长颈喷嘴见图2-1,文丘里喷嘴见图2-2。
图2-1长颈喷嘴图2-2文丘里喷嘴2.2 FloBoss103智能流量管理器2.2.1关于 Floboss103的介绍FloBoss103是一台小型的一体化的流量计算机,不仅具有静压、差压、温度等信号的直接测量功能,通过具有瞬时流量和累积流量等计算功能,还能实现各种报表所需数据的数字化远传功能,被称作“流量管理器”。
但与传统的流量积算仪系统(流量积算仪和压力、差压变送器、温度传感器)相比。
称其为“一体化智能流量积算仪”更为合适。
2.1.2 Floboss103的特点作为替代传统的流量积算仪系统的新产品,现已在天然气流量计量领域中被广泛的应用,与传统的流量积算仪系统相比,具有以下几个方面的特点: (1)数据管理高效数据管理包括瞬时流量、日累计流量、月累计流量、总累计流量等数据记录、存储功能,还可以对部分数据进行历史查询,其高效的报表功能代替了原有的人工报表,大大降低了数据管理的成本。
各种流量计工作原理及优缺点流量计是一种用于测量流体流量的设备,广泛应用于工业领域中的流体控制和监测过程中。
不同类型的流量计采用不同的工作原理,每种流量计都有其独特的优点和缺点。
下面将详细介绍几种常见的流量计及其工作原理、优缺点。
1. 质量流量计(Mass Flow Meter)质量流量计是通过测量流体通过流量计的质量来确定流量的一种流量计。
它通常使用热敏电阻或热电偶来测量流体的温度,并通过测量热量传递来计算质量流量。
质量流量计的优点是能够准确测量各种气体和液体的质量流量,不受流体密度、压力和温度的影响。
然而,质量流量计的缺点是成本较高,且对流体的物理性质要求较高。
2. 体积流量计(Volumetric Flow Meter)体积流量计是通过测量流体通过流量计的体积来确定流量的一种流量计。
常见的体积流量计包括涡轮流量计、液体顶管流量计和正交流量计等。
涡轮流量计通过测量流体通过涡轮的旋转来计算体积流量。
液体顶管流量计通过测量流体通过顶管的时间来计算体积流量。
正交流量计则通过测量流体通过正交管道的压力差来计算体积流量。
体积流量计的优点是结构简单、价格较低,但缺点是对流体的物理性质要求较高,且精度较低。
3.差压流量计(Differential Pressure Flow Meter)差压流量计是通过测量流体通过管道时产生的压力差来计算流量的一种流量计。
常见的差压流量计包括孔板流量计、喷嘴流量计和流体测速仪等。
孔板流量计通过在管道中设置孔板来产生压力差,并通过测量压力差来计算流量。
喷嘴流量计则通过流体通过喷嘴时产生的压力差来计算流量。
流体测速仪则通过测量流体通过测速仪时的速度来计算流量。
差压流量计的优点是结构简单、价格较低,适用于大流量的测量。
但缺点是对流体的物理性质要求较高,且存在一定的压力损失。
4. 超声波流量计(Ultrasonic Flow Meter)超声波流量计是通过测量超声波在流体中传播的速度来计算流量的一种流量计。
差压式流量计1. 简介差压式流量计是一种常用的流体测量设备,它通过测量流体流经管道时产生的差压来计算流量。
差压式流量计结构简单、使用方便,并且具有较高的精度和稳定性,因此被广泛应用于工业生产中的流量计量。
2. 工作原理差压式流量计根据伯努利定律和流体动量守恒定律,利用管道中的差压来测量流体的流量。
其工作原理如下:•流体经过流量计时,会受到流速的影响,导致管道内部产生差压。
•流量计通常由两个并列的管道和一个测量元件组成。
测量元件之间的差压用于计算流量。
•流体流过管道时,由于管道截面积变化或流道内有孔洞等原因,会产生速度和压力的变化。
•测量元件可通过测量差压来推断流体的流量,并将结果显示在指示器上。
3. 主要部件差压式流量计主要由以下几个部件组成:3.1 测量元件测量元件是差压式流量计的核心部件,它通常由孔板、喷嘴或流体节流装置等组成。
测量元件的选用取决于应用场景和流体性质。
•孔板:孔板是一种常用的测量元件,具有结构简单、成本低、适应性广等优点。
它通过在管道内设置一个孔洞,引起流体的压力变化。
•喷嘴:喷嘴测量元件具有高精度和较小的压力损失。
通过喷嘴内部的流道减小流体流速,产生差压。
•流体节流装置:流体节流装置通过在管道内设置节流装置,改变流体的速度和流道截面积,从而引起差压变化。
3.2 压力传感器压力传感器用于测量差压,并将其转化为电信号。
常见的压力传感器有压阻式传感器、电容式传感器和压电式传感器等。
•压阻式传感器:压阻式传感器是一种具有压阻特性的传感器,它通过测量电阻的变化来计算差压。
•电容式传感器:电容式传感器是一种利用电容的变化来测量差压的传感器。
差压引起电容的变化,从而测量差压。
•压电式传感器:压电式传感器是一种利用压电材料的特性来测量差压的传感器。
压电元件受到差压作用后,产生电荷变化,从而测量差压。
3.3 指示器指示器用于显示测量到的流量数值。
常见的指示器有机械指示器和电子指示器。
•机械指示器:机械指示器是一种通过机械结构显示数值的指示器,通常包括指针和刻度盘。
电磁流量计与差压流量计的优缺点比较引言流量计在工业生产和生活中扮演着重要的角色。
常用的流量计包括电磁流量计和差压流量计。
它们在测量流体流量方面具有独特的优势和不足,本文将在这两种流量计之间进行比较和楚断。
电磁流量计电磁流量计采用法拉第电磁感应原理测量导电液体的流量。
它是一种仪器,可以通过迈克耳孙电路产生磁场,当导电液体通过磁场时,会在液流方向上感生出电势,并通过电极测量出来。
电磁流量计具有以下优点:优点1.精度高:电磁流量计可以在无需维护的情况下持续稳定地测量流体流量,并且具有非常高的精度,误差很小,通常在0.5%以内。
2.适用范围广:电磁流量计可以用于高粘度液体,如果汁、油和糖浆等多种不同类型的导电液。
3.可靠性高:电磁流量计的传感器没有移动部件,因此可以长期稳定运行,同时中间没有接头使得它具有很高的可靠性。
4.测量通常不受环境影响:电磁流量计不受流体温度、压力、密度、黏度和电导率的影响,可以正常测量。
缺点1.价格高:电磁流量计通常价格较高,不适用于一般需求的场所。
2.只能够测量导电性高的液体:电磁流量计主要用于液体的测量,而且不适用于含有磁性杂质的液体。
3.灵敏度低:电磁流量计在测量低流速状态时性能较差。
4.需要安装直管段:电磁流量计需要在进口和出口处安装大量的直管段以保持流动状态,并使液体流速分布均匀。
差压流量计差压流量计是用差压原理测量流体流量的仪器。
通常它由一个管道、一个测压装置和读数器等组成。
差压流量计实际上是读取流体在管道中的流速和流体的密度后估算出流量。
它具有以下优点:优点1.易于使用: 差压流量计结构简单,操作容易,不需要使用复杂的技能。
2.价格较低: 差压流量计价格较低,适用于一般需求的场所。
3.适用范围广: 差压流量计广泛应用于气体、液体及蒸汽等的流量测量。
4.测量精度较高: 差压流量计精度较高,误差一般在2%以内。
缺点1.对运行环境要求较高: 由于差压流量计是通过压力读数进行估算,因此应用场所的环境对测量结果影响较大。
常见流量计的测量原理及优缺点
流量计是一种直接测量流体流量的仪器,其测量原理主要有体积法、重力法、质量法等。
其中,体积法是流量计测量中最常用的方法,通过测量流体通过流量计时的体积来计算流量。
重力法是利用流体受到重力作用时流速的变化来测量流量。
质量法是通过测量流体通过流量计时的质量来计算流量。
1. 压差式流量计:压差式流量计是通过测量流体通过管道时的压差来计算流量的一种仪器。
其测量原理基于伯努利定理,即当流体通过管道时,流速越大,压力越小。
因此,通过在管道中设置压差传感器来测量流体通过管道时的压差,再根据伯努利定理计算流量。
2. 磁流量计:磁流量计是一种利用磁场感应原理测量导电流体流量的仪器。
其测量原理基于法拉第电磁感应定律,即当导电流体通过磁场时,会在流体中产生感应电动势。
通过在管道中设置磁场和电极,测量导电流体通过管道时感应电动势的大小和方向,再根据法拉第电磁感应定律计算流量。
3. 超声波流量计:超声波流量计是一种利用超声波传播速度和方向来测量流体流量的仪器。
其测量原理基于多普勒效应,即当超声波穿过流体时,会受到流体流动的影响,导致超声波频率的变化。
通过在管道中设置超声波发射器和接收器,测量超声波在流体中传播的时间
和频率,再根据多普勒效应计算流量。
4. 涡街流量计:涡街流量计是一种利用流体通过涡街时产生的旋涡频率来测量流量的仪器。
其测量原理基于卡门涡街定律,即当流体通过涡街时,会产生旋涡。
通过在管道中设置涡街和传感器,测量涡街旋涡的频率,再根据卡门涡街定律计算流量。
以上是常见的流量测量原理,不同的测量原理适用于不同的流体和应用场景。
差压式孔板流量计特点
差压式孔板流量计是一种常用的流量计,它是利用孔板前后产生的压差与流量成正比的原理来测量介质流量的。
以下是差压式孔板流量计的几个特点:
1. 精度高
差压式孔板流量计的精度较高,其误差通常不超过2%。
这是因为它采用了先进的测量原理和精密的制造工艺。
此外,差压式孔板流量计还可以根据不同介质的流量特性进行额定,从而提高测量精度。
2. 适用性广
差压式孔板流量计的适用范围广,可以测量流量范围从小到大的液体、气体和蒸汽等不同介质。
此外,差压式孔板流量计还可以选择不同材质的制造材料从而适应不同的介质。
3. 安装方便
差压式孔板流量计的安装相对简单,只需要将其安装在管道上游,就可以通过压力传感器测量孔板前后的压差,然后计算出流量。
此外,差压式孔板流量计的结构紧凑,占用空间小,因此可以在狭小的空间内使用。
4. 维护成本低
差压式孔板流量计的维护成本较低,一般只需要进行定期的校准和清洗即可。
这是因为差压式孔板流量计的结构比较简单,没有复杂的电子元件和机械部件,因此故障率比较低,同时也易于清洗和维护。
5. 使用寿命长
差压式孔板流量计的使用寿命比较长,一般可以使用5-10年以上。
这是因为差压式孔板流量计的结构比较坚固,材料耐腐蚀性强,可以在恶劣的环境中长期使用。
综上所述,差压式孔板流量计具有精度高、适用性广、安装方便、维护成本低以及使用寿命长等优点。
它是工业生产和实验室测试中常用的测量仪器之一,具有重要的应用价值。
差压式(即节流式,如孔板流量计)流量计测量原理差压式流量计差压式(也称节流式)流量计是基于流体流动的节流原理,利用流体流经节流装置时产生的压力差而实现流量测量的。
它是目前生产中测量流量最成熟、最常用的方法之一。
通常是由能将被测流体的流量转换成压差信号的节流装置(如孔板、喷嘴、文丘利管等)和能将此压差转换成对应的流量值显示出来的差压流量计所组成。
所谓节流装置就是在管道中放置能使流体产生局部收缩的元件。
应用最广的是孔板,其次是喷嘴、文丘利管和文丘利喷嘴。
这几种节流装置的使用历史较长,已经积累了丰富的实践经验和完整的实验资料,因此,国内外都把它们的形式标准化,并称为标准节流装置。
就是说根据统一标准进行设计和制造的标准节流装置可直接用来测量,不必单独标定。
但对于非标准化的特殊节流装置,在使用时,应对其进行个别标定。
差压式流量计测量原理流体在有节流装置的管道中流动时,在节流装置前后的管壁处,流体的静压力产生差异的现象称为节流现象。
节流装置包括节流元件和取压装置。
节流元件是使管道中的流体产生局部收缩的元件,常用的节流元件有孔板、喷嘴和文丘利管等,下面以孔板为例说明节流现象。
在管道中流动的流体具有动能和位能,在一定条件下这两种能量可以相互转换。
而根据能量守恒定律,流体所具有的静压能和动能,再加上克服流动阻力的能量损失,在没有外加能量的情况下,其总和是不变的。
图示在孔板前后流体的速度与压力的分布情况。
流体在管道截面I 前,以一定的流速v流动。
此时的静压力为P;。
在接近节流装置时,由于遇到节流装置的阻挡,使靠近管壁处的流体受到节流装置的阻挡作用最大,因而使一部分动能转换为静压能,出现了节流装置人口端面靠近管壁处的流体静压力升高,并且比管道中心处的压力要大,即在节流装置人口端面处产生一径向压差,这一径向压差使流体产生径向附加速度,从而使靠近管壁处的流体质点的流向与管道中心轴线相倾斜,形成了流束的收缩运动。
由于惯性作用,流束收缩最小的地方不在孔板的开孔处,而是在开孔处的截面11 处。
差压式流量计差压式流量计是一种常见的流量测量工具,其原理是根据管道中的流体在流动时所产生的差压,进而计算出流量大小。
本文将详细介绍差压式流量计的工作原理、分类、应用及优点。
一、差压式流量计的工作原理差压式流量计通过测量管道中液体或气体在运动过程中产生的压阻差来算出流量大小。
差压流量计通常由一个测量管和一个压力传感器组成。
测量管是一个塑料或金属管道,通常呈直管形,中间被分成两部分,为分离的压力孔。
其中一个压力孔被连接到管道的上部,另一个被连接到下部。
管道的两部分之间的压力差与流量有直接关系,因为流体流过增压腔时,它的速度会加快,流过降压腔时,其速度又会降低。
差压式流量计通过测量管道中两部分间的压力差,进而计算出流量大小。
全压式差压流量计是最基本的差压流量计类型,它可以测量绝大多数气体和液体的流量。
它的主要构件是一个截面面积缩小的锥形管,其宽度和深度不相等。
流体通过锥形管时,其速度增加,压力则降低,然后继续通过需要流量测量的管道。
测量管道安装在挡板式流量计、调整蓝、插入板式流量计中等流动部件的闭合位置。
平板式差压流量计通过一对正方形平板来实现流量测量。
平板被安装在管道的流动方向上,平板之间形成缝隙或夹缝,流体流过该缝隙或夹缝时,其速度增加,压力降低。
采用压力传感器测量差压,从而计算出流量大小。
环形差压流量计分为均压式和斜井式,前者适用于低速流体,后者适用于较高速流体。
环形差压流量计通过将管道压降转换为气体的压降,即通过轴向正压侧槽和轴向负压侧槽的联合作用,来计算流体的流量大小。
V型差压流量计是一种适用于高温、高压、高粘度、腐蚀性气体、液体以及热力传导油等场合的流量计。
其工作原理是利用特有的双V结构,让流体从两个不同角度出发,通过不同角度射出的流体通过两个大肚子和收缩管,并通过测量处理成标准信号。
差压式流量计被广泛应用于化工、电力、石油、天然气工业中的流量测量。
在化工行业,在对于水的测量中广泛使用。
此外,差压流量计还广泛用于供水、采矿、污水处理等领域。
压差流量计原理及应用压差流量计是一种流量测量仪表,其原理是基于流体在管道内流动时形成的压差与流量之间的关系。
当液体或气体通过管道流动时,它们会受到管道内壁面的阻力,因此在管道上下游形成了不同的压力,这个压力差称为压差。
压差流量计就是基于这一原理工作的。
1. 压差流量计的结构和工作原理压差流量计通常由一个小孔和一个压差传感器组成,小孔位于管道中央,流体经过小孔时流速加快,压力降低。
下游的压力传感器和上游的压力传感器要求测量差压。
这种测量方法需要管道有一定的长度。
当压差传感器测量到差压时,压差传感器会将信号传递给计算机或PLC,并计算出流量。
在计算过程中,根据流量指数(流体通过小孔的效率)、小孔面积等参数计算出流量值。
2. 压差流量计的应用领域压差流量计广泛应用于水处理、污水处理、石化、热力和制药行业等。
使用压差流量计可以测量液体、气体和蒸汽。
在水处理和污水处理领域中,压差流量计用于监测管道中的流量,防止管道中的污水溢出。
在石化和热力领域中,压差流量计可以测量液体或气体流量,保证设备高效运转。
在制药领域,这种流量计可以控制液体流量,使设备调配更加准确。
3. 压差流量计的优点和缺点3.1 优点(1)准确性高:压差流量计具有较高的测量精度,并且可以通过校准提高准确性。
(2)结构简单:压差流量计通常由少量的部件组成,具有简单的结构和易于维护。
(3)应用范围广:压差流量计适用于液体、气体和蒸汽的测量,范围广泛。
(4)价格合理:与其他流量计相比,压差流量计价格较低。
3.2 缺点(1)对流体特性敏感:压差流量计对流体特性非常敏感,特别是对粘性和密度的影响较为显著。
(2)安装限制:安装必须按照一定要求进行,这对于某些场合和工艺较为不利。
(3)受到管道长度限制:压差流量计需要一定的管道长度才能保证测量准确,因此在短的管道中不能使用。
综上所述,压差流量计是一种简单、可靠、精确且价格合理的流量测量仪表。
尽管存在一些缺点,但仍然是广泛应用于工业生产和其他领域的流量计。
差压式流量计的应用概况及优缺点一、应用概况差压式流量计广泛应用于石油、化工、冶金、电力、食品、制药等行业,用于流体测量和控制过程中的流量,以实现对工业生产流程的监测和控制。
在这些行业中,差压式流量计被广泛用于液体和气体的测量,包括蒸汽、水、燃气、石油、酸碱、稀酸、稀碱等介质的流量测量。
差压式流量计的原理是依据流体在管道中流过节流装置时,流速增加、静压降低的原理,通过测量节流装置两侧的差压来计算出流量。
其中,节流装置可以是孔板、喷嘴、流量旋翼、均质器等多种形式,具体的选择取决于被测介质的性质和流速范围。
在使用差压式流量计进行流量测量时,需要根据被测介质的性质和流量变化范围来选择合适的节流装置和差压变送器。
如果被测介质是高温、高压、腐蚀性较强或含有颗粒物等特殊介质,需要选用特殊材质或特殊结构的差压式流量计。
二、优缺点1.优点:(1)测量范围广:差压式流量计适用于多种介质的流量测量,包括液体和气体的流量测量。
(2)测量准确性高:差压式流量计采用了差压测量原理,通过测量两侧的差压来计算出流量,可以获得较高的测量准确性。
(3)结构简单:差压式流量计结构简单,可靠性高,并且易于维护和维修。
(4)成本较低:相比于其他类型的流量计,差压式流量计的成本通常较低,适用于对成本要求较为敏感的工业领域。
2.缺点:(1)压力损失较大:由于差压式流量计需要在节流装置中产生差压,因此会导致较大的压力损失,需要消耗更多的能量。
(2)对流体性质敏感:差压式流量计对流体的性质敏感,如介质的粘度、密度等会影响测量的准确性。
(3)不适合高粘度介质:差压式流量计的节流装置一般采用孔板或喷嘴等形式,对粘度较高的介质不太适用,容易出现堵塞等问题。
(4)不适合低流量测量:由于差压式流量计需要产生较大的差压才能进行测量,因此对于低流量的测量,可能无法获得较高的精度。
综上所述,差压式流量计作为一种常见的流量测量装置,广泛应用于工业生产中的流体测量和控制。
气体流量测量方法
气体流量的测量在许多行业中都是非常关键的一个环节,比如石化、化工、医药等行业。
不同的气体流量测量方法适用于不同的气体类型、流量范围和应用环境。
下面将介绍几种常见的气体流量测量方法。
1.差压式流量计
差压式流量计是气体流量测量中最常见的方法之一。
它基于伯努利原理,通过测量管道内部两点之间的压差来计算气体流量。
这种方法的优点在于可以测量各种不同类型的气体,比较适合于中小流量的测量。
2.热式流量计
热式流量计是一种通过测量气体通过管道时对管道内部的热量传递进行测量的方法。
这种方法适用于测量低流量的气体,可以测量气体的体积流量和质量流量。
3.超声波流量计
超声波流量计是一种通过测量气体通过管道时产生的超声波信号来测量气体流量的方法。
这种方法适用于测量各种气体类型和流量范围。
它的优点在于不会对气体产生影响,且准确性比较高。
4.涡街流量计
涡街流量计是一种通过测量气体通过管道时产生的涡旋频率来计算气体流量的方法。
这种方法适用于测量中小流量的气体,且测量范围比较窄。
5.质量流量计
质量流量计是一种通过测量气体质量流量来计算气体流量的方法。
这种方法适用于测量高流量和高压气体,但相对比较昂贵。
总结
在选择气体流量测量方法时,需要考虑气体类型、流量范围、环境条件和测量要求等因素。
不同的测量方法各有优缺点,在实际应用中需要根据具体情况进行选择。
无论采用哪种方法,都需要保证测量准确性和稳定性,以确保生产过程的正常运行。
[技术学习篇]一文盘点差压式、容积式、浮子、叶轮式流量计优缺点一、差压式流量计差压式流量计是一种具有悠久历史,实践经验丰富成熟,标准规范完善,是品种规格齐全的一类流量测量仪表。
差压式流量计是利用伯努利方程原理来测量,当充满管中的流体经管道内的差压装置时,流束将在差压装置处形成局部收缩,从而使流速增加,静压力低,于是在差压装置前后或喉部便产生了压差,介质流动的流量越大,产生的压差就越大,所以可以通过测量压差来衡量流体流量的大小。
差压式流量计分为标准差压式差压流量计和非标准差压式差压流量计两大类,标准差压式流量计得到国际标准化组织和国际法制计量组织的认可,在国际间作为通用流量计互为认可, 20世纪50年代以前是唯一的天然气流量计,目前还占据比较重要的地位。
差压式流量计的优点有:·结构简单、牢固,性能稳定可靠,使用期限长,价格低廉。
·检测件与差压显示仪表可分开不同生产厂生产,便于专业化形成规模经济生产,它们的结合非常灵活方便。
·标准型的检测件,是全世界通用的,并得到国际标准组织的认可。
·标准型差压装置无需实流校准即可投用,只要按标准设计加工不需要进行实际标定,也能在已知的不确定度范围内进行流量测量且能满足工程测量的需要。
差压式流量计的缺点有:·测量准确度普遍偏低。
·范围度窄,一般仅3:1~4:1。
·现场安装条件要求高。
·压损大。
针对上述不足,近年国内生产厂推出一系列改进办法,如一体式差压流量计、定值节流件、可换孔板节流装置、采用标准喷嘴等等。
根据差压式流量计的特点,要想在工作中获得准确测量结果,就必须全面掌握流量测量的方式、测量介质、测量装置、流体工况、检验标准等情况。
可广泛应用于电力、化工、石化、石油、天然气、冶金轻工等,对于高温、高压介质的流量测量尤其具有优势。
二、容积式流量计容积式流量计又称定排量流量计在流量仪表中是精度较高的一类,它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,并进行重复不断地充满和排放该体积部分流体而累加测量出流体体积总量的流量仪表。
差压式流量计的压力引出方式及优缺点
差压式流量计的压力引出方式主要由差压传感器要求、被测介质物化性质决定,主要包含毛细管导压和管线导压2种方式,2种导压方式在工业应用上各有优势。
1、毛细管导压
毛细管导压是一种无接触的压力引出方式,须在取压点安装导压法兰,导压法兰与毛细管的膜盒法兰通过螺栓相连,膜片外侧与被测介质直接接触,膜片内侧与毛细管内部充满硅油,硅油被密封在由膜片、毛细管和差压传感器压力腔室所形成的空间内,利用液体的可压缩性小的特点进行压力的无损传递。
这种压力引出方式被测介质与差压传感器无需直接接触,可对传感器起到有效保护。
使用者可根据被测介质的毒性、腐蚀性、易凝固性、易结晶性和酸碱度进行膜片选择来满足使用要求。
但使用的变送器价格昂贵,膜片使用过程中维护要求高,在设备转运过程中需要加强对膜片的保护,膜片在受到尖锐物体触碰或受力不均时极易损坏,导致压差值测量失真。
2、管线导压
管线导压是一种接触式的压力引出方式,该方式下使用的变送器无特定附属管线,要求管线直径在8~12mm,管线长度在45m以内。
变送器高低压腔室位置预留接口,使用时通过仪表管等管线将被测介质引
入传感器的高低压腔内,差压传感器再检测2个腔室所产生的压差。
该种方式被测介质与差压传感器直接接触,在使用时需要根据被测介质的物理、化学性质对差压变送器和压力引出管线的材质进行选择,避免使用过程中因腐蚀、介质结晶和介质凝固等原因导致流量计无法测量或差压变送器损坏,该类型的差压变送器价格相对便宜,且导压管线敷设距离长,相比毛细管导压来说灵活性强,适用范围广。
差压流量计的主要特点1.原理简单:差压流量计基于伯努利原理和流体力学定律,通过测量流体运动中的差压,从而间接得到流量大小。
差压流量计的工作原理简单、可靠。
2.适用范围广:差压流量计适用于各种介质,包括气体、液体和蒸汽。
不同的介质可以使用不同的传感器和测量方法来实现流量的测量。
3.精度高:差压流量计具有较高的测量精度,通常可达到±0.5%~±1.0%。
其高精度使其在要求精确流量测量的场合得到了广泛应用。
4.可靠性强:差压流量计采用了静态式测量方法,即传感器不与流体直接接触,因此不会受到流体介质的化学性质、温度、压力等因素的影响。
这使得差压流量计具有较高的工作可靠性。
5.安装方便:差压流量计具有结构简单、安装方便的特点。
它可以通过法兰连接或者直接螺纹连接到管道上,不需要特殊的安装设备。
6.响应速度快:差压流量计的响应速度通常在0.1~3秒之间,可以实时监测流体的流动情况,保证生产过程的稳定性和安全性。
7.抗堵塞能力强:差压流量计传感器的结构设计合理,具有良好的抗堵塞能力。
即使在介质中存在固体颗粒或者液体中存在气泡时,也能保持正常的工作。
8.维护成本低:差压流量计的维护成本较低。
一般情况下,仅需定期清洗传感器、校正零点等简单操作,即可保证工作的稳定和准确。
9.应用广泛:差压流量计可广泛应用于化工、石油、天然气、水处理、制药、食品等各个领域,对于流量测量和控制具有重要的作用。
10.可与自动化系统集成:差压流量计可以与现代化的自动控制系统集成,实现自动化的流量控制和监测。
这使得流量的测量更加方便和准确。
总结起来,差压流量计具有操作简单、适用范围广、精度高、可靠性强、安装方便、响应速度快、抗堵塞能力强、维护成本低、应用广泛和可与自动化系统集成等主要特点。
这些特点使得差压流量计成为工业流量测量中一种重要的设备。
电磁流量计气泡噪声问题的避免和解决方法众所周知,电磁流量计测量原理是法拉第电磁感应定律测量封闭管道中的导电液体和浆液中的体积流量,包括酸、碱、盐等强腐蚀性的液体。
电磁流量计在钢铁行业冷却水测量中出现的误报警大多是由气泡擦过电极,形成短暂时间的感应信号为零,这是一种气穴现象,我们称这种故障为气泡噪声(bubble noise)。
下面介绍一下气泡噪声问题的避免和解决方法。
首先,应从安装上满足电磁流量计上游直管段长度要求, 规范仪表的安装, 选择远离热源的安装场所, 合理使用管道流速, 选用光洁度高的PFA 氟塑料衬里和高纯氧化铝工业陶瓷导管。
这些措施将有助于防止或减小旋涡和气体分离的发生。
也就是说, 改进传感器制造工艺、改善使用仪表环境条件和安装条件、采用仪表上游加装排气阀等措施, 有可能避免问题的发生。
其次, 合理地设置流量计阻尼时间和功能, 也可以解决出现气泡噪声测量的误报警。
阻尼时间的选择是根据流量信号中发生气泡噪声的脉冲宽度来选取。
一般应取阻尼时间为气泡噪声脉冲宽度的3~ 5倍。
如气泡噪声脉冲宽度是10 s, 阻尼时间应取30~ 50 s。
具体选择应根据要求的控制精度, 3倍脉冲宽度控制误差在5%, 5倍脉冲宽度控制精度高于1%。
加大仪表阻尼时间能有效地解决这种脉冲型气泡噪声的影响, 同时也带来了反应迟钝的缺点, 即当真正流量波动时, 仪表反应很慢。
这对要求灵敏控制的冷却水系统无疑是个难题。
为了解决这个问题, 智能化电磁流量计可以使用软件逻辑判断即粗大误差处理的方法。
在出现这种故障时, 通过调整流量的不敏感时间和变化幅度限制这两个条件来判断是流量的变动, 还是气泡擦过电极。
如果不是气泡擦过电极的噪声, CPU按正常采样、运算和数字滤波; 如果判定产生的是气泡噪声, 切除测量值, 维持前面的流量测量值。
这样, 正常流量测量期间阻尼时间仍然为3~6s。
只有在有气泡噪声时, 根据脉冲宽度设置的长短将不敏感时间加长, 系统控制的时间也会加长。
常用流量计的基础知识和比较流量计是一种用于测量流体流动速度和体积的仪器。
常用的流量计主要有:差压式流量计、涡街式流量计、电磁式流量计、超声波流量计和质量流量计。
本文将为您介绍这些常用流量计的基础知识和比较。
一.差压式流量计差压式流量计是通过测量绕流体管道的压差(即扩压器前后的压差)来计算流量的。
其优点是测量范围较宽,从小到几毫升/分钟到大量的水/秒不等,测量误差较小、可靠性高。
但是,差压式流量计对管道结构和管道粗糙度的要求较高,对于粘度和密度变化较大的流体,测量误差会增大。
涡街式流量计是通过测量涡轮绕轴线自转的角速度来计算流量的。
其优点是测量范围广泛,可以适应不同流体粘度的测量,并且安装与使用方便。
但是,涡街式流量计对流体在管道中的流动方向要求比较苛刻,具有一定的压力损失,且易受流体中颗粒物的影响。
电磁式流量计是通过测量液体通过磁场产生的电动势来测量液体的流量,其优点在于测量范围非常广泛,测量误差小,使用寿命长,对于含有颗粒物和腐蚀性强的流体,电磁式流量计有很好的稳定性和精度。
但是,其安装必须采用同轴式电极或成对电极,仪器成本较高,也需要较高的安装精度。
四.超声波流量计超声波流量计是通过测量超声波传播速度和方向,来测量流量的。
其优点在于测量范围广泛,不易受流体颜色、浊度、气泡和颗粒物的影响,具有使用方便等优点。
但是,超声波流量计在某些情况下会受到流体波动和结构振动的影响,其测量精度和稳定性有待更进一步改善。
五.质量流量计质量流量计是一种基于质量守恒原理和热力学平衡原理测量瞬时流量的仪器。
其优点在于可以不受温度、压力和流体密度等参数的影响,能够精确测量几乎所有的流体,并且可以反映温度、压力等流体参数变化的影响,具有系统灵敏性和速度性能高等优点。
但是,质量流量计具有高昂的价格和较高的维护成本,需要使用优质的精密元器件,并需要高级的使用和维护技术人员。
总体来看,不同的流量计具有不同的优缺点,一般应根据实际需要选择合适的流量计。
差压式流量计和转子流量计的区别转子流量计和差压式流量计是工业上和实验室中最常用的流量计。
虽然都是测量流量的仪表,但是其原理却大相径庭,其流量基本方程的推导也不相同,因此,导致仪表的特点和适用场合也有所区别。
下面就跟着店铺一起来看看吧。
转子流量计与差压式流量计的区别转子流量计转子流量计,是由一个自下往上逐渐扩大的带刻度的锥形管和一个置于锥形管内可以自由上下移动的转子构成。
工作时,被测流体由锥形管下端进入,沿着锥形管向上运动,流过转子与锥形管之间的环隙,再从锥形管上端流出。
受流动流体带动作用,转子受到一个自下向上流体对转子的动压力,正好等于转子在被测流体中的重力(即转子自身的重力减去流体对转子的浮力)。
垂直安装流量计时,转子重心就在锥形管中心轴线上,转子所受的三个力都平行于中心轴线。
当受力平衡时,转子就稳定在锥管内某一位置上。
对于给定的转子流量计,转子的材料、大小和形状都可确定,所以转子在被测流体中的重力是已知的,只有流体对转子的动压力是随流体流速大小而变化的。
因此当流体流速变大或变小时,转子受到的动压力增大或减小,转子将作向上或向下的移动,转子与锥形管壁之间的环隙面积也发生变化,即流动截面积也发生变化,待变化到某一流速转子受力平衡时,转子就稳定在新的位置上。
对于一台给定的转子流量计,转子在锥管中平衡位置的高低反应了被测流体流经锥形管的流量大小。
差压式流量计差压式流量计由三部分组成,即由节流装置、导压管和差压计.差压式流量计是利用流体流动的节流原理来实现流量测量的。
节流原理是流体在有节流装置的管道中流动时,在节流装置前后的管壁处,流体的静压力产生差异的现象。
流动流体的能量有静压能和动能两种形式。
流体具有静压能是因为有压力,具有动能是因为有流动速度,在一定条件下,这两种形式的能量是可以相互转化。
根据能量守恒定律,在没有外加能量的前提下,流体所具有的静压能和动能,再加上用以克服流体流动阻力的能量损失,其能量总和是相等的。
差压式流量计应用的优缺点
现今的流量计已经多不胜数,每种都有不同的作用和效果,这次就来
看看差压式流量计应用的优缺点。
优点:
(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;
(2)应用范围广泛,至今尚无任何一类流量计可与之相比拟;
(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济
生产。
缺点:
(1)测量精度普遍偏低;
(2)范围度窄,一般仅3:1~4:1;
(3)现场安装条件要求高;
(4)压损大(指孔板、喷嘴等)。
应用概况:
差压式流量计应用范围特别广泛,在封闭管道的流量测量中各种对象
都有应用,如流体方面:单相、混相、洁净、脏污、粘性流等;工作状态
方面:常压、高压、真空、常温、高温、低温等;管径方面:从几mm 到
几m;流动条件方面:亚音速、音速、脉动流等。
它在各工业部门的用量
约占流量计全部用量的 1/4~1/3
这次就分享到这里,如果感兴趣的话,请关注广州胜仕自动化仪表,我司是一家利用获取欧美传感器先进技术的途径及多年智能仪表研发方面的优势,成功推出十几个系列共六十多个品种智能仪表。