数学七年级:10道提公因式法分解因式常见经典考试真题,培优练习
- 格式:docx
- 大小:15.70 KB
- 文档页数:2
因式分解提公因式法计算题40道因式分解是代数学中的一个重要概念,它在解决多项式方程、简化分式等方面起着关键作用。
提公因式法是因式分解中常用的一种方法,它可以帮助我们将多项式分解成更简单的形式。
下面我将为你提供40个因式分解提公因式法的计算题,并尽可能从多个角度全面地回答。
1. 2x^2 + 5x.2. 3x^2 12。
3. 4x^2 25。
4. 6x^2 + 11x 35。
5. 2x^3 8x^2 + 6x.6. 3x^3 + 12x^2 27x.7. 4x^3 16x.8. 5x^3 125。
9. 6x^3 + 27x^2 63x.10. 2x^4 18x^2 + 40。
11. 3x^4 48x^2 + 192。
12. 4x^4 12x^2 + 9。
13. 5x^4 20x^2 + 15。
14. 6x^4 72x^2 + 216。
15. 2x^5 + 8x^4 10x^3。
16. 3x^5 12x^4 + 9x^3。
17. 4x^5 32x^3 + 64x.18. 5x^5 80x^3 + 400。
19. 6x^5 + 18x^4 108x^3。
20. 2x^6 18x^4 + 40x^2。
21. 3x^6 48x^4 + 192x^2。
22. 4x^6 12x^4 + 9x^2。
23. 5x^6 20x^4 + 15x^2。
24. 6x^6 72x^4 + 216x^2。
25. 2x^7 + 8x^6 10x^5。
26. 3x^7 12x^6 + 9x^5。
27. 4x^7 32x^5 + 64x^3。
28. 5x^7 80x^5 + 400x^3。
29. 6x^7 + 18x^6 108x^5。
30. 2x^8 18x^6 + 40x^4。
31. 3x^8 48x^6 + 192x^4。
32. 4x^8 12x^6 + 9x^4。
33. 5x^8 20x^6 + 15x^4。
34. 6x^8 72x^6 + 216x^4。
七年级数学因式分解练习题及答案一、选择1.下列各式由左到右变形中,是因式分解的是A.a=ax+ayB. x-4x+4=x+4C. 10x-5x=5xD. x-16+3x=+3x2.下列各式中,能用提公因式分解因式的是A. x-yB. x+2xC. x+yD. x-xy+13.多项式6xy-3xy-18xy分解因式时,应提取的公因式是A.xyB.3xyC.xyD.3xy4.多项式x+x提取公因式后剩下的因式是A. x+1B.xC. xD. x+15.下列变形错误的是A.-x-y=-B.= -C. –x-y+z=-D.=6.下列各式中能用平方差公式因式分解的是A. –xyB.x+yC.-x+yD.x-y7.下列分解因式错误的是A. 1-16a=B. x-x=xC.a-bc=D.m-0.01=8.下列多项式中,能用公式法分解因式的是A.x-xy二、填空9.ab+ab-ab=ab.10.-7ab+14a-49ab=-7a.11.3+2=___________12.x-y=____________.13.-a+b=14.1-a=___________15.99-101=________22222B. x+xyC. x-y D. x+y222216.x+x+____=17.若a+b=1,x-y=2,则a+2ab+b-x+y=____。
222三、解答18.因式分解:①?4x3?16x2?24x②8a2?123③2am?1?4am?2am?1④2a2b2-4ab+2⑤2-4x2y2⑥2-419.已知a+b-c=3,求2a+2b-2c的值。
220、已知,2x-Ax+B=2,请问A、B的值是多少?221、若2x2+mx-1能分解为,求m的值。
22.已知a+b=5,ab=7,求a2b+ab2-a-b的值。
23. 已知a2b2-8ab+4a2+b2+4=0,求ab的值。
24.请问9910-99能被99整除吗?说明理由。
数学7年级下册:10道经典因式分解考试真题,经典题型,一起分享因式分解和整式乘法互为逆运算,是初中数学里最重要的恒等式之一。
因式分解,是初中数学的重头大戏。
如果因式分解没有学好,那么后面分式,一元二次方程等内容就非常的艰难。
很多初学的同学,觉得因式分解好难。
因为因式分解灵活多变,技巧性强。
但是,真正熟练掌握因式分解方法,原来因式分解一点都不难。
今天,方老师精心挑选了,10道因式分解考试真题,题型常见而且典型,来和大家一起练习。
其他的因式分解的类型,方老师后续还会整理发布。
欢迎关注,敬请期待。
第0题,通过观察,我们把x²看作一个整体,那么原式就是典型的符合十字交叉相乘分解因式的题型。
第一步分解后,一定要检查,分到不能再继续分解为止。
第1题,有平方,有减号。
那么首先考虑的是平方差公式。
套用平方差公式分解因式后,两个多项式,都符合完全平方公式,继续分解到不能分解为止。
第2题,第3题,这两道题,典型的需要先分组,再分别分解因式的题型。
分组的原则是,分组后分别因式分解后,他们有公因式可提。
提取公因式,就好。
第4题,一道需要添项的因式分解题。
为了套用完全平方公式,先+4x²y²,再-4x²y²。
这种方法在配方法解题里经常要用到。
同学们自行好好领会,灵活运用。
第5题,这是一个提公因式的因式分解题。
但是,我们如果找到多项式的公因式?两个方法,相同的自然是公因式,还有互为相反数的也是公因式。
只是,我们在提取公因式的时候,要先讲原来的式子变形。
比如,后面那个(b-a)³,我们通过提取一个-1出来,变成了-(a-b)³。
这个变形,在很多题型里,经常要用到。
第6题,第7题,这两道题,是需要先去括号,先整式乘法,先合并同类项,之后再进行因式分解的题型。
第8题,和第9题也属于同一种类型。
第8题,我们先把x²+x看作成一个整体,先把前面的整式的乘法展开,经过合并同类项后,得到一个关于x²+x这个整体的二次三项式。
初一数学提取公因式法同步练习及参考答案9.2提取公因式法基础训练1.多项式8x3y2-12xy3z的公因式是_________.2.多项式-6ab2+18a2b2-12a3b2c的公因式是( )A.-6ab2cB.-ab2C.-6ab2D.-6a3b2c3.以下用提公因式法因式分解正确的选项是( )A.12abc-9a2b2=3abc(4-3ab)B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c)D.x2y+5xy-y=y(x2+5x)4.以下多项式应提取公因式5a2b的是( )A.15a2b-20a2b2B.30a2b3-15ab4-10a3b2C.10a2b-20a2b3+50a4bD.5a2b4-10a3b3+15a4b25.以下因式分解不正确的选项是( )A.-2ab2+4a2b=2ab(-b+2a)B.3m(a-b)-9n(b-a)=3(a-b)(m+3n)C.-5ab+15a2bx+25ab3y=-5ab(-3ax-5b2y);D.3ay2-6ay-3a=3a(y2-2y-1)6.填空题:(1)ma+mb+mc=m(________); (2)多项式32p2q3-8pq4m的公因式是_________;(3)3a2-6ab+a=_________(3a-6b+1);(4)因式分解:km+kn=_________;(5)-15a2+5a=________(3a-1); (6)计算:213.14-313.14=_________.7.用提取公因式法分解因式:(1)8ab2-16a3b3; (2)-15xy-5x2;(3)a3b3+a2b2-ab; (4)-3a3m-6a2m+12am.8.因式分解:-(a-b)mn-a+b.提高训练9.多项式m(n-2)-m2(2-n)因式分解等于( )A.(n-2)(m+m2)B.(n-2)(m-m2)C.m(n-2)(m+1)D.m(n-2)(m-1)10.将多项式a(x-y)+2by-2bx分解因式,正确的结果是( )A.(x-y)(-a+2b)B.(x-y)(a+2b)C.(x-y)(a-2b)D.-(x-y)(a+2b)11.把以下各式分解因式:(1)(a+b)-(a+b)2; (2)x(x-y)+y(y-x);(3)6(m+n)2-2(m+n); (4)m(m-n)2-n(n-m)2;(5)6p(p+q)-4q(q+p).运用拓展12.多项式-2an-1-4an+1的公因式是M,那么M等于( )A.2an-1B.-2anC.-2an-1D.-2an+113.用简便方法计算:3937-1334=_______.14.因式分解:x(6m-nx)-nx2.参考答案1.4xy22.C3.C4.A5.C6.(1)a+b+c (2)8pq3 (3)a (4)k(m+n)(5)-5a (6)-31.47.(1)8ab2(1-2a2b) (2)-5x(3y+x)(3)ab(a2b2+ab-1) (4)-3am(a2+2a-4)8.-(a-b)(mn+1)9.C10.C11.(1)(a+b)(1-a-b) (2)(x-y)2 (3)2(m+n)(3m+3n-1) (4)(m-n)3 (5)2(p+q)(3p-2q)12.C 13.390 14.2x(3m-nx)。
提取公因式法一.判定下列变形是否是因式分解1.x2+2x=x(x+2)2. x2+x+1=x(x+1)+13. 15a3+10a2=5a2(3a+2)二.1.看式子:ma+mb+mc中,共有项,每项都有的一个公共因式是__,它叫这个多项式的___。
2.由m(a+b+c)=ma+mb+mc.得:ma+mb+mc=m( )3. 叫做提公因式法。
练习:(1)写出下列各式的公因式:m(a+b)-n(a+b).公因式: ;(2)m(a-b)-n(b-a).公因式:___;(3)⑶8m2n+2mn.公因式:___;(4)12xyz-9x2y2.公因式:____;三.例题评析:例1 把8a3b2+12acb3分解因式由例题知:找公因式时:系数取各项系数的_______;各项相同的字母取:_______例2 把2a(b+c)-3(b+c)分解因式分解因式:⑴8m2n+2mn ⑵12xyz-9x2y2⑶2a(y-z)-3b(z-y) ⑷p(a2+b2)-q(a2+b2)⑸.先分解因式,再求值4a(x+7)-3(x+7),其中a=-5,x=3.⑹计算5×34+24×33+63×32四.课堂练习1.分解因式:x 2-2x=_____2.多项式-6x 3y 2-3x 2y 2+12x 2y 3分解因式时应提取的公因式是( )A.3xyB.-3x 2yC.3xy 2D.-3x 2y 23.分解因式:4m 2n-16mn 2=___4.计算0.25×1001-41=_____5.已知x+y=6,xy=-3,则x 2y+xy 2=____7.把x(x-y)+(y-x)2分解因式,结果是( )A.y(x-y)B.(x-y)(2x+y)C.(x-y)(2x-y)D.2x(x-y)8.计算210+(-2)11的结果是 ( )A.210B.-210C.2D.-2五.课外练习1.分解因式:⑴.-m 2n+mn 2 ⑵21x 3+2xy-xz2.知a.b.c 为△ABC 的三条边且满足条件a 2-4bc-ab+4ac=0,求证:此三角形为等腰三角形。
七年级数学因式分解练习题及答案一、选择1.下列各式由左到右变形中,是因式分解的是A.a=ax+ayB. x-4x+4=x+4C. 10x-5x=5xD. x-16+3x=+3x2.下列各式中,能用提公因式分解因式的是A. x-yB. x+2xC. x+yD. x-xy+13.多项式6xy-3xy-18xy分解因式时,应提取的公因式是A.xyB.3xyC.xyD.3xy4.多项式x+x提取公因式后剩下的因式是A. x+1B.xC. xD. x+15.下列变形错误的是A.-x-y=-B.= -C. –x-y+z=-D.=6.下列各式中能用平方差公式因式分解的是A. –xyB.x+yC.-x+yD.x-y7.下列分解因式错误的是A. 1-16a=B. x-x=xC.a-bc=D.m-0.01=8.下列多项式中,能用公式法分解因式的是A.x-xy二、填空9.ab+ab-ab=ab.10.-7ab+14a-49ab=-7a.11.3+2=___________12.x-y=____________.13.-a+b=14.1-a=___________15.99-101=________22222B. x+xyC. x-y D. x+y222216.x+x+____=17.若a+b=1,x-y=2,则a+2ab+b-x+y=____。
222三、解答18.因式分解:①?4x3?16x2?24x②8a2?123③2am?1?4am?2am?1④2a2b2-4ab+2⑤2-4x2y2⑥2-419.已知a+b-c=3,求2a+2b-2c的值。
220、已知,2x-Ax+B=2,请问A、B的值是多少?221、若2x2+mx-1能分解为,求m的值。
22.已知a+b=5,ab=7,求a2b+ab2-a-b的值。
23. 已知a2b2-8ab+4a2+b2+4=0,求ab的值。
24.请问9910-99能被99整除吗?说明理由。
湘教版数学七年级下册3.2 提公因式法培优练习一、基础训练1.把a2-2a因式分解,正确的是( )A.a(a-2)B.a(a+2)C.a(a2-2)D.a(2-a)2.把多项式6m2(x-y)2-3m(x-y)3进行因式分解时,应提出的公因式是( )A.3mB.(x-y)3C.3m(x-y)2D.3(x-y)23.多项式mx2-m与多项式x2-2x+1的公因式是( )A.x-1B.x+1C.x2-1D.(x-1)24.利用因式分解简便计算57×99+44×99-99,正确的是( )A.99×(57+44)=99×101=9 999B.99×(57+44-1)=99×100=9 900C.99×(57+44+1)=99×102=10 098D.99×(57+44-99)=99×2=1985.下列因式分解变形中,正确的是( )A.ab(a-b)-a(b-a)=-a(b-a)(b+1)B.6(m+n)2-2(m+n)=(2m+n)(3m+n+1)C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)D.3x(x+y)2-(x+y)=(x+y)2(2x+y)6.因式分解:m(x-y)+n(x-y)= .7.把下列多项式因式分解:(1)-8a4b+6a3b2-2a3b;(2)(m-n)(5ax+2ay-1)+(m-n)(3ay-ax+1).8.先分解因式,再求值:m(m+n)(m-n)-m(m+n)2,其中m+n=1,mn=-. 二、培优提升1.把多项式6a3b2-3a2b2-18a2b3因式分解时,应提取的公因式为( )A.3a2bB.3a2b2C.a2b2D.3ab2.对于算式 2 0152-2 015,下列说法不正确的是( )A.能被2 014整除B.能被2 015整除C.能被2 016整除D.不能被2 013整除3.下列各选项中,分解因式正确的是( )A.b(a-4)-c(4-a)=(a-4)(b-c)B.x2(x-2)2+2x(x-2)2=(x-2)2(x2+2x)C.(a-b)(a-c)+(b-a)(b-c)=(a-b)(a+b-2c)D.5a(x-y)+10b(y-x)=5(x-y)(a-2b)4.下列各组多项式中,没有公因式的一组是( )A.ax-bx与by-ayB.6xy+8x2y与-4x-3C.ab-ac与ab-bcD.(a-b)3x与(b-a)2y5.已知x+y=6,x-y=4,则2y(x-y)-2x(y-x)的值是( )A.48B.-48C.24D.-246.因式分解:m(n2-mn)-n(m-n)=___________.7.若多项式-6xy+18xym+24xyn的一个因式是-6xy,那么另一个因式是_______________.8.(1)分解因式:m2-10m=_______________;(2)若a,b互为相反数,则a(x-2y)-b(2y-x)的值为 ;(3)若ab=2,a-b=-1,则代数式a2b-ab2的值等于______________.(4) 一个长方形的面积为a2+2a,若一边长为a,则其邻边长为______________.9.分解因式:(1)-7(m-n)3+21(m-n)2+28(n-m);(2)2a(a-b)+4a(2a+3b).10.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a,b均为整数,求a+3b的值.参考答案【基础训练】1.【答案】A2.【答案】C3.【答案】A4.【答案】B5.【答案】A解:A.ab(a-b)-a(b-a)=-a(b-a)(b+1),故本选项正确;B.6(m+n)2-2(m+n)=2(m+n)(3m+3n-1),故本选项错误;C.3(y-x)2+2(x-y)=(y-x)(3y-3x-2),故本选项错误;D.3x(x+y)2-(x+y)=(x+y)(3x2+3xy-1),故本选项错误.故选A.6.【答案】(x-y)(m+n)7.解:(1)-8a4b+6a3b2-2a3b=-2a3b·4a-2a3b·(-3b)-2a3b·1=-2a3b(4a-3b+1).(2)(m-n)(5ax+2ay-1)+(m-n)(3ay-ax+1)=(m-n)(5ax+2ay-1+3ay-ax+1)=(m-n)(4ax+5ay)=a(m-n)(4x+5y).8.解:m(m+n)(m-n)-m(m+n)2=m(m+n)=m(m+n)(m-n-m-n)=-2mn(m+n).当m+n=1,mn=-时,原式=-2××1=1.【培优提升】1.【答案】B2.【答案】C解:2 0152-2 015=2 015×(2 015-1)=2 015×2 014,则结果能被2 014和2 015整除,不能被2 016整除,也不能被2 013整除.3.【答案】D4.【答案】C解:选项A中,ax-bx=x(a-b),by-ay=-y(a-b),故有公因式a-b;选项B 中,6xy+8x2y=2xy(3+4x),-4x-3=-(3+4x),故有公因式3+4x;选项C中,ab-ac=a(b-c),ab-bc=b(a-c),所以两者之间没有公因式;选项D 中,(a-b)3x=(a-b)2·(a-b)x,(b-a)2y=(a-b)2y,故有公因式(a-b)2.所以本题选C.5.【答案】A解:原式=2y(x-y)+2x(x-y)=(x-y)(2y+2x)=2(x-y)(y+x). 因为x+y=6,x-y=4,所以原式=2×4×6=48.6.【答案】n(n-m)(m+1)解:m(n2-mn)-n(m-n)=mn(n-m)-n(m-n)=n(n-m)(m+1).7.【答案】1-3m-4n解:-6xy+18xym+24xyn=-6xy(1-3m-4n).8.【答案】(1)m(m-10) (2)0 (3)-2 (4)a+29.解:(1)原式=-7(m-n)[(m-n)2-3(m-n)+4]=-7(m-n)(m2-2mn+n2-3m+3n+4).(2)原式=2a[(a-b)+2(2a+3b)]=2a(a-b+4a+6b)=2a(5a+5b)=10a(a+b).10.解:(2x-21)(3x-7)-(3x-7)(x-13)=(3x-7)(2x-21-x+13)=(3x-7)(x-8)=(3x+a)(x+b).则a=-7,b=-8,所以a+3b=-7-24=-31.。
因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2 分解因式:a 3+b 3+c 3-3abc .例题3 分解因式:x 15+x 14+x 13+…+x 2+x +1.对应练习题 分解因式:2211(1)94n n x x y +-+;(2) x 10+x 5-2422332223(3)244(4)4x x y xy x y y x y --+++(4) (x 5+x 4+x 3+x 2+x +1)2-x 5(5) 9(a -b )2+12(a 2-b 2)+4(a +b )2(6) (a -b )2-4(a -b -1)(7)(x +y )3+2xy (1-x -y )-1二、分组分解法(一)分组后能直接提公因式例题1 分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2 分解因式:bx by ay ax -+-5102对应练习题 分解因式:1、bc ac ab a -+-22、1+--y x xy(二)分组后能直接运用公式例题3 分解因式:ay ax y x ++-22例题4 分解因式:2222c b ab a -+-对应练习题 分解因式:3、y y x x 3922---4、yz z y x 2222---综合练习题 分解因式:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)432234232.a a b a b ab b ++++(13)22)()(bx ay by ax -++ (14)333333333)(y x x z z y z y x xyz ---++(15)a a x ax x -++-2242 (16)a x a x x 2)2(323-++-(17))53(4)3()1(33+-+++x x x三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和. 例题1 分解因式:652++x x例题2 分解因式:672+-x x对应练习题 分解因式:(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x(二)二次项系数不为1的二次三项式——2ax bx c ++条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题3 分解因式:101132+-x x对应练习题 分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例题4 分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解. 1 8b1 -16b8b +(-16b )= -8b对应练习题 分解因式:(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --(四)二次项系数不为1的齐次多项式例题5 分解因式:22672y xy x +- 例题6 分解因式:2322+-xy y x对应练习题 分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习题 分解因式:(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(22222、双十字相乘法定义:双十字相乘法用于对F Ey Dx Cy Bxy Ax +++++22型多项式的分解因式. 条件:(1)21a a A =,21c c C =,21f f F =(2)B c a c a =+1221,E f c f c =+1221,D f a f a =+1221即: 1a 1c 1f2a 2c 2fB c a c a =+1221,E f c f c =+1221,D f a f a =+1221则=+++++F Ey Dx Cy Bxy Ax 22))((222111f y c x a f y c x a ++++例题7 分解因式: (1)2910322-++--y x y xy x(2)613622-++-+y x y xy x解:(1)2910322-++--y x y xy x应用双十字相乘法: x y 5- 2x y 2 1-xy xy xy 352-=-,y y y 945=+,x x x =+-2∴原式=)12)(25(-++-y x y x(2)613622-++-+y x y xy x应用双十字相乘法: x y 2- 3x y 3 2- xy xy xy =-23,y y y 1394=+,x x x =+-32∴原式=)23)(32(-++-y x y x对应练习题 分解因式:(1)67222-+--+y x y xy x (2)22227376z yz xz y xy x -+---3、十字相乘法进阶例题8 分解因式:)122()1)(1(22+++++y y x x y y例题9 分解因式:))(()1)(()(222222y x b a xy b a y x ab ++-+---四、主元法例题 分解因式:2910322-++--y x y xy x对应练习题 分解因式:(1)613622-++-+y x y xy x (2)67222-+--+y x y xy x(3)2737622--+--y x y xy x (4)36355622-++-+b a b ab a五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1 分解因式:(x 2+x +1)(x 2+x +2)-12.例题2 分解因式:22222)84(3)84(x x x x x x ++++++例题3 分解因式:9)5)(3)(1)(1(-+++-x x x x分析:型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘.例题4 分解因式:56)6)(67(22+--+-x x x x .例题5 分解因式:(x 2+3x +2)(4x 2+8x +3)-90.例题6 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.例题7 分解因式:272836+-x x例题8 分解因式:22244)()()(b a b a b a -+++-例题9 分解因式:272)3()1(44-+++y y例题9对应练习 分解因式:444)4(4-++a a例题10 分解因式:(x 2+xy +y 2)2-4xy (x 2+y 2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x +y ,v=xy ,用换元法分解因式.例题11 分解因式:262234+---x x x x分析:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习 分解因式:6x 4+7x 3-36x 2-7x +6.例题11对应练习 分解因式:144234+++-x x x x对应练习题 分解因式:(1)x 4+7x 3+14x 2+7x +1 (2))(2122234x x x x x +++++(3)2005)12005(200522---x x (4)2)6)(3)(2)(1(x x x x x +++++(5) (1)(3)(5)(7)15x x x x +++++ (6)(1)(2)(3)(4)24a a a a ----- (7)2(25)(9)(27)91a a a +--- (8)(x +3)(x 2-1)(x +5)-20(9)222222)3(4)5()1(+-+++a a a (10) (2x 2-3x +1)2-22x 2+33x -1(11)()()()a b c a b b c ++-+-+2333(12)21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-(13)2(2)(2)(1)a b ab a b ab +-+-+-六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1 分解因式:x 3-9x +8.例题2 分解因式:(1)x 9+x 6+x 3-3; (2)(m 2-1)(n 2-1)+4mn ; (3)(x +1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题 分解因式:(1)4323+-x x (2)2223103)(2b ab a x b a x -+-++(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++(7)x 3+3x 2-4 (8)x 4-11x 2y 2+y 2 (9)x 3+9x 2+26x +24 (10)x 4-12x +323 (11)x 4+x 2+1; (12)x 3-11x +20;(13)a 5+a +1 (14)56422-++-y x y x(15)ab b a 4)1)(1(22---七、待定系数法例题1 分解因式:613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++对应练习题 分解因式:(1)2737622--+--y x y xy x (2)2x 2+3xy -9y 2+14x -3y +20(3)2910322-++--y x y xy x (4)6752322+++++y x y xy x例题2 (1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.(3)已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式.(4)k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、()x f 的意义:已知多项式()x f ,若把x 用c 带入所得到的值,即称为()x f 在x =c 的多项式值,用()c f 表示.2、被除式、除式、商式、余式之间的关系:设多项式()x f 除以()x g 所得的商式为()x q ,余式为()x r ,则:()x f =()x g ×()x q +()x r3、余式定理:多项式)(x f 除以b x -之余式为)(b f ;多项式)(x f 除以b ax -之余式)(ab f . 例如:当 f(x )=x 2+x +2 除以 (x – 1) 时,则余数=f(1)=12+1+2=4.当2()967f x x x =+-除以(31)x +时,则余数=2111()9()6()78333f -=⨯-+⨯--=-.4、因式定理:设R b a ∈,,0≠a ,)(x f 为关于x 的多项式,则b x -为)(x f 的因式⇔0)(=b f ;b ax -为)(x f 的因式⇔0)(=abf .整系数一次因式检验法:设f(x)=0111c x c x c x c n n n n ++++-- 为整系数多项式,若ax –b 为f(x)之因式(其中a , b为整数 , a ≠0 , 且a , b 互质),则 (1)0,c b c a n(2)( a –b ))1()(,)1(-+f b a f例题1 设61923)(23+-+=x x x x f ,试问下列何者是f (x )的因式?(1)2x –1 ,(2) x –2,(3) 3x –1,(4) 4x +1,(5) x –1,(6) 3x –4例题2 把下列多项式分解因式:(1)453+-x x(2) 6423++-x x x (3) 245323-++x x x (4)1027259234++++x x x x (5)31212165234--++x x x x课后作业分解因式: (1)x 4+4(2)4x 3-31x +15 (3)3x 3-7x +10 (4)x 3-41x +30 (5)x 3+4x 2-9 (6)x 3+5x 2-18 (7)x 3+6x 2+11x +6 (8)x 3-3x 2+3x +7 (9)x 3-11x 2+31x -21(10)x 4+1987x 2+1986x +1987 (11)19981999199824-+-x x x (12)19961995199624+++x x x (13)x 3+3x 2y +3xy 2+2y 3 (1412)x 3-9ax 2+27a 2x -26a 3(15)23)12)(10)(6)(5(4x x x x x -++++ (16)12)4814)(86(22+++++x x x x (17)222215)4(8)4(xx x x x x ++++++(18)222222)1(2)1)(16(5)16(2++++++++x x x x x x (19)x 4+x 2y 2+y 4 (20)x 4-23x 2y 2+y 4(21)a 3+b 3+3(a 2+b 2)+3(a +b )+2 (22)641233-++ab b a (23)12233+++-b a ab b a .(24)1)1()2+-+ab b a ( (25)2222224)()(2b a x b a x -++-(26)))(()()(333333y x b a by ax bx ay ++-+++ (27)633621619y y x x --(28)x 2y -y 2z +z 2x -x 2z +y 2x +z 2y -2xyz (29)810381032345++---x x x x x因式分解的应用1、证明:四个连续整数的的乘积加1是整数的平方.2、2n -1和2n +1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被8整除.3、已知1248-可以被60与70之间的两个整数整除,求这两个整数.4、已知724-1可被40至50之间的两个整数整除,求这两个整数.5、求证:139792781--能被45整除.6、求证:146+1能被197整除.7、设4x -y 为3的倍数,求证:4x 2+7xy -2y 2能被9整除. 8、已知222y xy x -+=7,求整数x 、y 的值. 9、求方程07946=--+y x xy 的整数解. 10、求方程xy -x -y +1=3的整数解. 11、求方程4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为a 和b ,已知a 2+ab =99,则a =______,b =_______ . 13、 计算下列各题: (1)23×3.14+5.9×31.4+180×0.314;(2)19952199519931995199519963232--+-⨯.14、求积()()()()()11131124113511461198100+++++⨯⨯⨯⨯⨯ ()1199101+⨯的整数部分?15、解方程:(x 2+4x )2-2(x 2+4x )-15=016、已知ac +bd =0,则ab (c 2+d 2)+cd (a 2+b 2)的值等于___________.17、已知a -b =3, a -c =326, 求(c —b )[(a -b )2+(a -c )(a -b )+(a -c )2]的值.18、已知012=++x x ,求148++x x 的值.19、若x 满足145-=++x x x ,计算200419991998x x x +++ .20、已知三角形的三边a 、b 、c 满足等式abc c b a 3333=++,证明这个三角形是等边三角形.。
七下十道因式分解练习题一、提取公因式1. 分解因式:6x^2 + 9x2. 分解因式:8a^3b 4a^2b^23. 分解因式:15m^2n 20mn^2二、运用公式法4. 分解因式:x^2 95. 分解因式:a^2 + 2ab + b^26. 分解因式:4x^2 12xy + 9y^2三、十字相乘法7. 分解因式:x^2 + 5x + 68. 分解因式:2a^2 5a 39. 分解因式:3x^2 2x 1四、分组分解法10. 分解因式:x^3 + 2x^2 5x 1011. 分解因式:a^3 a^2 6a + 612. 分解因式:3x^3 3x^2 4x + 4五、综合运用13. 分解因式:x^4 1614. 分解因式:a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^415. 分解因式:2x^3 5x^2 + 2x 516. 分解因式:4x^4 9x^217. 分解因式:3a^5 27a^318. 分解因式:8m^3n 2mn^319. 分解因式:x^6 y^620. 分解因式:a^3 + b^3 + c^3 3abc六、特殊因式分解21. 分解因式:x^2 5x + 622. 分解因式:2y^2 8y + 823. 分解因式:a^2 4a + 4七、多项式乘法逆运算24. 分解因式:x^2y xy^225. 分解因式:ab^2 a^2b26. 分解因式:3mn^2 2n^3m八、复杂多项式因式分解27. 分解因式:x^3 + 3x^2y + 3xy^2 + y^328. 分解因式:a^4 b^429. 分解因式:x^5 x^3九、含有平方差的结构30. 分解因式:4x^2 25y^231. 分解因式:9a^2 16b^232. 分解因式:25m^2 144n^2十、多项式长除法后的因式分解33. 分解因式:x^4 2x^3 3x^2 + 6x34. 分解因式:a^5 3a^4 + 2a^335. 分解因式:3x^5 6x^4 + 3x^3请同学们认真练习,掌握因式分解的各种方法。
专题9.18 因式分解及提取公因式(巩固篇)(专项练习)一、单选题1.下列从左边到右边的变形中,是因式分解的是()A.B.C.D.2.如果是多项式的一个因式,则k的值为()A.-4B.4C.5D.83.单项式与的公因式是()A.B.C.D.4.下列多项式:①,②,③,④.其中有一个相同因式的多项式是()A.①和②B.①和④C.①和③D.②和④5.已知,那么代数式的值是()A.2000B.-2000C.2001D.-20016.将下列多项式分解因式,得到的结果不含因式x-1的是( )A.B.C.D.7.中,为()A.B.C.D.8.若,则的值为()A.2B.3C.4D.69.下列各数中,不能整除的是()A.78B.79C.80D.8110.如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M表示其底面积与侧面积的差,则M可因式分解为()A.B.C.D.二、填空题11.因式分解:___________.12.把代数式和的公因式写在横线上______.13.多项式,与的公因式为______.14.已知二次三项式有一个因式是,则m值为_________.15.若,,则________.16.若实数x满足,则______.17.在将因式分解时,小刚看错了m的值,分解得;小芳看错了n的值,分解得,那么原式正确分解为___________.18.已知,,,那么代数式的值是______.三、解答题19.把下列各式因式分解:(1);(2).20.把下列各式分解因式:(1)2m(m﹣n)2﹣8m2(n﹣m)(2)﹣8a2b+12ab2﹣4a3b321.已知是多项式的一个因式,求a,b的值,并将该多项式因式分解.22.已知(1)求的值(2)求的值23.仔细阅读下面例题,解答问题:例题:已知二次三项式有一个因式是,求另一个因式以及的值.解:设另一个因式为,得则∴解得:,∴另一个因式为,的值为问题:仿照以上方法解答下面问题:已知二次三项式有一个因式是,求另一个因式以及的值.24.如图,用一张如图A的正方形硬纸板、三张如图B的长方形硬纸板、两张如图C 的正方形硬纸板拼成一个长方形(如图D).(1) 请用不同的式子表示图D的面积(写出两种即可);(2) 根据(1)所得结果,写出一个表示因式分解的等式.参考答案1.D【分析】根据因式分解定义、完全平方差公式、整式运算、平方差公式因式分解逐项验证即可得到答案.解:A、,计算错误,也不是因式分解,该选项不符合题意;B、根据因式分解定义,不符合定义,不是因式分解,该选项不符合题意;C、根据因式分解定义,不符合定义,不是因式分解,该选项不符合题意;D、根据平方差公式,是因式分解,符合题意;故选:D.【点拨】本题考查因式分解定义及方法,熟记因式分解定义,并掌握平方差公式分解因式是解决问题的关键.2.B【分析】设=,然后利用多项式乘法法则计算,得到的式子与的对应项的系数相同,据此即可求得a,k的值.解:设==,则,解得:.故选:B.【点拨】本题考查因式分解与整式乘法的关系,根据是多项式的一个因式,设=是解题的关键.3.D【分析】根据公因式的定义,分别找出系数的最大公约数和相同字母的最低指数次幂,乘积就是公因式;解:与的公因式是,故选:D.【点拨】本题考查了公因式:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.4.C【分析】分别利用提取公因式法以及公式法分解因式,进而得出符合题意的答案.解:①;②;③;④.故分解因式后,结果含有相同因式的是:①和③.故选:C.【点拨】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式分解因式是解题的关键.5.B【分析】先将化为,再将转化为,再将代入求解即可.解:∵,∴,∴,故选:B.【点拨】本题考查代数式求值、提公因式法分解因式,利用整体代入求解是解答的关键.6.D【分析】根据平方差公式、完全平方公式、提公因式法,进行因式分解,据此即可一一判定.解:A.,故该选项不符合题意;B.,故该选项不符合题意;C.,故该选项不符合题意;D.,故该选项符合题意;故选:D.【点拨】本题考查了利用平方差公式、完全平方公式、提公因式法分解因式,熟练掌握和运用因式分解的方法是解决本题的关键.7.C【分析】根据除数=被除数÷商,将两个多项式化简,约分,可求出单项式M.解:故选:C.【点拨】本题考查了被除数、除数、商,三者之间的关系以及多项式除以单项式,涉及因式分解,熟练掌握运算法则是解题关键.8.C【分析】把变形为,代入a+b=2后,再变形为2(a+b)即可求得最后结果.解:∵a+b=2,∴a2-b2+4b=(a-b)(a+b)+4b,=2(a-b)+4b,=2a-2b+4b,=2(a+b),=2×2,=4.故选:C.【点拨】本题考查了代数式求值的方法,同时还利用了整体思想.9.A【分析】直接利用提取公因式以及平方差公式分解因式,进而得出答案.解:803﹣80=80×(802﹣1)=80×(80+1)×(80﹣1)=80×81×79,故不能整除803﹣80的是78,故选:A.【点拨】本题主要考查了提取公因式以及平方差公式分解因式,正确运用公式法分解因式是解题关键.10.A【分析】先表示出底面积和侧面积,然后求它们的差,再提取公因式分解因式即可.解:底面积为(b﹣2a)2,侧面积为a•(b﹣2a)•4=4a•(b﹣2a),∴M=(b﹣2a)2﹣4a•(b﹣2a),提取公式(b﹣2a),M=(b﹣2a)•(b﹣2a﹣4a),=(b﹣6a)(b﹣2a)故选:A.【点拨】本题考查了因式分解,灵活提取公因式是本题关键.11.【分析】提公因式x即可.解:,故答案为:.【点拨】本题考查了提取公因式法因式分解,解题关键是求出多项式里各项的公因式,提公因式.12.【分析】确定各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂进行分析即可.解:和的公因式为,故答案为:.【点拨】此题主要考查了公因式,关键是掌握找公因式的方法.13.【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.解:因为3x﹣9=3(x﹣3),x2﹣9=(x+3)(x﹣3),x2﹣6x+9=(x﹣3)2,所以多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为(x﹣3).故答案:.【点拨】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.14.3【分析】根据二次三项式有一个因式是,且,即可得到m的值.解:∵二次三项式有一个因式是,,∴,,故答案为3.【点拨】本题考查分组分解法因式分解,解题的关键是凑因式.15.【分析】首先分解因式,再把,代入,即可求得结果.解:,,故答案为:.【点拨】本题考查了代数式求值问题,因式分解,熟练掌握和运用代数式求值及因式分解的方法是解决本题的关键.16.2022【分析】将x2=2x+1,x2﹣2x=1代入计算可求解.解:∵x2﹣2x﹣1=0,∴x2=2x+1,x2﹣2x=1,∴原式=2x•x2﹣2x2﹣6x+2020=2x(2x+1)﹣2x2﹣6x+2020=4x2+2x﹣2x2﹣6x+2020=2x2﹣4x+2020=2(x2﹣2x)+2020=2×1+2020=2022.故答案为:2022【点拨】本题主要考查因式分解的应用,适当的进行因式分解,整体代入是解题的关键.17.【分析】利用多项式乘多项式法则先算乘法,根据因式分解与乘法的关系及小刚、小明没有看错的值确定m、n,再利用十字相乘法分解整式即可.解:(x﹣1)(x+6)=x2+5x﹣6,∵小刚看错了m的值,∴n=﹣6;(x﹣2)(x+1)=x2﹣x﹣2,∵小芳看错了n的值,∴m=﹣1.∴x2+mx+n=x2﹣x﹣6=(x﹣3)(x+2).故答案为:(x﹣3)(x+2).【点拨】本题考查了整式的因式分解,掌握十字相乘法、能根据乘法与因式分解的关系确定m、n的值是解决本题的关键.18.【分析】根据代数式的结构,分解成,然后计算出,代入代数式即可求解.解:,又由,,,得:,同理得:,,原式.故答案为:.【点拨】本题考查了因式分解的应用,根据条件化简是解题的关键.19.(1);(2).【分析】(1)把y-x变形为-(x-y)后用提公因式法即可完成因式分解;(2)把变形为,即可用提公因式法完成因式分解.解:(1);(2).【点拨】本题考查了提公因式法分解因式,用提公因式分解因式时,常见的变形有:及.20.(1)2m(m﹣n)(5m﹣n);(2)﹣4ab(2a﹣3b+a2b2)【分析】(1)直接提取公因式2m(m﹣n),进而分解因式得出答案;(2)直接提取公因式﹣4ab,进而分解因式得出答案.解:(1)2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n);(2)﹣8a2b+12ab2﹣4a3b3=﹣4ab(2a﹣3b+a2b2).【点拨】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.21.,,【分析】由题意可假设多项式x3−x2+ax+b=(x2+2x+1)(x+m),则将其展开、合并同类项,并与x3−x2+ax+b式子中x的各次项系数对应相等,依次求出m、b、a的值,那么另外一个因式即可确定.解:设,则,所以,,,解得,,.所以.【点拨】本题考查了因式分解的应用,用待定系数法来解较好.22.(1)84;(2)25.【分析】(1)先提取公因式将所求式子因式分解为,再将已知式子的值代入即可得;(2)利用完全平方公式进行变形求值即可得.解:(1),,,;(2),,,,.【点拨】本题考查了利用因式分解和完全平方公式进行变形求值,熟练掌握因式分解的方法和完全平方公式是解题关键.23.另一个因式为,的值为5.【分析】设另一个因式是,则,根据对应项的系数相等即可求得和的值.解:设另一个因式为,得则∴解得:,.故另一个因式为,的值为5.【点拨】本题考查了因式分解的意义,正确理解因式分解与整式的乘法互为逆运算是关键.24.(1) ,(2)【分析】(1)图D的面积可以看做一个大长方形面积;也可以看做一个边长为的正方形,三个长为宽为的小长方形,两个边长为的正方形面积之和;(2)根据图D的面积不同求法结合因式分解的定义即可求解.(1)解:图D的面积可以看做一个长为,宽为的长方形的面积:,也可以看做一个边长为的正方形,三个长为宽为的小长方形,两个边长为的正方形面积之和:;(2)解:由(1)得.【点拨】本题考查了因式分解的几何背景,用不同式子表示出图D的面积是解题关键,注意因式分解是“将一个多项式化为几个整式的积的形式”,不要写反了.。
初一数学因式分解常考训练1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8【分析】(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.【解答】(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8=2(x2+4x+4)=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy(2)3a3﹣6a2b+3ab2.【分析】(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.【解答】(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.【分析】(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.【解答】(1)a2(x﹣y)+16(y﹣x)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4)(2)(x2+y2)2﹣4x2y2=(x2+2xy+y2)(x2﹣2xy+y2)=(x+y)2(x﹣y)24.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.【分析】(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.【解答】(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3=﹣y(9x2﹣6xy+y2)=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2=[2+3(x﹣y)]2=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2【分析】(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2=x(4x2+4xy+y2)=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.【分析】(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.【解答】(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.【分析】(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.【解答】(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.【分析】(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.【解答】(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.【分析】本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.【解答】a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.【解答】a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1【分析】(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.【解答】(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)-(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y-x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;【分析】(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.【解答】(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2。
初中因式分解经典题型精选第一组:基础题1、a²b+2ab+b2、2a²-4a+23、16-8(m-n)+(m-n)²4、a²(p-q)-p+q5、a(ab+bc+ac)-abc【答案】1、a²b+2ab+b=b(a²+2a+1)=b(a+1)²2、2a²-4a+2=2(a²-2a+1)=2(a-1)²3、16-8(m-n)+(m-n)²然后运用完全平方公式=4²-2*4*(m-n)+(m-n)²=[4-(m-n)] ²=(4-m+n) ²4、a²(p-q)-p+q=a²(p-q)-(p-q)=(p-q)(a²-1)=(p-q)(a+1)(a-1)5、a(ab+bc+ac)-abc=a[(ab+bc+ac)-bc]=a(ab+bc+ac-bc)bc与-bc 抵消=a(ab+ac)提取公因式a=a²(b+c)第二组:提升题6、(x-y-1)²-(y- x-1)²7、a3b-ab38、b4-14b²+19、x4+x²+2ax+1﹣a²10、a5+a+1【答案】6、(x-y-1)²-(y- x-1)²用平方差公式=[(x-y-1)+(y-x-1)][(x-y-1)-(y-x-1)]去括号,合并同类项=(-2)(2x-2y)提取2= -4(x-y)7、a3b-ab3提取公因式ab=ab(a²-b²)用平方差公式=ab(a+b)(a-b)8、b4-14b²+1将-14b²拆分为:+2b²-16b²=b4+2b²-16b²+1将-16b²移到最后=b4+2b²+1-16b²将前三项结合在一起=(b4+2b²+1)-16b²=( b²+1)²-(4b)²用平方差公式=[( b²+1)+4b][( b²+1)-4b] =( b²+4b+1)( b²-4b+1)9、x4+x²+2ax+1﹣a²将+x²拆分为:+2x²- x²=x4+2x²- x² +2ax+1﹣a²将x4、+2x²、+1结合,将-x²、+2ax、﹣a²结合=(x4+2x²+1)+(-x²+2ax﹣a²)提取-1=( x²+1)² -(x²-2ax+a²)=( x²+1)²-( x-a)²用平方差公式=[(x²+1)+(x-a)][(x²+1)-(x-a)]=(x²+x-a+1)(x²-x+a+1)10、a5+a+1在式子中添加:-a²+a²=a5 - a²+ a²+a+1将前两项结合,后面三项结合=(a5-a²)+(a²+a+1)提取公因式a²=a²(a3-1)+(a²+a+1)用立方差公式=a²(a-1)(a²+a+1)+(a²+a+1)提取公因式(a²+a+1)=(a²+a+1)[a²(a-1)+1]=(a²+a+1)(a3-a²+1)第三组:进阶题11、x4-2y4-2x3y+xy312、(ac-bd)²+(bc+ad)²13、x²(y-z)+y²(z-x)+z²(x-y)14、x²-4ax+8ab-4b²15、xy² +4xz -xz²-4x【答案】11、x4-2y4-2x3y+xy3x4与xy3结合,-2y4与-2x3y结合=(x4+xy3)+(-2y4-2x3y)x-2y,=x(x3+y3)-2y(x3+y3)提取公因式(x3+y3)=(x3+y3)(x-2y)=(x+y)(x2-xy+y2)(x-2y)12、(ac-bd)²+(bc+ad)²去括号展开= a²c² - 2abcd + b²d²+b²c² +2abcd + a²d²- 2abcd与+2abcd 抵消=a²c² + b²d² +b²c² + a²d²a²c²与b²c²结合,b²d²与a²d²结合=(a²c²+b²c²)+( b²d²+a²d²)c², d ²,=c²(a²+b²)+d²(a²+b²)提取公因式(a²+b²)=(a²+b²)(c²+d²)13、x²(y-z)+y²(z-x)+z²(x-y)=x²(y-z)+y²z -y²x +z²x -z²yy²z与-z²y结合,z²x 与-y²x=x²(y-z)+(y²z -z²y)+(z²x-y²x)提取公因式zy提取公因式=x²(y-z)+ zy(y-z)+x(z²-y²)提取公因式(y-z),=(y-z)(x²+zy)+x(z+y)(z-y)y-z),后一项 +x则变为 -x =(y-z)[(x²+zy)-x(z+y)]=(y-z)(x²+zy-xz-xy)14、x²-4ax+8ab-4b²²与-4b²结合,-4ax与+8ab结合=(x²-4b²)+(-4ax+8ab)-4a=(x+2b)(x-2b)-4a(x-2b)x-2b),=(x-2b)[(x+2b)-4a]=(x-2b)(x+2b-4a)15、xy² +4xz -xz²-4xx,=x(y²+4z -z²-4)=x[y²+(4z -z²-4)]-1,=x[y²-(z²-4z+4)]用完全平方公式进行分解,=x[y²-(z-2)²]=x[y+(z-2))][y-(z-2)]=x(y+z-2)(y-z+2)第四组:经典题16、a6(a²-b²)+b6(b²-a²)17、4m3-31m+1518、a3+5a²+3a-919、x4(1- y)²+2x²(y²-1)+(1+ y)²20、2x4 -x3-6x²- x+ 2【答案】16、a6(a²-b²)+b6(b²-a²)-1=a6(a²-b²)-b6(a²-b²)提取公因式(a²-b²)=(a²-b²)(a6-b6)=(a²-b²)(a²-b²)(a4+a²b²+b4)=(a²-b²)²(a4+a²b²+b4)=(a+b)²(a-b)²(a4+a²b²+b4)17、4m3-31m+15-31m拆分为:-m-30m=4m3-m-30m+15=(4m3-m)+(-30m+15)m-15=m(4m²-1)-15(2m-1)=m(2m+1)(2m-1)-15(2m-1)(2m-1),=(2m-1)[m(2m+1)-15]=(2m-1)(2m²+m-15)=(2m-1)(2m-5)(m+3)18、a3+5a²+3a-93a拆分为:-6a+9a =a3+5a²-6a+9a-9=(a3+5a²-6a)+(9a-9)a9=a(a²+5a-6)+9(a-1)=a(a+6)(a-1)+9(a-1)提取公因式(a-1)=(a-1)[a(a+6)+9]=(a-1)(a²+6a+9)=(a-1)(a+3)²19、x4(1- y)²+2x²(y²-1)+(1+ y)²-1=x4(1- y)² - 2x²(1-y²)+(1+ y)²=[x²(1-y)]² -2x²(1-y)(1+y)+(1+ y)²=(x²-yx²-1- y)²20、2x4 -x3-6x²- x+ 2-x拆分为:3x-4x =2x4 -x3-6x²+3x-4x+ 2=(2x4 -x3)+(-6x²+3x)+(-4x+ 2)=(2x-1)(x3-3x-2)第五组:精选题21、a3+2a2+3a+222、x4-6x²+123、x3+3x+424、2a2b2+2a2c2+2b2c2+a4+b4+c425、a3-3a-226、2x3+3x2-127、a2+3ab+2b2+2a+b-3【答案】21、a3+2a2+3a+23a拆分为:a+2a =a3+2a2+a+2a+2=(a3+2a2+a)+(2a+2)=a(a2+2a+1)+2(a+1)=a(a+1)2+2(a+1)a+1)=(a+1)[a(a+1)+2]=(a+1)(a2+a+2)22、x4-6x²+1-6x2拆分为:-2x2-4x2 =x4-2x²-4x²+1-4x2移到最后=x4-2x²+1-4x²=(x4-2x²+1)-4x²=(x2-1)2-(2x)2=[(x2-1)+2x][(x2-1)-2x] =(x2+2x-1)(x2-2x-1)23、x3+3x+44拆分为:3+1=x3+3x+3+1x3与1结合,3x与3结合=(x3+1) + (3x+3)3=(x+1)(x2-x+1)+3(x+1)x+1)=(x+1)[(x2-x+1)+3]=(x+1)(x2-x+4)24、2a2b2+2a2c2+2b2c2+a4+b4+c4=(a4+b4+2a2b2)+(2a2c2+2b2c2)+c4 =(a2+b2)2+2c2(a2+b2)+c4=[(a2+b2)+c2]2=(a2+b2+c2)225、a3-3a-2-3a拆分为:-a-2a=a3-a-2a-2=(a3-a)+(-2a-2)=a(a2-1)-2(a+1)=a(a+1)(a-1)-2(a+1)a+1)=(a+1)[a(a-1)-2]=(a+1)(a2-a-2)=(a+1)(a+1)(a-2)=(a+1)2(a-2)26、2x3+3x2-13x2拆分为:2x2+x2 =2x3+2x2+x2-1=(2x3+2x2)+(x2-1)=2x2(x+1)+(x+1)(x-1)x+1)=(x+1)[2x2+(x-1)]=(x+1)(2x2+x-1)=(x+1)(2x-1)(x+1)=(x+1)2(2x-1)27、a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =[(a+b)-1][(a+2b)+3] =(a+b-1)(a+2b+3)十字叉乘法故:x2+6x+5=(x+1)(x+5)故:2x2+5x+2=(2x+1)(x+2)故:4x2+5x-3=(2x-1)(2x+3)黄勇权2019-7-14。
章节复习之因式分解(培优篇) 因式分解的方法一——基本方法知识要点:因式分解的基本方法有提公因式法、公式法、分组分解法和十字相乘法。
在对一个多项式进行因式分解时,应根据多项式的特点选择合理的分解方法。
A 卷一、填空题1、分解因式:_______________419122=+-+y x x n n . 2、(河南省竞赛题)分解因式:_______________63522=++++y y x xy x . 3、已知242--ax x 在整数范围内可以分解因式,则整数a 的可能取值为 .4、(2000年第16届“希望杯”竞赛题)分解因式:()()__________122=++-+b a b a ab . 5、(2005年第16届“希望杯”初二年级培训题)如果x 、y 是整数,且12005200422=-+y xy x ,那么_________=x ,_________=y .二、选择题6、如果多项式9142++kx x 是一个完全平方式,那么k 的值是( ) A 、6- B 、6 C 、32或32- D 、34或34- 7、(2005年第16届“希望杯”初二年级培训题)已知二次三项式c bx x ++22分解因式后为()()132+-x x ,则( )A 、3=b ,1-=cB 、6-=b ,2=cC 、6-=b ,4=cD 、4-=b ,6-=c8、(江苏省南通市2005年中等学校招生考试题)把多项式1222-+-b ab a 分解因式,结果为( )A 、()()11--+-b a b aB 、()()11-++-b a b aC 、()()11-+++b a b aD 、()()11--++b a b aB 卷一、填空题9、研究下列算式:252514321==+⨯⨯⨯;21112115432==+⨯⨯⨯;==+⨯⨯⨯36116543219;22984117654==+⨯⨯⨯,……用含n 的代数式表示此规律(n 为正整数)是 .二、选择题10、对于这5个多项式:①12222---b a b a ;②322327279a xa ax x -+-;③()x x 422+-;④()()m n n n m m -+-63;⑤()()b d c c b d y d c b x 222-+-----+其中在有理数范围内可以进行因式分解的有( )A 、①②⑤B 、②④⑤C 、③④⑤D 、①②④11、已知二次三项式10212-+ax x 可以分解成两个整系数的一次因式的积,那么( ) A 、a 一定是奇数 B 、a 一定是偶数 C 、a 可为奇数也可为偶数 D 、a 一定是负数 三、解答题 12、分解因式:(1)(2000年第12届“五羊杯”数学竞赛试题)分解因式:()()()33322y x y x -----(2)122229227131+++--n n n x x x (3)2222222ab x b b a abx bx x a ax +-+-+- (4)()222224b a abx x b a +--- (5)()()()b a c a c b c b a -+-+-222 (6)613622-++-+y x y xy xC 卷一、解答题13、n (1 n )名运动员参加乒乓球循环赛,每两人之间正好只进行一场比赛。
因式分解 - 提公因式法【知能点分类训练】知能点 1因式分解的意义1.以下从左到右的变形,属于因式分解的是().A.( x+3)(x- 3) =x2- 9B. x2- 9+x=( x+3)( x- 3)- x C. xy2- x2y=xy(y-x)D. x2 +5x+4=x( x+5+)2.以下变形不属于分解因式的是().A.x2- 1=( x+1)( x- 1)B. x2+x+1=( x+1) 242C. 2a5- 6a2=2a2( a3- 3)D. 3x2-6x+4=3x( x- 2) +43.以下各式从左到右的变形中,哪些是整式乘法哪些是因式分解哪些二者都不是(1) ad+bd+cd+n=d( a+b+c) +n(2)ay2-2ay+a=a(y-1)2( 3)( x- 4)( x+4) =x2- 16(4)x2-y2+1=(x+y)(x-y)+1知能点 2提公因式法分解因式4.多项式- 7ab+14abx- 49aby 的公因式是 ________.5. 3x2y3, 2x2y,- 5x3y2z 的公因式是 ________.6.以下各式用提公因式法分解因式,此中正确的选项是().A.5a3+4a2- a=a( 5a2+4a)B. p( a- b)2+pq ( b- a)2=p( a-b )2(1+q)C.- 6x2( y- z)3+x( z- y)3=- 3x( z- y)2( 2x- z+y)D.- x n- x n+1- x n+2 =- x n( 1- x+x2)7.把多项式 a2( x- 2) +a( 2- x)分解因式等于().A.( x- 2)(a2+a)B.( x-2 )( a2- a)C. a( x-2)( a-1)D. a( x- 2)( a+1)8.以下变形错误的选项是().A.( y- x)2=( x- y)2B.- a- b=-( a+b)C.(a- b)3=-( b -a)3D.- m+n=-( m+n)9.分解以下因式 :( 1) 6abc- 3ac2( 2)- a3c+a4b+a3( 3)- 4a3+16a2- 26a(4)x(m-x)(m-y)-m(x-m)(y-m)知能点 3 利用因式分解解决问题10. 9992+999=__________=_________.11.计算(- 2)2007+(- 2)2008的结果是().A.2B.- 2C. 2007D.- 1 12.计算以下各题 :( 1)-× ;( 2)× +×-×13.先分解因式,再求值:xyz2+xy2z+x2yz,此中 x= 2, y=7,z=1.5204【综合应用提升】14.假如 3x2- mxy2 =3x( x- 4y2),那么 m 的值为 ________.15.写出以下各项的公因式 :( 1) 6x2+18x+6;( 2)- 35a( a+b)与42( a+b).16.已知 n 为正整数,试判断n2+n 是奇数仍是偶数,说明原因.17.试说明817- 279- 913能被 45 整除.因式分解 -公式法【知能点分类训练】知能点 1用平方差公式分解因式1.- b2+a2=___________________;9x 2- 16y2=________________________ .2.以下多项式(1) x2+y2;( 2)- 2a2- 4b2;(3)(-m)2-(-n)2;(4)-144x2+169y2;( 5)( 3a)2- 4( 2b)2中,能用平方差公式分解的有()A.1 个B.2 个C.3 个D.4 个3.一个多项式,分解因式后结果是(x3+2)( 2-x3),那么这个多项式是().A. x6-4B. 4- x6C. x9- 4D. 4- x94.以下因式分解中错误的选项是()A. a2- 1=( a+1)( a- 1)B.1- 4x2=( 1+2x)( 1- 2x)C. 81x2- 64y2=( 9x+8y)( 9x- 8y) D.(- 2y)2- x2=(- 2y+x)( 2y+x)5.分解因式 :(1) a2-( 2) 25( m+n)2- 16( m- n)244- 64x22-9y2(3)x( 4)( x+y)9知能点 2 用完整平方公式分解因式6. 4a2+______+81=( 2a- 9)2.7.多项式 a2- 4b2与 a2+4ab+4b2的公因式是().A.a2- 4b2B. a+2b C. a- 2b D.没有公因式8.以下因式分解中正确的选项是().A.x4- 8x2+16=( x-4)2B.- x2+x-1=-1(2x- 1)244C. x( m-n )- y( n- m)=( m-n)(x- y) ; D. a4- b4=( a2+b2)( a2-b2)9.以下各式:①-2212122222x - xy- y;② a +ab+2b;③- 4ab- a +4b;④ 4x +9y-12xy;2⑤ 3x2- 6xy+3y2. ?此中能用完整平方公式分解因式的有().10.分解以下因式 :( 1)- x 2+12xy - 36y 2( 2)25x 2-10x+1( 3)- 2x 7+36x 5- 162x 3( 4)( a 2+6a ) 2+18( a 2+6a ) +81知能点 3 利用因式分解解决问题11.计算: 2 0072 -72 =_____________;992+198+1=___________. 12.假如 ab=2, a+b=3,那么 a 2+b 2=________.13.若 a 2+2( m - 3) a+16 是完整平方式,则 m 的值为().A .- 5B .- 1C .7D .7 或- 114.已知 a=22, b=25,求( a+b ) 2-( a - b ) 2 的值.754415.利用因式分解计算 :( 1) 9×- 4× ;( 2) 80× +160×× +80×(3) 1812 6123012 1812【综合应用提升】16.分解以下因式:( 1) 9x2( a- b) +y2( b- a)(2)4a2b2-(a2+b2)2( 3) x4- 81(4)1-x2+6xy-9y217.已知 x- y=- 2,求( x2 +y2)2- 4xy( x2+y2) +4x2y2的值.【开放探究创新】18.已知 a, b, c 是△ ABC的三条边.(1)判断( a- c)2- b2的值的正负 ;(2)若 a, b, c 知足 a2+c2+2b (b -a- c) =0,判断△ ABC的形状.【中考真题实战】19.(沈阳)分解因式:2x2- 4x+2=________.20.(成都)把 a3+ab2- 2a2b 分解因式的结果是 ________.21.(衡阳)分解因式x3- x,结果为().A. x( x2- 1)B.x( x-1)2C.x( x+1)2D. x( x+1)( x-1)22.(北京)分解因式a2-4a+4- b2.因式分解阶段性复习一、阶段性内容回首1.把多项式化成几个整式_______的形式叫做因式分解,也叫________.2.多项式中每一项都含有_________的因式叫公因式.3.把一个多项式中各项的________提出来进行因式分解的方法叫提公因式法.4.运用多项式的 _________ 进行因式分解的方法叫做公式法.5 . a2- b2=_______, ?即两个数的平方差等于这两个数的________?乘以这两个数的_______.6. a2± 2ab+b2=________,即两个数的平方和加上(或减去)这两个数的积的2?倍等于这两个数的 ________.7.分解因式的一般步骤:假如多项式各项有_______,则先把 _______提出来, ?而后再考虑用 ________,最后 _________ .二、阶段性稳固训练1.(福州)分解因式: x3-4x=_____________.2.(贵阳)分解因式: 2x2-20x+50=____________ .3.以下变形属于因式分解的是().A.(x+1)( x- 1) =x2- 1B. a2-1(a1)22a b2b bC. x2+x+ 1=( x+1)2D. 3x2- 6x+4=3x2(x-2) +4 42x4.以下多项式加上 4x2后,能够成为完整平方式的是().A. a2+2ax B.- a2+2axC.- 2x+1D. x4+45.① 4xy;② 12xy2;③- 2y2;④ 4y.此中能够作为多项式-28x2y+12xy2-24y 3的因式的是().A.④B.②④C.①③D.③④6.用因式分解的方法计算 +× +的值为().A.5 730B.2 500C. 250 000D.100 0007.分解以下多项式 :( 1) 5ax2- 10axy+5ay2( 2)4x2-3y( 4x- 3y)( 3)( x2-1)2+6( 1- x2) +9(4)1-x2+6xy-9y2( 5)( a 2- 1a ) 2+(a 2- a )+ 12 168.假如 x 2+mxy+9y 2 是完整平方式,求代数式 m 2+4m+4 的值.1 1 1 12 ) .9.计算( 1-2 )(132 )(1 2 )ggg(1102410.假如 m , n 知足│ m+2│ +( n - 4) 2=0,那么你能将代数式( x 2+y 2)-( mxy+n )?分解因式吗11.已知 a 2+b 2+c 2=20, ab+bc+ac=10,试求出( a+b+c ) 2 的值.12.已知 a ,b ,c 为△ ABC 的三边,且知足条件a 2 -c 2+ab - bc=0,试说明△ ABC?为等腰三角形.13.察以下各式:32- 12=4× 2, 42- 22=4× 3,52-3 2=4×4,⋯(1)猜想( n+2)2- n2的果.(2)你的猜想.14.已知 a+b= 2,ab=1,求 a3b+2a2b2+ab3的.3215.(1)假如 x2+2x+2y+y2 +2=0,求 x2007+y2008的.(2)已知 m+n= 3, m- n=1,求 m2- 2mn+3m+3n+n 2的.44。
因式分解的能力提升训练题(培优卷)1、计算()2013×1.52012×(-1)2014的结果是( )A、B、C、-D、-2、下列多项式乘法中可以用平方差公式计算的是()A、B、C、D、3 把代数式ax²-4ax+4a²分解因式,下列结果中正确的是()A、a(x-2) 2B、a(x+2) 2C、a(x-4)2D、a(x-2) (x+2)4、在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是()。
A、a2+b2=(a+b)(a-b)B、(a+b)2=a2+2ab+b2C、(a-b)2=a2-2ab+b2D、a2-b2=(a-b)25、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是:()A.B.C.D.6 分解因式(1)(a-b)2+4ab(2) 4xy2-4x2y-y2(3)4a2bc-3a2c2+8abc-6ac2;(4)(y2+3y)-(2y+6)2.(5)a(x-y)+b(y-x)+c(x-y) (6)(7)(m 2+3m )2-8(m 2+3m )-20;7.已知a +b =2,ab =2,求12a 3b +a 2b 2+12ab 3的值.8.先因式分解,然后计算求值:(1)9x 2+12xy +4y 2,其中x =43,y =−12;(2)(a+b 2)2﹣(a−b 2)2,其中a =−18,b =2.9.常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x 2﹣2xy +y 2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x 2﹣2xy +y 2﹣16=(x ﹣y )2﹣16=(x ﹣y +4)(x ﹣y ﹣4).这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a 2+4b 2﹣25m 2﹣n 2+12ab +10mn ;(2)已知a 、b 、c 分别是△ABC 三边的长且2a 2+b 2+c 2﹣2a (b +c )=0,请判断△ABC 的形状,并说明理由.10.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.11.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.12.我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:x 2﹣2xy +y 2﹣4=(x 2﹣2xy +y 2)﹣4=(x ﹣y )2﹣22=(x ﹣y ﹣2)(x ﹣y +2). ②拆项法:例如:x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1﹣2)(x +1+2)=(x ﹣1)(x +3).(1)仿照以上方法,按照要求分解因式:①(分组分解法)4x 2+4x ﹣y 2+1;②(拆项法)x 2﹣6x +8;(2)已知:a 、b 、c 为△ABC 的三条边,a 2+b 2+c 2﹣4a ﹣4b ﹣6c +17=0,求△ABC 的周长.13.阅读材料:利用公式法,可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,我们把这样的变形方法叫做多项式ax 2+bx +c (a ≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如x 2+4x ﹣5=x 2+4x +(42)2﹣(42)2﹣5=(x +2)2﹣9=(x +2+3)(x +2﹣3)=(x +5)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式:x 2+2x ﹣8;(2)求多项式x 2+4x ﹣3的最小值;(3)已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2+50=6a +8b +10c ,求△ABC 的周长.14.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2.上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3.15.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.(2)若图中阴影部分的面积为20平方厘米,大长方形纸板的周长为24厘米,求图中空白部分的面积.。
初一数学用提公因式法进行因式分解试题1.下列各式由左边到右边的变形中,是因式分解的是()A.B.C.D.【答案】B【解析】从形式上看A选项是整式的乘法;C、D选项中等式的右边整体不是积的形式,不属于因式分解.2.在m(a-x)(x-b)-mn(a-x)(b-x)中,公因式是()A.m B.m(a-x)C.m(a-x)(b-x)D.(a-x)(b-x)【答案】C【解析】首先把式子进行变形,可变为m(a-x)(x-b)+mn(a-x)(x-b),进而可得到公因式m(a-x)(b-x).3.分解8a3b2-12ab3c时应提取的公因式是()A.2ab2B.4ab C.ab2D.4ab2【答案】D【解析】提取公因式时:系数取最大公约数;字母取相同字母的最低次幂.4.下列多项式中,能用提取公因式法分解因式的是()A.x2-y B.x2+2x C.x2+y2D.x2-xy+y2【答案】B【解析】A、不符合要求,没有公因式可提,故本选项错误;B、x2+2x可以提取公因式x,正确;C、不符合要求,没有公因式可提,故本选项错误;D、不符合要求,没有公因式可提,故本选项错误.5.多项式a-b+c(a-b)因式分解的结果是()A.(a-b)(c+1)B.(b-a)(c+1)C.(a-b)(c-1)D.(b-a)(c-1)【答案】A【解析】把a-b看作一个整体,提取公因式(a-b)即可.6.若(x+2)3-4x(x+2)=k(x+2),则k的表达式为()A.x3-4x2-8x+8B.x3-4x2+8C.x2+4D.x3-4x2+4【答案】C【解析】首先把(x+2)3-4x(x+2)分解因式,根据分解因式的结果即可判断.7.(x-y)2-(y-x)因式分解的结果是()A.(y-x)(x-y)B.(x-y)(x-y-1)C.(y-x)(y-x-1)D.(x-y)(y-x-1)【答案】C【解析】根据题意得:(x-y)2-(y-x)=(y-x)2-(y-x)=(y-x)(y-x-1).8.分解因式:3a2b+6ab2=________.【答案】3ab(a+2b)【解析】首先观察可得此题的公因式为:3ab,然后提取公因式即可求得答案.9.分解因式:2a(b+c)-3(b+c)=_______.【答案】(b+c)(2a-3)【解析】直接提取公因式b+c即可.10.因式分解:-4x2y-6xy2+2xy= ________.【答案】-2xy(2x+3y-1)【解析】首先找出各项的公公因式,提取公因式即可得出答案.。
数学七年级:10道提公因式法分解因式常见经典考试真题,培
优练习
因式分解是初中数学里的一个重点,在分式的约分化简,在解一元二次方程,在很多的计算化简题里,经常需要用到因式分解。
因式分解的技巧和方法很多。
歌谣口诀,一提,二套,三分组和十字交叉相乘。
一提,就是提公因式。
二套,就是套乘法公式。
由此可见,最基础的,最简单的,第一要用到的,就是提公因式法。
一个多项式的各项都含有的公共因式,叫做这个多项式的公因式。
公因式的系数是各项系数最大公约数,字母取各项相同的字母,且相同的字母取最低指数。
第1题,和第2题,这是两道最简单的提公因式法分解因式的题。
只要提取公因式就好。
但是这里有一点,必须强调,如果多项式的首项是负号,那么公因式也是负号。
也就是说,公因式的符号,跟着多项式的首项走。
比如第1题,首项是-6a²b,那么它的公因式就是-2ab。
也就是公因式的符号,同首项的负号。
第3题,第4题,这种公因式怎么提?公因式可以使单项式,也可以是多项式。
那么多项式的公因式又怎么找?记住两个关键点,各项中相同的和互为相反数的部分,都可以看做公因式。
相同的,自然不用说就是公因式。
互为相反数的,先提一个-1出来,那么就变成相同的因式了。
比如第3题,前面两项是(x+y-z),第三项是(z-x-y),它们就是互为相反数。
把第三项提一个-1 出来,就可以了。
比如第4题,(2x-y)和(y-2x),也是互为相反数。
因为是这是偶数次方,所以,只需要把底数直接变成它的相反数,就好。
这两题,是非常常见的利用因式分解来简便运算的计算题。
第5题,不难,就是我们原来做的乘法的分配律的逆运算,提取公因数就好。
第6题,依然是提取公因数,但是难点就是,这个因式数是多少,
所以第一步要先化成底数相同,然后再确定公因数。
这两题和第3,4题,是属于同一种类型。
第7题同学们认真看看,这个公因式的是怎么找的,就好。
第8题,是因式分解的题型,先把原式化简,不用解二元一次方程组了,整体代入就好,计算简单。
这两题,因式分解培优拓展题,考试也很常见。
第9题,请同学们看好,就是依次的提取一个公因式(x+1)。
第10题,原式可以分解成两个多项式相乘的形式。
这两个多项式相乘里,期中有字母参数。
那我们就先把原式分解因式,然后和题意进行比对,依据两式相等,就是每一项,每一部分都相等的原则,得出参数a和b的值。