煤堆自燃原因及预防措施3篇
- 格式:docx
- 大小:19.28 KB
- 文档页数:6
防止煤堆自燃的措施随着经济的发展和能源的需求增加,煤作为一种主要的能源,在现代工业中得到了广泛的应用。
然而,煤堆自燃是一种经常发生的火灾事故,过去几十年中,全国煤堆自燃事故不断增加,给人民生命财产造成了极大的损失。
为了防止煤堆自燃,应采取有效的措施。
煤堆自燃的原因煤堆自燃是因为煤中的有机物质被氧化,产生热量并进一步反应,最终导致火灾。
煤的自燃与以下因素有关:湿度煤堆的湿度高会促进煤中的微生物生长,继而产生大量的热量和二氧化碳。
这些气体会在煤堆内部堆积,并最终导致煤堆的自燃。
温度煤堆中存在的高温区域是煤自燃的主要诱因之一。
这些高温区域可能由天气、太阳光、电器等引起,也可能是由于煤自身的发热引起的。
当煤的温度超过一定值时,就会引起自发的氧化反应,进而形成火源,导致自燃。
通风通风是煤堆自燃的另一个重要因素。
如果通风不良,煤堆内部的热量和气体无法得到及时的排除,就会在煤体内部积聚,从而形成火源。
防止煤堆自燃的措施为了防止煤堆自燃,我们可以采取以下措施:减少堆积高度在堆积煤炭时,要把煤堆的高度限制在一定范围内,一般不宜超过4米。
如果堆积过高,上部煤堆所受的压力会引起空气的排斥和堆积煤炭的受热面积增加,它们将使堆积的热量难以及时散发,促使自燃的产生。
加强测温监测在煤堆内部选择合适的测温位置,安装煤堆自动测温监测系统,并及时记录煤堆内部温度变化。
如果发现煤堆内部温度超过65℃或升温速度快,就需要及时调整煤堆的通风,降低煤堆温度。
限制堆积区域的通风在保证必要通风条件下,不能使堆积区域的通风过大。
通风过大会导致煤堆内部的热量和气体无法得到及时的排除,从而形成火源。
治理堆场煤堆的堆场应该平整,平地则更好。
各部分应该互相分离,规定停放区域。
同时,要对堆场进行清理,清除可能储存并引发自燃的垃圾、泥石、树枝、木板等物品。
防止下雨在堆积煤炭时,要尽可能避免暴露于风雨。
这是因为雨水不仅会增加煤堆的湿度,还可能将外部空气中的氧气和惰性气体吸入煤堆,从而促使自燃的发生。
露天矿煤炭自燃的原因及防治随着矿业工业的发展,露天矿已经成为了一种非常常见的采矿方式。
然而,由于露天矿的开采方式特殊,常常会出现煤炭自燃现象。
这种现象不仅会对矿山开采造成影响,还会给采矿工人的安全构成威胁。
因此,研究露天矿煤炭自燃的原因及其防治措施显得尤为重要。
一、露天矿煤炭自燃的原因1. 低温氧化:煤有吸氧能力,在露天矿堆积时可以与空气中的氧气发生反应,产生低温氧化的现象。
一些煤种在空气中温度达到了40-50度就会开始自发的低温氧化,一旦放任不管,可能会形成自燃。
2. 集肥:露天矿采用挖掘车和掘进机举行装载,运输,煤种在运输中不时会有割裂掉的,煤块所割裂下来的细末由于受到挤压的原因,会产生空气被梳理,这和在室外打开散缩煤堆有相似之处,因此,长时间堆积下来,零头的细末会产生高温,再加上其容易和氧气结合,引发火灾。
3. 窖缝空气热交换:露天堆积煤层中,所干的细小倾角、穿堆停堆、梳子的堆砌等处,都有非常丰富的煤层接触面。
在干时期,空气可以大面积流动,引发空气中热交换,容易引发自燃。
二、露天矿煤炭自燃的防治1. 预防低温氧化:在露天矿中,预防低温氧化是一项非常重要的任务。
因此,在采取装载、运输等要领时必须慎重处理每一段岩石,严禁在生产中过早装载,挑拣煤堆的过渡要做得越简略越好。
此外,还可以利用覆盖物,比如专门的防燃覆盖被布置,在煤的堆积中进行掩护,降低自燃的风险。
2. 加强堆积管理:堆积煤的波动比较大,特别是受雨雪天气影响大,且面积比较大,一些角落不容易管理。
此时就需要设立设施提高管理的水平,比如设置专门的监控系统,每日进行巡查管理,及时散煤,防止大量烟尘和灰尘的堆积。
3. 做好现场消防:露天煤矿堆积贮存,是煤层自燃最容易发生的环节。
因此在现场不能缺少有效的消防设备。
同时加强监测,发现问题及时处理。
总之,为了防范露天矿煤炭自燃的风险,主要还是要预防为主,加强堆积管理,减少煤在露天堆积过程中的低温氧化,加强消防设备等措施,彻底防范煤炭自燃所带来的安全隐患。
煤堆自燃原因分析与防治措施煤堆自燃原因分析煤堆自燃是由于煤堆内部温度升高达到点火温度,引发燃烧而产生的一种火灾。
在煤炭储存过程中,自燃是一种常见的火灾形式,由多种因素引起。
煤堆自然发热煤本身具有一定的自燃特性,当煤存放在封闭的情况下,由于内部氧气和外部的空气难以交换,温度逐渐升高,达到一定温度后便会自发地发生燃烧,从而引起火灾。
煤堆内自然发热的原因包括氧化、吸放热、化热、压力效应、生物作用等,其中氧化是主要原因。
外界环境因素外界环境因素也会影响煤堆自燃,如高温、干燥的天气容易使煤体温度升高,从而导致自燃。
此外,强风、高温、干燥等因素还会使得火灾扩散速度加快。
煤堆堆积方式不同的煤堆堆积方式也会影响煤堆自燃的发生。
比如,煤堆的高度、形状、密度等都会对煤堆内部的温度、氧气、空气流动等因素产生影响,从而影响煤堆的自燃概率。
煤炭质量煤炭质量是影响煤堆自燃的重要因素之一。
含挥发分高、易吸潮、颗粒细小、杂质含量高的煤炭容易自燃。
此外,煤炭质量不良可能增加煤堆内部的氧化速度,从而促进煤堆的自燃。
煤堆自燃防治措施为有效预防和控制煤堆自燃的发生,需要采取下列防治措施:加强监测加强对煤堆温度和烟气的监测,一旦监测到超过规定温度或者出现异常的烟气,应立即采取措施进行管控。
监测措施可以包括使用自动报警装置、摄像头监控和卫星监测等。
堆积方式合理布局合理的煤堆布局和堆积方式,可以有效控制煤堆自燃。
一般而言,应注意煤堆的高度不要过高,煤堆的形状要有利于空气流通,密度要适宜。
定期施工维护煤堆的施工维护是预防煤堆自燃的重要手段之一。
定期的维护可以包括测量煤堆内部温度、改变煤堆的密度、对煤堆内部进行通风换气等。
使用防护材料可在煤堆表面、挡墙和地面覆盖一定厚度的耐高温的防护材料,能够有效防止煤堆与周围物品相互在一定温度下燃烧,从而预防煤堆自燃的发生。
加强员工培训对工人进行安全生产和防火培训,提高员工的防范意识和火灾应急处理能力,有助于有效预防煤堆自燃的发生。
煤炭自燃机理及防治措施1. 煤炭自燃机理煤炭在长期堆放或运输过程中,由于各种原因会发生自燃。
煤炭自燃是指煤炭在空气中氧化产热,炭渣在热的作用下又反过来氧化,从而释放出更多的热,不断形成自蒸自燃的链式反应,最终导致整个煤堆自燃。
1.1 自燃的原因自燃的原因很复杂,主要有以下几个方面: 1. 煤本身所含的杂质会使氧化反应更加迅速; 2. 煤的结构特性,例如表面积、孔隙率、含水率等都对煤的自燃性质有影响; 3. 煤的存储和运输中遇到的气候和环境变化会产生影响; 4. 存储堆放方式不合理,破坏了煤堆的组织结构、增加了煤堆的密度和湿度等也是影响因素之一; 5. 存放时间过长,不适当的处理方式等也会导致自燃。
1.2 自燃的过程煤的自燃过程发生在空气中。
煤堆中的空气和煤堆表面的空气形成煤堆空气层。
在运动的空气的作用下,煤堆表面的水分开始蒸发,导致煤堆表面温度升高。
随着温度的升高,煤中的水分挥发,煤内部局部升温。
当局部温度达到煤的自燃点时,就会引起自燃。
同时,煤中还可能存在化学反应,例如氧化、聚合等反应,加速了自燃的过程。
1.3 自燃的类型自燃可分为三类:微观自燃(微小的火花、电火花等导致)、局部自燃(局部温度升高、氧化反应开始时产生)、全面自燃(煤堆内多处同时发生火灾,煤炭质量严重下降)。
2. 煤炭自燃防治措施为了预防煤堆自燃,要采取一系列防治措施,包括: 1. 煤堆的布放和运输要注意放置、通风和排水,保证煤质的稳定。
2. 在堆放和运输中,要注意煤堆的密度和高度,堆放时间不宜过长,防止煤的自然风化和氧化。
3. 堆放地的基础要坚实,同时要注意煤堆的密实度和排水,确保煤堆安全。
4. 监测煤堆的温度,及时检测异常情况,采取相应防止措施,避免煤的自燃。
5. 对煤堆的管理要循环利用,减少浪费,以便提高效益,节约资源。
6. 加强对科研和技术的投资,提高煤堆的安全性,有选择地适当地提高煤的自燃点,减轻煤的自然风化和氧化过程。
煤堆自燃原因及预防措施•煤堆自燃现象概述•煤堆自燃原因分析•煤堆自燃预防措施探讨•国内外先进经验借鉴与案例分析•未来发展趋势预测与挑战应对煤堆自燃现象概述01自燃定义与特点自燃定义煤堆自燃是指煤炭在没有外部火源的情况下,由于内部物理化学反应导致温度逐渐升高,最终达到煤的着火点而发生的燃烧现象。
自燃特点煤堆自燃往往发生在煤堆内部,初期不易察觉,一旦自燃发展起来,火源位置难以确定,灭火难度大。
煤堆自燃会造成大量煤炭资源的浪费,给企业带来巨大经济损失。
经济损失环境污染安全隐患自燃过程中产生的有毒有害气体和烟尘会对周围环境造成污染,影响居民生活。
自燃可能引发煤堆爆炸、坍塌等事故,威胁人员和设备安全。
030201煤堆自燃危害程度国内外煤堆自燃现状国内现状我国煤炭资源丰富,但煤堆自燃现象也较为普遍,尤其在露天煤矿和煤炭储运场所。
近年来,随着煤炭行业的快速发展,煤堆自燃问题日益突出。
国外现状世界上许多国家和地区都面临着煤堆自燃的问题。
一些发达国家通过采用先进的监测技术和管理措施,有效地降低了煤堆自燃的发生率。
然而,在一些发展中国家和地区,由于技术和管理水平相对落后,煤堆自燃现象仍然比较严重。
煤堆自燃原因分析02煤的化学成分煤中含有硫、磷等易燃元素,这些元素在适宜的条件下容易与空气中的氧气发生化学反应,产生热量并引发自燃。
煤的氧化反应煤与空气中的氧气接触后,会发生缓慢的氧化反应,释放热量。
当热量积累到一定程度时,煤堆温度逐渐升高,最终导致自燃。
煤的粒度细粒煤具有较大的比表面积,与空气接触更充分,氧化反应速度更快,因此更容易发生自燃。
高温环境会加速煤的氧化反应速度,增加自燃风险。
环境温度良好的通风条件为煤堆提供了充足的氧气供应,但同时也加速了煤的氧化反应过程,增加了自燃的可能性。
通风条件煤堆储存时间过长,热量积累越多,自燃风险越高。
储存时间煤堆附近的明火、电焊等作业产生的火花以及雷电等自然因素都可能引发煤堆自燃。
煤堆自燃原因分析与防治措施概述煤炭是我国主要的能源资源之一,但长期以来煤炭的储存和运输却面临着不安全和高消耗的问题。
其中,煤堆自燃是煤炭储运中的一个重要问题。
煤堆自燃往往是因为煤堆中的煤质过差,储存条件不当以及储存时间较长等因素导致。
本文将针对煤堆自燃的原因进行分析,并给出相应的防治措施。
原因分析煤堆自燃的原因可以从以下四个方面进行分析:煤质过差煤的品质是影响燃烧性能的重要指标。
如果煤中含有过多的杂质和水分,就容易导致自燃。
同时,如果煤中含有硫、磷等物质,还会在燃烧时产生大量的硫酸和磷酸等化合物,严重威胁着环境和人体健康。
储存条件不当煤的储存条件也是影响自燃的重要因素。
煤堆的堆积过高或密度不当,会导致煤堆内部的通风不良,难以散发热量,从而引发煤堆自燃。
此外,如果储存场地地面陡峭,自然排水不畅,也会给自燃造成隐患。
储存时间较长煤的反应性在某种程度上与其储存时间有关。
长时间的储存,容易使煤质老化、降低燃点,从而增加了自燃的危险性。
外来因素某些情况下,煤堆自燃的原因也可能与外来因素有关。
例如,局部天气情况异常,暴雨等气候灾害造成的关门堵塞等。
此外,如果煤堆附近存在高热源或者火源,也会给煤堆自燃带来隐患。
防治措施针对煤堆自燃的原因,制定相应的防治措施可以有效地预防和遏制煤堆自燃的发生。
煤质控制煤堆内部的煤质控制是预防煤堆自燃的重要措施之一。
首先,采购优质煤炭,防止煤质低劣的煤炭影响整个堆场的品质。
其次,在储存期间,要经常检查煤堆的温度和湿度,及时发现问题并采取有效措施。
环境控制储存环境的控制也是防治煤堆自燃的重要措施之一。
煤堆的堆积要避免过于密集,保证煤堆内部的通风良好。
同时要保持储存地面的平整,以免堆积高地点产生自然排水不良的问题。
对于堆场排水系统,应当具备良好的排水能力,并且要采取有效的防风措施。
安全管理煤堆自燃的预防和治理需要加强安全管理,完善各项安全措施。
例如,加强安全巡检,及时发现隐患,加大检查力度;设置避雷装置,减少雷击等外部因素造成的损失;强化消防设施,及时出动消防车辆和人员开展抢救。
防止煤场自燃应急预案范例一、背景介绍煤炭是我国主要的能源资源,煤场是煤炭储存和运输的重要场所。
然而,由于煤炭具有自燃性,煤场自燃事故频发,对人民生命财产安全和环境造成严重威胁。
为了防止和控制煤场自燃事故,保障社会稳定和经济发展,制定并实施针对煤场自燃的应急预案非常必要。
二、应急预案目标1. 预防煤场自燃事故的发生,减少人员伤亡和财产损失。
2. 迅速控制和扑灭煤场自燃事故,减少火灾蔓延和扩大。
3. 保护环境,减少对环境的污染和破坏。
三、应急预案内容1. 整体预案1.1 预案编制:成立应急预案编制小组,由相关职能部门负责人、专家和技术人员组成,负责煤场自燃应急预案的制定和修订工作。
预案编制小组应充分调研,了解煤场自燃事故的原因和特点,并根据实际情况制定相应的预案。
1.2 应急组织:成立煤场自燃应急指挥部,由相关职能部门的负责人担任指挥部的指挥长。
指挥部应具备快速反应、紧密配合、协调有序的能力,负责指挥和协调应急处置工作。
2. 应急准备2.1 人员培训:开展煤场自燃防控知识培训,提高相关人员的应急处置能力。
特别是煤场管理人员、安全工程师和消防人员应该接受专业培训,熟悉预案各项措施和救援技能。
2.2 装备配备:配备必要的应急救援装备,例如灭火器、泡沫炮、水炮和防护服等。
这些装备应保持良好的状态,随时准备使用。
2.3 应急物资:准备充足的应急物资,如灭火器材、救生器材、紧急救援工具等。
物资存储地点应划定清晰,并定期检查和维护。
3. 火灾控制3.1 火灾探测系统:在煤场的关键区域和易燃区域安装火灾探测设备,及时发现和报警火灾情况。
探测系统应定期检查和维护,确保其正常运行。
3.2 防火隔离措施:合理规划和布置煤场,采取防火隔离措施,避免煤堆之间的热传导和火势蔓延。
煤堆之间应保持一定的间距,定期清理煤尘和杂物,防止积尘引发火灾。
3.3 灭火措施:设立专门的灭火队伍,配备足够的灭火器材和灭火装置,随时准备应对火灾。
煤炭自燃火灾分析及采取的安全措施煤炭在运输、储存和使用过程中,存在着自燃的危险性。
煤炭自燃火灾的产生与多种因素有关,主要包括煤炭质量、储存环境、温度、湿度、气流、微生物、发热自燃物等因素。
下面我们将对煤炭自燃火灾进行分析,并介绍采取的安全措施。
一、煤炭自燃火灾的成因1.煤炭自身属性煤炭是一种复杂的有机物体,其中含有一定数量的挥发分、水分和氧化物。
这些物质在空气的存在下,通过氧化反应会产生热量,若处理不当会导致煤炭质量下降和引发自燃。
2.储存环境煤炭在储存时将收到一系列的环境影响,如空气中的氧气含量、湿度、温度等。
湿煤的水分与煤的内在热能反应相结合,造成了进一步的热量释放。
若存放环境通风不良,氧气供应不足,煤炭内的氧气也会过度消耗,因此难以维持内部平衡。
当煤堆内温度升高时,煤炭内的水分将开始蒸发,进一步加剧煤体内温度升高,从而导致自燃火灾的产生。
3.微生物煤堆中会存在大量微生物,它们对煤炭的分解产物活跃和生长需要大量的水和茁壮的煤。
微生物分解的成分包括仍未分解的有机分子、代谢产物和微生物的生物物质。
当煤堆处于适温和适湿度的情境下,会给微生物提供一个适宜的生长环境,这将产生进一步热能,造成煤的自燃。
二、采取的安全措施1.定期检查煤堆的评价和检查将有助于预防煤炭自燃火灾的产生。
为了避免自燃火灾,需要通过视察、观察、有针对性的检测,进行煤堆的检查。
如发现发热的煤,应及时清理和处理。
2.加强通风通过对煤堆进行通风,有助于煤堆内外环境空气的交换,促进水分和紫外线的清除,平衡煤堆内部环境。
应适当调节通风风量,控制通风时间,保证煤堆内部空气流动,消除堆内吸附的湿气和挥发物。
3.储存温湿度控制煤温度过高,湿度过大,都将影响煤的自燃。
应保持储存地点通风,环境干燥,温度控制在20℃以下。
在储存煤炭过程中,必须将煤质分界、保持检定数据、记录储存时间等信息。
4.消防设施煤炭自燃火灾的应急处理必须是消防和安全管理的责任所在。
堆场煤炭自燃的施救与预防一、自燃情况煤炭自燃火灾一直威胁着煤炭生产和储存的安全,同时造成货物质量问题及货损货差。
同其它库场煤炭堆存相比较,煤炭等级较低,主要以褐煤为主,发热量在2800-3700卡之间,此类煤种自燃火灾的发生率和损失都比较高。
二、自燃原因深层煤垛的供氧条件、自燃倾向性、氧化速率、储热条件、温度、水分含量、灰分、堆积密度和空气湿度等都是影响煤自燃的重要因素,其中氧化速率是最重要的影响因素,虽然煤堆水分的吸附、蒸发和冷凝作用也发生热交换,但是只有氧化作用才起着主要作用,温度升高和空气湿度增大则加速了煤的氧化,事实上,煤的自燃过程是煤的氧化放热和空气对流交换热的综合过程,如果煤氧化产生的热量大于其对流散失到环境的热量,将导致煤堆温度的升高,加快煤的氧化反映,放出更多的热量,引起煤的自燃。
三、自燃施救煤炭出现自燃后的施救是关键的工作,合理的施救可较少经济损失。
1、浇水灭火。
浇水灭火的关键是一次性将火扑灭,煤垛灭火不彻底主要有两个原因,一是水量不够,已浇的水在高温的作用下变成湿热蒸气,反而促使垛温上升,同时在化学作用下产生一氧化碳可燃气体挥发,导致大面积自燃;二是自燃的块煤粒度较大,在局部火势较旺的情况下,浇水时只把块煤表面熄灭,而块内温度仍较高,当水量不足,表面熄灭后,在良好的通风条件下,这些表面熄灭的块煤很快复燃,从而导致灭火实效。
综上所述,我们应该在总结经验的基础上,对煤场灭火做好充足准备,一是保证水源供给,在必要情况下及时启用库场消防栓;二是要求水车配备专业灭火设备,水车附加高压水枪,可向煤垛高处喷淋。
2、翻垛降温。
煤垛无明火自燃时采用翻垛降温是一种有效的方法。
利用设备将自燃处挖出来重新落垛,每循环一次高温点约可降温20摄氏度。
垛位煤局部范围的明火经翻转后被散开也不会形成新的燃点。
3、局部清除。
自燃位置发生在垛位四周底部时,采取装载机局部清楚效果较好,具体方法是使用装载机直接将高温煤挖出端到较空旷的场地撇开直接将局部燃点扑灭。
煤堆自燃原因分析与防治措施汇报人:2023-11-21CATALOGUE目录•煤堆自燃现象概述•煤堆自燃原因分析•煤堆自燃的防治措施•未来展望与持续改进措施煤堆自燃现象概述01•定义描述:煤堆自燃是指煤堆在无外部火源的情况下,由于内部自热或受到外部因素影响而自发燃烧的现象。
煤堆自燃会产生大量的有害气体和烟尘,对环境和大气造成严重污染。
环境污染资源浪费安全隐患自燃导致煤炭燃烧损失,直接造成资源的浪费。
煤堆自燃可能引发火灾,对周边设备和人员安全带来威胁。
030201某煤矿堆场由于管理不善,煤堆发生自燃,火势迅速蔓延,造成巨大经济损失。
案例一某电厂煤堆存放时间过长,内部自热引发自燃,严重影响电厂正常运行。
案例二一港口煤炭堆场由于气候条件及不当堆放方式,导致煤堆自燃,火灾持续多日,造成严重环境污染。
案例三煤堆自燃的典型案例煤堆自燃原因分析02煤中含有一定量的硫分、挥发分等易燃物质,当煤堆存放时间过长,这些物质与氧气发生反应,产生热量,可能导致自燃。
煤的自燃倾向性当煤的水分含量过高时,煤堆内部的热量不易散发,易造成温度升高,从而引发自燃。
水分含量粒度越小的煤,比表面积越大,与空气接触充分,容易发生氧化反应,导致自燃。
煤的粒度环境温度高温环境下,煤堆内部热量积累加速,易引发自燃。
煤堆与空气接触充分,氧气供应充足,促进了煤的氧化反应。
煤堆的堆积方式影响空气流通和热量散发,如堆积过于紧密,可能导致热量积累引发自燃。
降低煤堆的存放时间、控制煤的水分含量、减小煤的粒度、降低环境温度、限制氧气供应、改善煤堆的堆积方式等。
通过这些措施,可有效降低煤堆自燃的风险。
氧气供应堆积方式为防治煤堆自燃,可采取以下措施煤堆自燃的防治措03施氧化抑制剂的使用在煤堆表面喷洒氧化抑制剂,可以有效抑制煤的自燃。
煤堆压实通过压实煤堆,减少煤与氧气的接触面积,降低自燃风险。
控制煤堆温度和湿度通过定期监测煤堆温度和湿度,并进行合理调节,以防止煤的自热和自燃。
煤堆阴燃火灾事故分析一、煤堆阴燃火灾原因分析1.煤的化学性质煤炭是一种具有复杂化学成分的矿物质,其主要成分为碳、氢、氧、氮、硫等元素。
在储存过程中,由于煤中含有一定量的自燃性成分,如硫、铁等,易发生自燃,尤其是在高温、潮湿环境下更容易发生自燃。
2.煤堆密度煤堆的密度越大,其内部的氧气流动性越差,容易造成局部缺氧,进而影响煤堆内部的热量排放,加速煤堆发生自燃。
3.堆筑方式煤堆的堆筑方式对煤堆阴燃的发生有一定影响。
如果在堆筑过程中,未能注意通风透气,容易造成煤堆内部氧气不足,进而导致煤堆阴燃。
4.环境因素气象因素、季节因素等也会影响煤堆阴燃火灾的发生。
例如,夏季高温、潮湿的气候环境会加速煤堆的自燃,导致煤堆阴燃火灾的发生。
以上是引起煤堆阴燃火灾的常见原因,下面将结合实际案例分析煤堆阴燃火灾的危害和应对措施。
二、煤堆阴燃火灾危害分析1.人身伤害煤堆阴燃一旦发生火灾,首先会对煤矿工人的生命安全构成威胁。
由于煤堆通常存在于矿区内部,一旦发生火灾,可能导致矿工被困、中毒、窒息、烧伤等严重后果。
2.环境污染煤炭燃烧释放出大量有毒气体和颗粒物,造成空气污染,严重危害周围环境和居民的健康。
另外,煤堆阴燃还可能导致土壤污染和水污染,对生态环境造成长期影响。
3.生产损失煤堆阴燃一旦发生火灾,不仅会导致煤炭资源的大量损失,还会影响矿区的正常生产,造成严重的经济损失。
综上所述,煤堆阴燃火灾的危害十分严重,必须采取有效措施进行预防和控制。
三、煤堆阴燃火灾防控措施分析1.科学堆放在进行煤炭堆放时,应选择平整的场地,加强场地排水。
同时,要保持煤堆的通风透气,避免煤堆密度过大,避免堆放高硫煤、高灰煤等易自燃煤种。
2.监控温度煤堆温度是预测煤堆是否发生自燃的重要指标。
可通过布置温度传感器等设备,对煤堆温度进行监测,一旦发现异常温度,及时采取减温措施。
3.通风透气保障煤堆的通风透气能有效预防煤堆阴燃。
可通过设置风机、通风管道等设备,加强煤堆的通风透气,降低煤堆内部的温度和氧气含量,防止自燃的发生。
煤炭自燃及其预防措施
煤炭自燃是一种比较常见的现象,煤炭在运输、储存、使用等过程中由于自身固有的物理、化学特性而引发燃烧。
煤炭自燃对于生产和环境都会造成重大影响,因此采取一定的预防措施变得非常必要。
煤炭自燃的原因:
煤炭自燃的原因主要是由于内部发生了化学反应引发热量,导致煤炭温度逐渐升高。
煤炭中含有丰富的碳元素,与氧气接触时会发生化学反应,产生大量的热量,煤堆内部温度逐渐升高,当温度达到一定值时,便会引发煤炭的自燃。
煤炭自燃的预防措施:
1. 控制煤堆高度和面积:煤堆的高度和面积对于煤的自燃有很大的影响。
一般来说,越高的煤堆自燃的概率就越大,因此在储存煤时,应该把煤堆的高度和面积控制在一定的范围内。
2. 煤堆排风除尘:在煤堆的存放过程中,应该设置排风除尘设备,保持煤堆的良好通风,避免冷却不良引发煤的自燃。
3. 煤堆湿度控制:煤堆的湿度也是影响煤的自燃的一个因素,过于干燥的煤堆容易发生自然燃烧,因此应该在煤堆湿度不足时及时添加水分。
4. 检测设备实时监测:在煤炭的储存和使用过程中,应该设置煤的自燃监测设备,对煤堆内部的温度及时监测,发现异常情况及时采取措施,避免煤的自燃。
1。
煤层自燃安全防治措施概述煤炭是一种广泛使用的化石燃料,煤炭资源的开发利用对于国家经济的发展有着至关重要的作用。
然而,由于煤炭的化学组成特性,煤层自燃的风险也相对较高。
一旦发生煤层自燃,不仅会造成人员伤亡和设备损坏,还会对环境造成严重影响。
因此,煤炭生产中必须采取一系列安全防治措施,以确保煤炭生产过程的安全稳定。
本文将介绍煤层自燃的原因及其安全防治措施。
煤层自燃的原因煤层自燃是由于煤在长期存放过程中,与空气等物质接触,发生氧化反应,释放热能,达到自燃点而自燃。
主要原因包括以下几个方面:1.含水量:煤的含水量对于煤的自燃性有着很大的影响。
当煤的含水量较大时,不容易发生自燃。
2.煤的化学成分:煤中的S、Fe、Mn、Cu等元素能够在一定条件下催化煤的氧化反应,促进其自燃。
3.煤质:煤的组分及其分布与煤的自燃性密切相关,如高挥发份、高粘度、低灰分等均是煤的自燃性好的因素。
4.存放环境:空气流通、湿度等环境条件也会影响煤的自燃。
防治措施1. 煤炭采取保温处理对于长期堆放的煤炭进行保温处理是预防煤层自燃的有效措施。
将煤炭堆放在封闭的煤仓中,加热热风或加热电器将煤的温度升高到70℃以上,并且保持在这个温度范围内,使煤的水分蒸发,切断煤层自燃可能发生的温度支持,实现有效地控制煤层自燃。
2. 排放废气煤炭中的氧气是煤层自燃产生的基础条件,通过排放废气可以有效地切断煤层自燃的氧气供应。
在煤矿开采过程中,废气控制非常重要,必须专业设计和设备来控制废气的排放。
利用高效过滤设备可以最大限度地避免废气对大气环境的污染。
3. 加强煤层监测通过设立煤层自燃监控系统,可以及时地发现煤层自燃的迹象,为采取措施提供依据。
现代煤矿往往配备了煤层自燃检测、报警、监管装置。
通过精准的煤层监测,早期发现自燃隐患,可以采取相应的对策控制煤层自燃的发生。
4. 保持通风在爆炸危险较大的地方设置通风设备,通过激流管、皮斯道夫等方法,保证煤矿的通风畅通,降低煤矿爆炸的风险。
地面煤仓自燃处理措施有哪些地面煤仓是煤矿生产中的重要设施,用于存放煤炭并保障生产供应。
然而,由于煤炭具有易燃性和自燃性,地面煤仓存在着一定的自燃风险。
一旦地面煤仓发生自燃,将会对煤矿生产和周边环境造成严重影响。
因此,对地面煤仓的自燃处理措施至关重要。
本文将就地面煤仓自燃的原因和处理措施进行探讨,以期为相关行业提供参考。
一、地面煤仓自燃的原因。
地面煤仓自燃是由于煤炭中的有机物质在氧气的作用下发生氧化反应,产生大量热量并最终导致煤炭自燃燃烧的现象。
其主要原因包括以下几点:1. 煤炭中的有机物质含量高。
煤炭是一种含有大量有机物质的矿石,这些有机物质在氧气的作用下易于发生氧化反应。
2. 煤炭堆积密度大。
地面煤仓中煤炭的堆积密度较大,空气流通性较差,导致煤炭内部热量无法有效散发。
3. 外界环境条件恶劣。
地面煤仓通常处于高温、高湿的环境中,这些条件有利于煤炭的自燃。
4. 煤炭堆积时间过长。
地面煤仓中的煤炭往往长时间堆积,使得煤炭内部的有机物质发生氧化反应的机会增加。
二、地面煤仓自燃的处理措施。
针对地面煤仓自燃的原因,我们可以采取以下措施来进行预防和处理:1. 加强通风系统。
地面煤仓应建立完善的通风系统,保证煤炭堆积区域的空气流通性,有效散发煤炭内部的热量,减少自燃的可能性。
2. 控制煤炭堆积密度。
合理控制地面煤仓中煤炭的堆积密度,避免过大的密度导致空气流通性不佳,增加煤炭自燃的风险。
3. 定期检测煤炭温度。
对地面煤仓中的煤炭进行定期的温度检测,一旦发现煤炭温度异常升高,及时采取措施进行处理,防止自燃事故的发生。
4. 控制外界环境条件。
对地面煤仓所在区域的环境条件进行控制,保持适宜的温湿度,减少煤炭自燃的可能性。
5. 加强管理和监控。
对地面煤仓的管理和监控工作进行加强,建立健全的管理制度和监控系统,确保煤炭的安全存放和使用。
6. 定期清理煤仓。
定期清理地面煤仓,及时清除煤炭堆积区域的积尘和杂物,减少自燃的可能性。
防止煤堆自燃的措施在煤炭生产或运输的过程中,由于煤的自身特性,常常会出现自燃的情况。
特别是在夏季高温、梅雨多雨和偏僻山区等环境条件下,更需要采取措施来防止煤的自燃。
本文将从煤的自燃机理、检测方法和防范措施三个方面进行分析和探讨。
煤的自燃机理煤的自燃是指煤在储备、堆放和使用过程中,在无明显外界火源的情况下,由于自身物化性质变化而发生的自发氧化反应,温度逐渐升高,最终导致煤的燃烧。
该反应的发生与煤的质量、氧化剂、水分和温度等因素有关。
煤的质量越差、水分越高、氧化剂越充分,越容易自燃。
煤自燃的机理如下:1.煤中的硫、铁、铝等物质发生氧化反应,放出热量。
2.内部水分蒸发,生成水蒸气。
3.水蒸气与氧化气体发生氧化反应放热,并激发有机点火点。
4.有机物质逐渐氧化分解,并产生大量热量。
5.煤堆内部温度逐渐上升,引起大量有机物质氧化分解,将局部堆体温度升高,产生火源,发生自燃。
检测方法为了避免煤堆自燃的发生,需要通过技术手段及时发现并采取防范措施。
以下是常用的检测方法:1.温度检测:通过接触式和非接触式的温度传感器来检测煤堆内部和外部的温度。
当局部温度升高时,一旦达到自燃的危险温度,就能及时发现煤堆内部的自燃状况,及早进行处置。
2.气体检测:通过挥发物的颜色、气味和渗出物等来检测煤堆内部和外部的气体情况。
当出现二氧化硫、一氧化碳和氮氧化物等异常气体时,就说明煤堆中可能出现自燃情况。
3.煤质检测:通过对煤的进行化验,监测煤中含硫量、灰分含量以及水分含量等一系列指标。
根据这些指标的变化,判断出是否会引起自燃,并及时进行处理。
防范措施为避免煤堆自燃的发生,可以采取以下几种防范措施:1.降低煤的含水率:煤的含水率越高,自燃的几率就越大。
因此,在堆放前应对煤进行浸水处理,将水分降低到合理范围内,在储堆过程中,要对煤进行覆盖和加湿处理,保持其含水率。
2.留有合理通风空隙:在堆煤时,应使煤堆内部的通风状况良好,不能让煤体中的水蒸气和氧气聚集在一起,应随时开窗通风,保持空气的流通。
火电厂煤场自燃的原因分析及控制措施首先,火电厂煤场自燃的原因分析如下:1.腐烂和受潮:煤由于长时间暴露在外,容易被大气中的水蒸气淋湿,煤中的水分含量增加。
水分的增加会导致煤的质量下降,煤的自燃性增强。
2.氧化:长时间暴露在潮湿环境下,煤中的煤中的硫的氧化速率加快,产生硫酸盐。
硫酸盐的生成会给煤场中带来酸性环境,增加煤的可燃性,从而导致煤的自燃。
3.自燃产生的热量:煤中的热量并不是完全消失的,而是通过煤场内部的传导和对流等方式潜伏下来。
当堆放的煤的密度较大时,堆煤内部的煤会互相接触,导致煤内部自燃的传导现象,从而引发煤堆的自燃。
4.过高的堆高:过高的堆高会导致煤堆内部通风不良,煤堆底层的氧气供应紧张,而煤堆顶部的高温气体无法有效排除,煤堆中积累的热量难以散发,从而引发自燃。
接下来,提出控制措施:1.水分控制:应对堆场和车场中的煤进行防水、屋顶防潮和排水,减少水分的进入。
对已受潮的煤堆进行及时处理,减少水分含量。
2.通风控制:定期清理煤堆,保证堆煤之间的通风间隙,加强堆场的自然通风或人工通风,防止煤场内部气体的积蓄。
3.出库及时:及时组织煤的出库,保持煤场内的煤的更新,减少煤堆中煤的堆积时间,降低自燃的可能性。
4.定期检查:定期对煤场进行检查,发现可疑的煤堆,及时处理,防止火灾蔓延。
同时,在检查过程中要关注煤堆的温度变化,及时报告,并采取相应的措施。
5.定期放水:通过放水等降温的方法来控制煤堆的温度,消除潜在的自燃隐患。
综上所述,火电厂煤场自燃的原因主要是由煤的腐烂和受潮、氧化、自燃产生的热量、过高的堆高等因素引起的。
为了控制自燃,可采取水分控制、通风控制、出库及时、定期检查和定期放水等措施。
通过这些措施的实施,可以有效降低煤场自燃的发生率,确保火电厂的生产安全。
防止煤场自燃应急预案煤矿自燃是指煤矿内部因自身发热始终无法得到有效控制,导致煤炭内部发生可燃性物质的氧化反应,引起热量的释放,并在一定条件下发展为自燃的现象。
一旦发生煤场自燃,将给煤矿企业生产秩序和人员安全带来严重威胁,因此制定一套完善的防止煤场自燃应急预案是至关重要的。
一、背景与目的煤场自燃是煤矿企业存在的一个重大隐患。
为有效预防和控制煤场自燃的发生,使煤矿企业的生产和人员安全得到保障,制定本应急预案的目的是确保在煤场自燃事故发生时,能够及时、有序地进行紧急处理。
二、应急预案的组织机构与职责1. 预案小组:由煤矿企业工程技术部、安全生产部、应急救援部门等有关部门组成。
负责编制、修订和实施本应急预案,并对应急演练进行组织和监督。
2. 领导小组:由煤矿企业主要负责人、相关部门主要负责人组成。
负责决策、协调和监督应急预案的实施。
3. 专家组:由煤场自燃防治领域的专家、学者组成,提供技术支持和咨询意见。
三、应急预案的预案内容1. 预案的编制依据依据煤炭行业的法律法规、行业标准和工程实践,制定煤场自燃的预防控制措施和紧急处理措施。
2. 应急预案的组织系统确定应急预案的机构和人员,并明确各成员的职责和权限。
3. 风险评估与监测预警建立煤场自燃的风险评估和监测预警系统,包括监测指标、监测设备的配置和管理,以及对监测数据的分析和判断。
4. 灭火与救援处理制定灭火与救援处理的操作规程,包括火灾扑救器材的配置和使用、人员撤离和逃生等方面的要求。
5. 沉降煤堆与隔离处理对于煤场自燃风险高的区域,采取沉降煤堆和隔离处理的措施,降低自燃风险。
6. 应急演练与培训教育按照一定的周期和频率组织应急演练,提高应急预案的实施能力,并对应急预案的相关人员进行培训教育。
7. 事故报告与处置发生煤场自燃事故后,及时报告,并根据预案安排的程序和要求进行事故处置,迅速控制事故的发展。
四、应急预案的实施和修订1. 预案的实施制定本应急预案后,及时组织实施,并对实施过程进行监督和检查,确保预案的有效性。
煤炭自燃应急处理预案煤炭自燃是指煤炭在贮存、运输等过程中自发燃烧的现象。
煤炭自燃不仅会造成巨大的经济损失,还会对环境产生严重的污染。
因此,制定一份有效的煤炭自燃应急处理预案,具有重要的意义。
本文将从预防、监测、报警、扑救等方面,对煤炭自燃应急处理预案进行详细探讨。
一、预防措施1.加强煤炭管理。
建立完善的煤炭进出库台账,做到明知明码,确保煤炭质量合格。
对于有自燃倾向的煤炭,应及时分类处理,避免与正常煤炭混合贮存。
2.严格控制贮存环境。
煤炭贮存场地应保持干燥通风,避免长时间曝露在潮湿环境中。
定期进行防潮防水工作,确保煤炭质量不受影响。
3.加强安全防火措施。
设置显眼的禁烟标识,严禁任何火源进入贮存区域。
提供足够的灭火设备,如灭火器、灭火器车等,以备突发情况使用。
二、监测措施1.定期巡检煤炭贮存区域。
由专门负责的人员定期巡查煤炭贮存区域,发现问题及时处理。
着重检查煤堆中是否有自燃迹象,如温度升高、煤堆出现烟雾等。
2.安装监测设备。
采用先进的温度监测系统对煤炭贮存区域进行全天候监测。
一旦发现温度异常升高,及时报警并立即采取相应的扑救措施。
三、报警措施1.建立有效的报警机制。
在煤炭贮存区域设置自动报警装置,一旦探测到煤炭自燃迹象,立即启动报警系统。
同时,建立应急通讯联系链,确保报警信息及时传达到相关人员。
2.制定明确的应急响应流程。
根据报警信号的不同等级,对相应的应急响应措施进行划分,并明确相关人员的职责和行动方案。
四、扑救措施1.及时启动应急预案。
一旦发生煤炭自燃事故,立即启动煤炭自燃应急处理预案,确保扑救工作能够迅速展开。
2.迅速疏散人员。
首先确保人员安全,将工作人员疏散到安全地点,并组织人员对周围区域进行封锁,防止事故扩大。
3.采取有效的灭火措施。
根据煤炭自燃的情况,选择合适的灭火方式,如利用泡沫灭火机、二氧化碳灭火器等。
同时,确保灭火器材充足,并配备专业消防人员进行扑救。
4.监测与检查。
对灭火后的煤炭贮存区域进行仔细检查,确保煤炭不再发生自燃。
煤堆自燃原因及预防措施3篇煤堆自燃原因及预防措施篇一煤大体上由有机物和无机物组成,主要可燃元素是碳(约占65%~95%),其次是氢(约占1%~2%),并含少量氧(约占3%~5%,有时高达25%)、硫(约占10%),上述元素一起构成可燃化合物,称为煤的可燃质。
除此之外,煤中还含有一些不可燃的矿物质灰分(5%~15%,也有高达50%)和水分(一般在2%~20%之间变化),这些物质称为煤的惰性质。
煤被空气中的氧气氧化是煤自燃的根本原因。
煤中的碳、氢等元素在常温下就会发生反应,生成可燃物co、ch4及其他烷烃物质。
煤的氧化又是放热反应,如果热量不能及时散发掉,将使煤的堆积温度升高,反过来又加速煤的氧化,放出更多的可燃质和热量。
当热量聚集,温度上升到一定值时,即会引起可燃物质燃烧而自燃。
煤堆发生自燃要同时具备以下4个条件:(1)具有自燃倾向性。
煤的自燃倾向性是煤的一种自然属性,反映了煤的变质程度,水分、灰分、含硫量、粒度、孔隙度、导热性,是煤自燃的基本条件。
煤在常温下的氧化能力主要取决于挥发分的含量,挥发分含量越高,自燃倾向性越强,而且自燃时间也会相应缩短。
根据煤的氧化程度与着火点之间的关系,利用原煤样的着火点和氧化煤样的着火点的差值Δt 来推测煤的自燃倾向。
一般,原煤样着火点低,而且Δt大的煤容易自燃;Δt40℃的煤为易自燃煤;Δt20℃的煤(褐煤和长焰煤除外)是不易自燃煤。
从表1可看出,从褐煤到无烟煤,其着火点越来越高,自燃倾向性越来越弱。
(2)供氧条件。
煤堆暴露于空气中,表面与空气充分接触,而且空气通过煤块之间的间隙渗透到煤堆内部,给煤堆内部氧化创造了条件。
煤的块度越大,煤块之间的间隙越大,其供氧条件越好。
(3)氧化时间。
煤从氧化发展到自燃有一个过程,氧化时间达到自燃发火期才能自燃。
如长焰煤的自然发火期为1~3个月,气煤为4~6个月。
(4)储热条件。
煤在氧化的过程中放出热量,只有当放出的热量大于散发掉的热量时,才能使热量聚集,温度上升,达到煤的着火点就会自燃。
此外,煤的粒度、水分、灰分、压实程度、环境温度、湿度等因素都会影响煤的自燃。
粒度越细,比表面积越大,氧化反应越剧烈,越易自燃。
一般,煤自燃要经历水分蒸发、氧化、自燃3个阶段。
煤的湿度大,将煤浸在水中,能阻止煤与氧气直接接触而发生氧化反应,只要水不流失,也不会影响煤的质量;再者,水分蒸发要消耗大量的热量,煤含水量越大,蒸发期越长,此阶段温度无明显上升。
灰分越高,越不易自燃。
将煤堆压实,能减少煤块之间的间隙,减少空气在煤堆内的渗透量,削弱供氧条件。
环境温度和湿度都会影响煤自燃的时间,温度越高、湿度越大,煤自燃的'时间越短。
根据电力、冶金、煤炭和水泥行业的煤堆发生自燃的实际情况看,发生自燃的部位既不在煤堆的表面,也不在煤堆深部,而在表层以下。
在自然堆积状况下,可将煤堆分为3层。
冷却层:煤堆的表层,约0.5~1.5m厚,该层煤较松散,与空气接触充分,虽发生氧化反应,但散热条件好,所以不会发生自燃。
氧化层:该层位于冷却层以下,厚度在1~4m左右,具备煤自燃的所有条件,达到自然发火期即会自燃。
窒息层:该层位于氧化层以下,煤层相对压实,供氧不充分,且含水率较高,氧化程度较低,不易发生自燃。
煤在自然堆放时,一般中心部位处颗粒较细,越往四周颗粒越粗,相应的,从中心往四周,空隙越来越大,通风散热条件越来越好,冷却层和氧化层越来越厚。
自燃一般发生在氧化层。
同时伴随着温度升高、冒热气、冒烟等现象。
当发现煤堆上某处释放热气或冒烟,那么自热或自燃点一定在该部位垂直向下的氧化层内,因为受煤的自热或自燃的热压作用,气体流动方向为垂直向上方向。
一旦某个部位发生了自燃,也会改变其上部冷却层的受热条件,使冷却层也自燃。
因此,发现煤堆自燃必须立即采取措施,防止自燃范围扩大。
防止煤堆自燃的措施防止煤堆自燃要防治结合,以防为主。
对煤自燃的原因进行分析,提出如下措施:(1)煤的自燃倾向性鉴定,对掌握煤自燃火灾的规律,有针对性地采取防火措施,保证安全生产具有重要意义。
因此,对贮存自燃倾向性较大的煤和贮煤时间较长的煤场,应作煤的自燃倾向性鉴定,测定煤的挥发分的含量、最低着火温度、自燃发火期等指标。
(2)应选择合适的贮煤场和堆置方式,保持通风良好,防止煤堆暴晒。
宜将贮煤场设置在宽敞的区域,背阳光的地方(如高山的北坡),或设置煤棚。
周围和煤场下部不得有高温热源。
这样可降低煤的氧化速度。
(3)正确核定贮煤时间,尽量不要超过煤的自燃发火期。
在露天贮煤场情况下,贮煤时间过长是发生自燃的主要原因之一。
而且,贮煤时间越长,氧化程度越高,煤的经济价值下降越多。
(4)用推土机将煤一层一层压实,尤其是要将堆边大块部分压实,铺盖一层粘土更好,这样可以减少煤堆的空隙度,赶走煤堆空隙中的一部分空气,减少煤与氧气的接触。
铺盖粘土会增加煤的灰分,对煤质要求较高的情况不适用。
在煤堆表面喷洒凝体材料,可阻止外界空气向煤堆内部渗透,防止煤堆自燃。
该方法适应性较广,但成本较高,而且增加煤的灰分,对煤质有影响。
(5)使煤堆保持适当的水分能延长煤的氧化期,有效防止煤自燃。
根据分析,煤自燃前的全水分为5%~7%。
当煤的含水量达到12%时,不会发生自燃。
贮煤场的底部和周边应采用混凝土结构,以防止水分渗漏和流失。
煤场周边设置喷洒水设施,定期向煤堆喷洒水,这样做还能够防止煤场扬尘。
有把煤浸在水中来防止煤氧化自燃的作法。
(6)加强煤场现场管理,尽早发现煤自燃征兆,并采取处理措施。
每天派人巡查自燃情况,发现有局部温度升高、冒热气、冒烟等现象时,即可判断该处氧化层已发生自燃。
发生自燃还伴随着co浓度升高,因此,用co检测仪能检测出来。
处理煤堆自燃主要用喷灌水的方法。
将水直接洒在煤堆表面上,或挖沟浇灌的方法都会使渗入煤堆内的水量不均,而且容易流失,把煤冲走,由于受热压作用,进入自燃部位的水量少,防火效果不好。
改为插管注水将注水管直接插入自燃部位,用压力水湿润氧化自燃部位的煤体,降低了煤体的自热温度,抑制了煤氧化自燃。
对于较小的煤堆,可把发生自燃部位的外表层扒掉,露出氧化自燃层来散热冷却,或经常倒堆破坏氧化层以延缓或阻止自燃。
如同时喷洒水,则阻燃效果更好。
该方法只适用于煤堆较小、四周有空间的情况。
煤堆自燃原因及预防措施篇二1、煤自燃的原因通过长期的堆积和时间磨合,会慢慢的产生氧化反应而发热,这样就导致煤的温度逐渐升高,最终煤就会自然起火。
而这就是煤自燃的原因和过程。
同时煤的自燃起火与其他的燃烧有着很大的不同,这就是因为它的温度是呈缓慢上升的状态,同时在按照煤的堆积—低温的氧化发热—放热—内部的干燥—温度的急剧上升—自燃起火这些过程而进行的。
煤自燃的因素很多,主要与煤的物理化学性质、堆积状态、环境因素等几个方面有关。
(1)化学成份的影响煤自身中包含有硫份物质,尤其硫在一定的温度下,就会产生化学反应,并发生变化,从而生成氧化硫,其中氧化硫物质一旦遇到水就会生成稀硫酸,这个反应的过程就是放热过程,通过该反应过程就可以很好的提高煤堆温度现象。
(2)氧气的影响在各种光、热、雨水等自然力的作用下,煤炭表面与大气中的氧气接触后发生氧化分解与碎裂,并放出热量,同时形成新的表面,新表面又再次氧化,如此反复循环,导致煤堆温。
(3)水分影响煤堆中一定量的水分促使煤中的各种反应的进行,如硫份的酸化,产生的热量又加快了氧化反应过程,加剧了煤的自燃。
(4)气温气压的`影响经验表明,煤堆的自燃经常发生在秋后大气温度下降时,此季节大气密度比煤堆的空气密度大,因此,渗入煤堆的空气量增大,导致自燃加剧。
一般来说,大气温度降低,密度变大,渗入煤堆内的新鲜空气量增加,煤堆的自燃加快,反之亦然。
2、防止煤场自燃措施为了减少或防止煤场自燃,可采用的预防措施:(1)分层压实组堆。
对易受氧化的煤如褐煤、长焰煤,组堆时最好分层压实,至少也得将表层压实,有条件时还可以在煤堆表面披上一层覆盖物。
实践证明,这是一种很有效且又经济的根本措施。
(2)建立定期检温制度。
对贮量大、存期长的煤堆特别是变质程度低的煤,需每天检测一次煤堆温度,对其他类别的煤可适当延长检温时间,并做好详细记录。
(3)及时消除自燃“祸源”。
在检温过程中,一旦发现煤堆温度达到60度的极限温度,或煤堆每昼夜平均温度连续增加高于2度时,就立即消除“祸源”,消除自燃“祸源”的方法是将“祸源”区域内的煤挖出来暴露在空气中散热降温。
不要往“祸源”区域煤中加水,这样会加速煤的氧化和自燃。
3、煤场灭火措施发生自燃的煤炭,尤其是高硫煤或煤层较厚的区域,用水浇方式处理收效并不明显。
浇水后的煤若不及时取用,水到之处即成富氧区,同时易导致煤炭颗粒归集下沉,形成更大的氧化空间,使自燃区域扩大。
另外明火炙碳遇水有爆裂伤人的风险。
这就需要专业的煤碳防灭火技术。
普瑞特防灭火技术是一种有效的煤场灭火技术措施,该技术有徐州吉安矿业科技有限公司联合中国矿业大学研发。
技术特点:(1)集凝胶、黄泥灌浆、两相或三相泡沫、惰性气体和阻化剂的防灭火优点于一体,能把泡沫中的水固结在凝胶体内,避免了黄泥灌浆和其它泡沫大量水流失或者溃浆的缺点;(2)在采空区具有良好的扩散性能,生成的普瑞特以泡沫为载体能够对采空区或煤田火区的高、中、低位火源进行大范围、全方位的覆盖,持久保持煤体湿润冷却,隔绝氧气,且添加剂中含有的阻化剂能长久对煤体阻化,彻底防治煤炭自燃;(3)普瑞特被注入火区后,会在火区全方位覆盖一层凝胶层,并且凝胶层中95%以上都是水,具有长久的吸热降温作用,能够有效防止火区复燃;(4)普瑞特以泡沫为载体,在防灭火区域内能向高处堆积,所到之处普瑞特都能有效覆盖并黏附浮煤裂隙,具有良好的封堵漏风通道的性能;(5)泡沫中的氮气缓慢释放,避免单独注氮时氮气容易流失的缺点,持久保持火区惰化。
煤堆自燃原因及预防措施篇三近几年,在火电厂实施职业健康安全管理体系过程中,都会把贮煤场煤堆的自燃识别为危险源,进行风险评价,找出治理措施,尽可能地防止煤堆自燃现象的发生。
那么造成煤堆自燃的原因是什么呢?应采取什么措施呢?众所周知,火力发电厂的主要燃料是煤炭。
为了保证锅炉用煤,一般都建有一个或多个贮煤场,基本为露天堆放。
这样煤与空气的接触,风化使煤的质量变坏,还会经常发生煤堆发热和自燃现象。
普遍认为,煤的自燃是由煤氧复合作用而产生的。
当煤体与空气接触后,空气中的氧便会随着空气的流动而进入煤体内部。
平衡状态被破坏的煤表面分子与氧气接触,形成新的平衡状态,迅速与氧发生物理吸附、化学吸附及化学反应等一系列变化,产生并放出热量。
当煤体释放的热量大于向环境散失的热量时,热量积聚使煤体温度上升,最终便导致煤体发生自燃。
煤体自燃发生机率的大小受水份、空气中氧气及散热条件的直接影响。