2016数学建模第二阶段问题
- 格式:docx
- 大小:13.09 KB
- 文档页数:1
数学建模网络挑战赛承诺书我们仔细阅读了第九届“认证杯”数学中国数学建模网络挑战赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们接受相应处理结果。
我们允许数学中国网站()公布论文,以供网友之间学习交流,数学中国网站以非商业目的的论文交流不需要提前取得我们的同意。
我们的参赛队号为:2202参赛队员(签名) :队员1:王奕队员2:丁梦清队员3:庄亚勤参赛队教练员(签名):教练组参赛队伍组别(例如本科组):本科组数学建模网络挑战赛编号专用页参赛队伍的参赛队号:(请各个参赛队提前填写好):2202 竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2016年第九届“认证杯”数学中国数学建模网络挑战赛第二阶段论文题目洗衣机关键词传动系统优化、悬挂系统模型、“活塞式”洗衣机摘要:洗衣机在生活中有着广泛的应用,较为普及的是波轮式洗衣机、滚筒式洗衣机和搅拌式洗衣机。
本文主要针对为了能尽量提高净衣效能和减小洗涤过程对衣物的机械损伤而提出优化方案。
本文首先分别对波轮式洗衣机和滚筒式洗衣机的结构和工作原理进行分析,再在此基础上对波轮式洗衣机的传动系统优化改进,即用多楔带取代三角皮带;其次对滚筒式洗衣机建立悬挂系统数学模型,列出参数外筒、内筒、上配重、下配重、吊簧、减振器以及电机,计算滚筒洗衣机的势能和动能,得出系统的总动能。
再进行悬挂系统关键参数优化结果理论分析,分析之前和改进后筒体质心垂向(y方向)和侧向(x方向)的振幅最大值的变化。
2016数学建模国赛赛题
2016年数学建模国赛赛题一般是指《数学建模入门教程》中的赛题,主要
有以下三类:
1. 问题一:水深测量与海洋动力现象模拟。
要求:使用集中质量法将系统中的各个物体视为一个质点,对各个物体建立静力平衡方程,在水深18m时给定浮标在海水中所受浮力,从而根据建
立的平衡方程求出各物体的倾斜角度,再根据几何关系求出海域的模拟深度。
通过不断修正浮标的浮力,使得海域的模拟深度等于18m,最终求得风速
分别为12m/s和24m/s时浮标的吃水深度和各节钢管的倾斜角度。
2. 问题二:交通流模型与小区开放对周边道路通行的影响。
要求:利用元胞自动机的方法,分别分析不同道路车量位置与车流量变化、负荷系数以及基于交通流的车速。
先对不同小区进行划分,再利用问题一的方法和结论,分别模拟不同小区、不同路段开放小区对车辆通行情况的分析。
最后根据第一问选取出的六个指标,依据其计算公式,分别得出所有样本的所有指标值。
再根据这些指标值,利用投影寻踪法,得到不同小区、不同路段下,开放小区对周围道路通行的影响。
3. 问题三: Braess 悖论。
要求:对于这个问题没有给出具体的要求,因为这是一个理论问题,主要探讨的是网络流理论中的一个著名悖论。
请注意,由于题目较为复杂,建议在数学建模课程或相关论坛中寻找更详细的解答。
全国大学生数学建模竞赛真题试卷复习材料2016年高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
C题电池剩余放电时间预测
铅酸电池作为电源被广泛用于工业、军事、日常生活中。
在铅酸电池以恒定电流强度放电过程中,电压随放电时间单调下降,直到额定的最低保护电压(Um,本题中为9V)。
从充满电开始放电,电压随时间变化的关系称为放电曲线。
电池在当前负荷下还能供电多长时间(即以当前电流强度放电到Um的剩余放电时间)是使用中必须回答的问题。
电池通过较长时间使用或放置,充满电后的荷电状态会发生衰减。
问题1 附件1是同一生产批次电池出厂时以不同电流强度放电测试的完整放电曲线的采样数据。
请根据附件1用初等函数表示各放电曲线,并分别给出各放电曲线的平均相对误差(MRE,定义见附件1)。
如果在新电池使用中,分别以30A、40A、50A、60A和70A电流强度放电,测得电压都为9.8伏时,根据你获得的模型,电池的剩余放电时间分别是多少?
问题2 试建立以20A到100A之间任一恒定电流强度放电时的放电曲线的数学模型,并用MRE评估模型的精度。
用表格和图形给出电流强度为55A时的放电曲线。
问题3 附件2是同一电池在不同衰减状态下以同一电流强度从充满电开始放电的记录数据。
试预测附件2中电池衰减状态3的剩余放电时间。
2001高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)C题基金使用计划某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。
当前银行存款及各期国库券的利率见下表。
假设国库券每年至少发行一次,发行时间不定。
取款政策参考银行的现行政策。
校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。
校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。
请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果:1.只存款不购国库券;2.可存款也可购国库券。
3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多摘要:运用基金M分成n份(M1,M2,…,Mn),M1存一年,M2存2年,…,Mn存n 年.这样,对前面的(n-1)年,第i年终时M1到期,将Mi及其利息均取出来作为当年的奖金发放;而第n年,则用除去M元所剩下的钱作为第n年的奖金发放的基本思想,解决了基金的最佳使用方案问题.关键词:超限归纳法;排除定理;仓恩定理1问题重述某校基金会有一笔数额为M元的基金,欲将其存入银行或购买国库券.当前银行存款及各期国库券的利率见表1.假设国库券每年至少发行一次,发行时间不定.取款政策参考银行的现行政策.表1 存款年利率表校基金会计在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额.校基金会希望获得最佳的基金使用计划,以提高每年的奖金额.需帮助校基金会在如下情况下设计基金使用方案,并对M=5 000万元,n=10年给出具体结果:①只存款不购国库券;②可存款也可购国库券.③学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多20%.2模型的分析、假设与建立2.1模型假设①每年发放的奖金额相同;②取款按现行银行政策;③不考虑通货膨胀及国家政策对利息结算的影响;④基金在年初到位,学校当年奖金在下一年年初发放;⑤国库券若提前支取,则按满年限的同期银行利率结算,且需交纳一定数额的手续费;⑥到期国库券回收资金不能用于购买当年发行的国库券.2.2符号约定K——发放的奖金数;ri——存i年的年利率,(i=1/2,1,2,3,5);Mi——支付第i年奖金,第1年开始所存的数额(i=1,2,…,10);U——半年活期的年利率;2.3模型的建立和求解2.3.1情况一:只存款不购国库券(1)分析令:支付各年奖金和本金存款方案———Mij (i =1,…,10,i ;j 属于N ). 将各方案ij M 看成元素,构成集合A则ij M 属于A1,210;I =所以A 按I 取值分10行根据仓恩定理:分行集中,任何一单行有上界,则必包含一个极大元素。
2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题 目 A 题 城市表层土壤重金属污染分析摘 要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。
2016年美国大学生数学建模竞赛题目第5卷第2期2016年6月、・....・‘.¨...‘-.....’...Ⅲ’¨....‘......‘...¨.!数学建模及其应用MathematicaIMOde¨ngandltsAppIiCatiOnsVOI.5No.2Jun.2016{竞赛论坛}^¨I・。
・-..哪・...岫・...嘶・..-‘・‘・...Ⅵ・‘‘“・・I2016年美国大学生数学建模竞赛题目韩中庚译(解放军信息工程大学四院,河南郑州450001)问题A:热水澡人们经常会通过用一个水龙头将浴缸注满热水,然后坐在浴缸里清洗和放松。
这个浴缸不是带有二次加热系统和循环喷流的温泉式浴缸,而是一个简单的水容器。
过一会儿,洗澡水就会明显变凉,所以洗澡的人需要不停地从水龙头注入热水,以加热洗浴的水。
该浴缸的设计是这样一种方式,即当浴缸里的水达到容量极限时,多余的水就会通过溢水口流出。
考虑空间和时间等因素,建立一个浴缸的水温控制模型,以确定最佳策略,使浴缸里的人可以利用这个策略让整个浴缸中的水保持或尽可能接近初始的温度,而且不浪费太多的水。
利用你们的模型来确定这个策略对浴缸的形状和体积,以及对浴缸中人的形状、体积、温度和活动等因素的依赖程度。
如果这个人一开始用了一种泡泡浴剂加入浴缸中以助清洗,这会对你们的模型结果有怎样的影响?除了要求提交1页的MCM摘要之外,你们的报告必须包括1页为浴缸用户准备的非技术性的说明书,来阐述你们的策略,同时解释为什么保持洗澡水的恒温如此之难。
问题B:太空垃圾地球轨道上的小碎片数量已引起人们越来越多的关注。
据估计,目前有超过500000块的空间碎片,也被称为轨道碎片,由于被认为对空间飞行器是潜在的威胁而正在被跟踪。
2009年2月10日,俄罗斯卫星Kosmos一2251和美国卫星Iridium一33相撞之后,该问题受到了新闻媒体更广泛的讨论。
2016年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。
某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。
系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。
锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。
钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。
要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。
水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。
钢桶上接第4节钢管,下接电焊锚链。
钢桶竖直时,水声通讯设备的工作效果最佳。
若钢桶倾斜,则影响设备的工作效果。
钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。
为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。
图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。
问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。
现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。
若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。
请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。
问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。
2016年全国高校生数学建模竞赛B 题解题分析与总结专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,期望大家下载或复制使用后,能够解决实际问题。
文档全文可编辑,以便您下载后可定制修改,请依据实际需要进行调整和使用,感谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、进修资料、教室资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想进修、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestyle materials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!2016年全国高校生数学建模竞赛B题解题分析与总结2016年全国高校生数学建模竞赛B题解题分析与总结引言:2016年全国高校生数学建模竞赛是我国高等教育中的一项重要赛事,也是高校生运用数学知识探究实际问题的一个重要平台。
2016华为杯数学建模题目在2016年的华为杯数学建模竞赛中,参赛者们需面对一道关于数学建模的题目。
这个题目的要求是基于给定的问题,运用数学模型和方法,利用计算机技术进行仿真和数据处理,进行问题的分析和解决。
本文将深入探讨这道数学建模题目,并提供一种解决方法。
1. 题目背景在这个部分,我们将介绍题目的背景和相关信息。
根据2016年华为杯数学建模题目,我们假设题目是关于交通流量模拟的问题。
为了简化问题,我们假设一个城市有多个交叉路口,每个路口都有不同的交通流量。
2. 问题的分析在这个部分,我们将对问题进行仔细的分析。
首先,我们需要明确问题的具体要求和约束条件。
例如,题目要求我们通过数学模型和方法来模拟交通流量,并找到最佳的交通信号控制方式来优化路口的交通状况。
3. 模型的建立在这个部分,我们将建立数学模型来解决问题。
首先,我们可以通过实地调研和数据收集来获取相关的交通流量数据。
然后,我们可以使用统计学方法和数据分析技术来分析这些数据,并建立交通流量模型。
最后,我们可以运用优化算法和模拟技术来寻找最佳的交通信号控制方式。
4. 模型的仿真和优化在这个部分,我们将进行模型的仿真和优化。
我们可以使用计算机软件来进行仿真实验,模拟不同交通信号控制方式下的交通流量情况,并通过对比和分析来找到最佳的控制方式。
同时,我们也可以利用优化算法来对模型进行优化,以达到最优的交通流量状况。
5. 结果分析与讨论在这个部分,我们将对模型的结果进行分析和讨论。
我们将探讨最佳交通信号控制方式对交通流量的影响,以及可能的改进和优化方法。
我们还可以对模型进行灵敏度分析,以探索模型中各个参数的影响和敏感度。
6. 结论在这个部分,我们将总结我们的研究结果,并提出进一步的研究方向和建议。
我们可以总结我们找到的最佳交通信号控制方式,并讨论其在实际应用中的可行性和可持续性。
我们还可以提出改进和优化模型的建议,以提高交通流量模拟的准确性和精度。
2016 年“认证杯”数学中国数学建模网络挑战赛
第二阶段
B 题低分辨率下看世界
数码摄像技术被广泛使用于多种场合中。
有时由于客观条件的限制,拍摄
设备只能在较低的分辨率下成像。
为简单起见,我们只考虑单色成像。
假设
成像的分辨率为32 _ 64,成像方式是将整个矩形视野划分成32 _ 64 个相同
大小的矩形格子,图像中每个像素的取值为对应格子的亮度平均值。
每间隔
一定时间拍摄一帧图像,运动的画面体现为图像的序列。
第一阶段问题:现在整个视野区域向某个方向缓慢运动,拍摄到的系列图像
实时地传输到计算机中。
请你建立合理的数学模型和算法,通过分析实时拍
摄的图像,使用尽量少的时间,以判断出运动的方向。
第二阶段问题:对一副静态的图像而言,每个像素对应于视野中的一个格
子,每个格子内部的细节信息已经无法还原。
但如果在视野移动的过程中拍
摄系列图像,我们通过对多帧图像进行对比分析,仍然有可能还原出来一些
在单张照片中无法体现的细节。
请建立合理的数学模型和算法,通过对多帧
图像进行分析,尽可能多地还原出被摄物的细节。
A 题洗衣机
洗衣机是普及率极高的家用电器,它给人们的生活带来了很大的方便。
家用洗衣机从工作方式来看,有波轮式、滚筒式、搅拌式等若干种类。
在此基础上,各厂商也推出了多种具体方案,设计了不同的几何及运转参数,诸如波轮的外形、内筒的内壁形状、旋转方式和转速等。
不同设计方案的净衣效能和对衣物的损伤程度各不相同。
第一阶段问题:
1. 请你建立合理的指标,衡量洗衣机的净衣效能和对衣物的损伤程度。
2. 请你建立合理的数学模型,对典型的波轮式和滚筒式家用洗衣机的工
作方式进行分析,并分别估算这两种工作方式的净衣效能和对衣物的损伤程度。
为简单起见,我们可以只考虑洗涤过程,不考虑漂洗和脱水过程。
第二阶段问题:用户总是希望洗衣机能尽量提高净衣效能,而且能够尽量减小洗涤过程对衣物的机械损伤。
为此,请你建立合理的数学模型,对典型的家用洗衣机进行优化的设计。
在设计方案中请说明其工作方式(可使用或改进常见的波轮式、滚筒式和搅拌式等,也可设计全新的工作方式),并请给出关键的几何及运转参数。