高考物理 电磁感应复习教案 新人教版
- 格式:doc
- 大小:445.50 KB
- 文档页数:20
第2讲 法拉第电磁感应定律 自感现象考点1 法拉第电磁感应定律的理解和应用1.法拉第电磁感应定律的理解(1)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率ΔΦΔt 共同决定,而与磁通量Φ的大小、变化量ΔΦ的大小没有必然联系.(2)磁通量的变化率ΔΦΔt 对应Φt 图线上某点切线的斜率.2.应用法拉第电磁感应定律的三种情况(1)磁通量的变化是由面积变化引起时,ΔΦ=B ·ΔS ,则E =n B ΔSΔt ; (2)磁通量的变化是由磁场变化引起时,ΔΦ=S ·ΔB ,则E =nS ·ΔBΔt; (3)磁通量的变化是由面积和磁场共同变化引起时,则根据定义,ΔΦ=|Φ末-Φ初|,E =n|B 2S 2-B 1S 1|Δt ≠n |ΔB ΔS |Δt.1.(2018·全国卷Ⅲ)(多选)如图甲,在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧.导线PQ 中通有正弦交流电i ,i 的变化如图乙所示,规定从Q 到P 为电流正方向.导线框R 中的感应电动势( AC )A .在t =T 4时为零B .在t =T 2时改变方向C .在t =T2时最大,且沿顺时针方向D .在t =T 时最大,且沿顺时针方向解析:本题考查楞次定律的应用及法拉第电磁感应定律.由i t 图象可知,在t =T4时,Δi Δt =0,此时穿过导线框R 的磁通量的变化率ΔΦΔt=0,由法拉第电磁感应定律可知,此时导线框R 中的感应电动势为0,选项A 正确;同理在t =T 2和t =T 时,Δi Δt 为最大值,ΔΦΔt为最大值,导线框R 中的感应电动势为最大值,不改变方向,选项B 错误;根据楞次定律,t =T2时,导线框R 中的感应电动势的方向为顺时针方向,而t =T 时,导线框R 中的感应电动势的方向为逆时针方向,选项C 正确,选项D 错误.2.如图甲所示,用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的直径.在ab 的右侧存在一个足够大的匀强磁场,t =0时刻磁场方向垂直于竖直圆环平面向里,磁场磁感应强度B 随时间t 变化的关系如图乙所示,则0~t 1时间内( D )A .圆环中产生感应电流的方向为逆时针B .圆环中产生感应电流的方向先顺时针后是逆时针C .圆环一直具有扩X 的趋势D .圆环中感应电流的大小为B 0rS4t 0ρ解析:磁通量先向里减小再向外增大,由楞次定律“增反减同”可知,线圈中的感应电流方向为一直为顺时针,故A 、B 错误;由楞次定律的“来拒去留”可知,0~t 0为了阻碍磁通量的减小,线圈有扩X 的趋势,t 0~t 1为了阻碍磁通量的增大,线圈有缩小的趋势,故C 错误;由法拉第电磁感应定律,得E =ΔBS 2Δt =B 0πr 22t 0,感应电流I =E R =B 0πr 22t 0·Sρ×2πr=B 0rS4t 0ρ,故D 正确. 3.(2019·某某某某质检)如图甲所示,导体棒MN 置于水平导轨上,P 、Q 之间有阻值为R 的电阻,PQNM 所围的面积为S ,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的磁场,规定磁场方向竖直向上为正,在0~2t 0时间内磁感应强度的变化情况如图乙所示,导体棒MN 始终处于静止状态.下列说法正确的是( D )A .在0~t 0和t 0~2t 0内,导体棒受到导轨的摩擦力方向相同B .在t 0~2t 0内,通过电阻R 的电流方向为P 到QC .在0~t 0内,通过电阻R 的电流大小为2B 0SRt 0D .在0~2t 0内,通过电阻R 的电荷量为B 0S R解析:本题考查法拉第电磁感应定律的图象问题,定性分析加定量计算可快速求解.由图乙所示图象可知,0~t 0内磁感应强度减小,穿过回路的磁通量减小,由楞次定律可知,为阻碍磁通量的减少,导体棒具有向右的运动趋势,导体棒受到向左的摩擦力,在t 0~2t 0内,穿过回路的磁通量增加,为阻碍磁通量的增加,导体棒有向左的运动趋势,导体棒受到向右的摩擦力,在两时间段内摩擦力方向相反,故A 错误;由图乙所示图象可知,在t 0~2t 0内磁感应强度增大,穿过闭合回路的磁通量增大,由楞次定律可知,感应电流沿顺时针方向,通过电阻R 的电流方向为Q 到P ,故B 错误;由图乙所示图象,应用法拉第电磁感应定律可得,在0~t 0内感应电动势E 1=ΔΦΔt =S ·ΔB Δt =B 0S t 0,感应电流为I 1=E 1R =B 0S Rt 0,故C 错误;由图乙所示图象,应用法拉第电磁感应定律可得,在0~2t 0内通过电阻R 的电荷量为q 1=N ΔΦR=2B 0S -B 0S R =B 0SR,故D 正确.应用电磁感应定律需注意的三个问题(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt 求感应电动势时,S 为线圈在磁场X 围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关,与Φ是否均匀变化无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点2 导体切割磁感线产生的感应电动势考向1 平动切割1.计算公式:E =BLv 或E =BLv sin θ. 2.E =Blv 的三个特性(1)正交性:本公式要求磁场为匀强磁场,而且B 、l 、v 三者互相垂直.(2)有效性:公式中的l 为导体棒切割磁感线的有效长度.下图中,导体棒的有效长度为ab 间的距离.(3)相对性:E =Blv 中的速度v 是导体棒相对磁场的速度,若磁场也在运动,应注意速度间的相对关系.(2019·某某某某统考)(多选)半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则( )A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为2B 2av(π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2av(5π+3)R 0[审题指导] (1)导体棒长度指处在磁场中的长度,称为有效长度.θ=0和θ=π3时二者不同.(2)先计算感应电动势,再计算感应电流,最后计算安培力.【解析】 当θ=0时,杆产生的电动势E =BLv =2Bav ,故A 正确;当θ=π3时,根据几何关系得出此时导体棒的有效切割长度为a ,所以杆产生的电动势为E =Bav ,故B 错误;当θ=0时,由于单位长度电阻均为R 0,所以电路中总电阻为(2+π)aR 0,所以杆受的安培力大小为F =BIL =B ·2a 2Bav (2+π)aR 0=4B 2av (2+π)R 0,故C 错误;当θ=π3时,电路中总电阻为⎝⎛⎭⎪⎫1+5π3aR 0,所以杆受的安培力大小为F ′=BI ′L ′=3B 2av (3+5π)R 0,故D 正确.【答案】 AD1.(2019·某某某某模拟)如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L ,左端接有阻值为R 的电阻,一质量为m 、长度为L 的匀质金属棒cd 放置在导轨上,金属棒的电阻为r ,整个装置置于方向竖直向上的匀强磁场中,磁场的磁感应强度为B .金属棒在水平向右的外力作用下,由静止开始做加速度大小为a 的匀加速直线运动,经过的位移为s 时,则( C )A .金属棒中感应电流方向由d 到cB .金属棒产生的感应电动势为BL asC .金属棒中感应电流为BL 2asR +rD .水平拉力F 的大小为B 2L 22asR +r解析:根据楞次定律可知电流I 的方向从c 到d ,故A 错误;设金属棒cd 的位移为s 时速度为v ,则有v 2=2as ,金属棒产生的电动势为E =BLv =BL 2as ,故B 错误;金属棒中感应电流的大小为I =ER +r,解得I =BL 2asR +r,故C 正确;金属棒受到的安培力大小为f =BIL ,根据牛顿第二定律可得F -f =ma ,联立解得F =B 2L 22asR +r+ma ,故D 错误.考向2 导体棒转动切割磁感线当导体棒在垂直于磁场的平面内绕一端以角速度ω匀速转动时,产生的感应电动势为E =Bl v =12Bl 2ω,如图所示.如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a —b —c —aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a —c —b —a[审题指导] (1)金属框在转动过程中,磁通量不变,无感应电流产生. (2)金属框bc 边和ac 边都在切割磁感线,所以有感应电动势.【解析】 穿过金属框的磁通量始终为零,没有发生变化,故金属框中无电流,B 、D 项错误;bc 边切割磁感线的等效速度为12lω,根据右手定则U b <U c ,故U bc =-12Bl 2ω,C 项正确;ac 边切割磁感线,根据右手定则得U a <U c ,A 项错误.【答案】 C2.(2018·全国卷Ⅰ)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( B )A.54B.32C.74D .2 解析:本题考查法拉第电磁感应定律及电荷量公式.由公式E =ΔΦΔt ,I =ER ,q =It 得q =ΔΦR ,设半圆弧半径为r ,对于过程Ⅰ,q 1=B ·πr 24·R ,对于过程Ⅱ,q 2=(B ′-B )·πr22R ,由q 1=q 2得,B ′B =32,故B 项正确.四种求电动势的方法考点3 自感现象涡流考向1 通电自感与断电自感1.自感现象的四大特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.2.自感中“闪亮”与“不闪亮”问题电流突然增大,灯泡立刻变亮,然后逐12开关S1瞬间,灯A1突然闪亮,然后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立刻变亮,最终A2与A3的亮度相同.下列说法正确的是( C )A.图1中,A1与L1的电阻值相同B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图2中,变阻器R与L2的电阻值相同D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等解析:本题考查自感现象判断.在图1中断开S1瞬间,灯A1突然闪亮,说明断开S1前,L1中的电流大于A1中的电流,故L1的阻值小于A1的阻值,A、B选项均错误;在图2中,闭合S2瞬间,由于L2的自感作用,通过L2的电流很小,D错误;闭合S2后,最终A2与A3亮度相同,说明两支路电流相等,故R与L2的阻值相同,C项正确.2.(2019·某某模拟)在如图所示的电路中,S闭合时流过线圈L的电流是2 A,流过灯泡A的电流是1 A.将S突然断开,则S断开前后,能正确反映流过灯泡的电流I随时间t变化关系的是图中的( D )解析:当电键断开时,由于线圈中自感电动势阻碍电流减小,线圈中的电流逐渐减小,线圈与灯泡A构成回路,所以灯泡中的电流与线圈中电流大小相等,灯泡中电流也逐渐减小,但与断开前方向相反.故D正确,A、B、C错误.分析自感现象的两点注意(1)断电自感现象中灯泡是否“闪亮”的判断:关键在于对电流大小的分析,只有断电瞬间通过灯泡的电流比原来大,灯泡才先闪亮后慢慢熄灭.(2)断电自感现象中电流方向是否改变的判断:与线圈在同一支路的用电器的电流方向不变,与线圈不在同一支路的用电器中的电流方向改变.考向2 对涡流的考查3.(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示,实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( AB )A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动解析:小磁针在圆盘所在处形成的磁场是非匀强磁场,圆盘可以等效为许多环形闭合线圈,圆盘转动过程中,穿过每个环形闭合线圈的磁通量不断地发生变化,在每一环形线圈上产生电动势和涡电流,A正确;环形线圈随圆盘转动,由楞次定律可知,线圈会受到小磁针施加的阻碍相对运动的力,根据牛顿第三定律可知,小磁针会受到与线圈即圆盘转动方向相同的力的作用,此力来源于电磁感应形成的涡电流,而不是自由电子随圆盘转动形成的电流,B正确,D错误.从圆盘的整个盘面上看,圆盘转动过程中穿过整个圆盘的磁通量不变,C 错误.4.扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( A )解析:本题考查电磁阻尼.若要有效衰减紫铜薄板上下及左右的微小振动,则要求施加磁场后,在紫铜薄板发生上下及左右的微小振动时,穿过紫铜薄板横截面的磁通量都能发生变化.由选项图可知只有A满足要求,故选A.对安培力是动力、阻力的理解技巧电磁阻尼是安培力总是阻碍导体运动的现象,电磁驱动是安培力使导体运动起来的现象,但实质上均是感应电流使导体在磁场中受到安培力.学习至此,请完成课时作业34。
高三物理教案电磁感应(优秀4篇)作为一名为他人授业解惑的教育工作者,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么应当如何写教案呢?这次漂亮的小编为亲带来了4篇高三物理教案电磁感应,在大家参考的同时,也可以分享一下牛牛范文给您的好友哦。
物理电磁感应教案篇一[要点导学]1. 这一节学习法拉第电磁感应定律,要学会感应电动势大小的计算方法。
这部分内容和楞次定律是本章的两大重要内容,应该高度重视。
2. 法拉第电磁感应定律告诉我们电路中产生感应电动势的大小跟成正比。
若产生感应电动势的电路是一个有n匝的线圈,且穿过每匝线圈的磁感量变化率都相同,则整个线圈产生的感应电动势大小E= 。
3. 直导线在匀强磁场中做切割磁感线的运动时,如果运动方向与磁感线垂直,那么导线中感应电动势的大小与、和三者都成正比。
用公式表示为E= 。
如果导线的运动方向与导线本身是垂直的,但与磁感线方向有一夹角,我们可以把速度分解为两个分量,垂直于磁感线的分量v1=vsin,另一个平行于磁感线的分量不切割磁感线,对感应电动势没有贡献。
所以这种情况下的感应电动势为E=Blvsin。
4.应该知道:用公式E=n/t计算的感应电动势是平均电动势,只有在电动势不随时间变化的情况下平均电动势才等于瞬时电动势。
用公式E=Blv计算电动势的时候,如果v是瞬时速度则电动势是瞬时值;如果v是平均速度则电动势是平均值。
5.公式E=n/t是计算感应电动势的普适公式,公式E=Blv则是前式的一个特例。
6.关于电动机的反电动势问题。
①电动机只有在转动时才会出现反电动势(线圈转动切割磁感线产生感应电动势);②线圈转动切割磁感线产生的感应电动势方向与电动机的电源电动势方向一定相反,所以称为反电动势;③有了反电动势电动机才可能把电能转化为机械能,它输出的机械能功率P=E反I;④电动机工作时两端电压为U=E反+Ir(r是电动机线圈的电阻),电动机的总功率为P=UI,发热功率为P热=I2r,正常情况下E反Ir,电动机启动时或者因负荷过大停止转动,则I=U/r,线圈中电流就会很大,可能烧毁电动机线圈。
高考物理第一轮复习16电磁感应学案新人教版知识网络:单元切块:按照考纲的要求,本章内容可以分成四部分,即:电磁感应楞次定律;法拉第电磁感应定律、自感;电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用。
其中重点是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用,也是复习的难点。
电磁感应楞次定律教学目标:1.理解电磁感应现象产生的条件、磁通量;2.能够熟练应用楞次定律或右手定则判断感应电流及感应电动势的方向教学重点:楞次定律的应用教学难点:楞次定律的应用教学方法:讲练结合,计算机辅助教学教学过程:一、电磁感应现象1.产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,不是必要的。
在导体做切割磁感线运动时用它判定比较方便。
2.感应电动势产生的条件。
感应电动势产生的条件是:穿过电路的磁通量发生变化。
这里不要求闭合。
无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合,电动势总是存在的。
但只有当外电路闭合时,电路中才会有电流。
二、楞次定律1.楞次定律感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
楞次定律解决的是感应电流的方向问题。
它关系到两个磁场:感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。
前者和后者的关系不是“同向”或“反向”的简单关系,而是前者“阻碍”后者“变化”的关系。
2.对“阻碍”意义的理解:(1)阻碍原磁场的变化。
“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,原磁场的变化趋势不会改变,不会发生逆转.(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,从而导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的具体应用(1)从“阻碍磁通量变化”的角度来看,由磁通量计算式Φ=BS sinα可知,磁通量变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S、α不变,B改变,这时ΔΦ=ΔB S sinα②B、α不变,S改变,这时ΔΦ=ΔS B sinα③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1)当B、S、α中有两个或三个一起变化时,就要分别计算Φ1、Φ2,再求Φ2-Φ1了。
第3讲 电磁感应规律的综合应用一、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源。
(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路。
2.电源电动势和路端电压(1)电动势:E =BLv 或E =n ΔΦΔt。
(2)电源正、负极:用右手定则或楞次定律确定。
(3)路端电压:U =E -Ir =IR 。
二、电磁感应图象问题三、感应电流在磁场中所受的安培力1.安培力的大小 由感应电动势E =BLv ,感应电流I =E R 和安培力公式F =BIL 得F =B 2L 2v R。
2.安培力的方向判断四、电磁感应中的能量转化与守恒1.能量转化的实质电磁感应现象的能量转化实质是其他形式能和电能之间的转化。
2.能量的转化感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为内能(或其他形式的能)。
3.热量的计算电流(恒定)做功产生的热量用焦耳定律计算,公式Q=I2Rt。
(判断正误,正确的画“√”,错误的画“×”。
)1.闭合电路的欧姆定律同样适用于电磁感应电路。
(√)2.在闭合回路中切割磁感线的那部分导体两端的电压一定等于产生的感应电动势。
(×) 3.电路中电流一定从高电势流向低电势。
(×)4.克服安培力做的功一定等于回路中产生的焦耳热。
(×)5.有安培力作用时导体棒不可能做加速运动。
(×)1.(电磁感应中的电路问题)如图所示,两个互连的金属圆环,小金属环的电阻是大金属环电阻的二分之一,磁场垂直穿过大金属环所在区域,当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E,则a、b两点间的电势差为( )A .12EB .13EC .23E D .E 解析 a 、b 间的电势差等于路端电压,而小环电阻占电路总电阻的13,故a 、b 间电势差为U =13E ,B 项正确。
专题九电磁感应规律的综合应用(二)突破1 电磁感应中的图象问题1.图象类型借助图象考查电磁感应的规律是高考的热点,此类题目一般分为两类:(1)由给定的电磁感应过程选择正确的图象.(2)由给定的图象分析电磁感应过程,定性或定量求解相应的物理量或推断出其他图象.常见的图象有Φt、Et、it、Ut、qt、Ft、Pt等图象.2.方法突破类型一根据电磁感应过程选图象类型二根据图象分析电磁感应过程考向1 根据电磁感应过程选图象(2018·全国卷Ⅱ)如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下.一边长为3l的正方形金属线框在导轨上向左匀速运动.线框中感应电流i随时间t变化的正确图线2可能是( )[审题指导] 由方向的合理性可直接排除错误选项,如果需要,再定量分析电流大小的变化情况确定正确选项.【解析】 本题考查右手定则、E =BLv .由右手定则可判定,线框向左移动0~l2过程,回路中电流方向为顺时针,由E =2BLv 可知,电流i 为定值;线框向左移动l2~l 过程,线框左、右两边产生的感应电动势相抵消,回路中电流为零.线框向左移动l ~32l 过程,回路中感应电流方向为逆时针.由上述分析可见,选项D 正确.【答案】 D1.(2019·湖北黄冈调研)(多选)如图所示,在光滑水平面内,虚线右侧存在匀强磁场,磁场方向垂直纸面向外,一正方形金属线框质量为m ,电阻为R ,边长为L ,从虚线处进入磁场时开始计时,在外力作用下,线框由静止开始,以垂直于磁场方向的恒定加速度a 进入磁场区域,t 1时刻线框全部进入磁场,规定顺时针方向为感应电流I 的正方向,外力大小为F ,线框中电功率的瞬时值为P ,通过线框横截面的电荷量为q ,则这些量随时间变化的图象正确的是( CD )解析:线框切割磁感线,根据运动学知识有v =at ,产生感应电动势E =BLv ,所以产生感应电流I =BLv R =BLat R ,故A 错误;对线框分析,有F 安=BLI =B 2L 2atR,由牛顿第二定律,得F =ma +B 2L 2at R ,故B 错误;由功率表达式P =I 2R =(BLat )2R,可知P 与t 是二次函数关系,图象为抛物线,故C 正确;由电荷量表达式有q =It BL ·12at 2R,q 与t 是二次函数关系,图象为抛物线,故D 正确.考向2 根据图象分析电磁感应过程(2019·湖南六校联考)(多选)如图甲所示,在MN 、OP 间存在一匀强磁场,t =0时,一正方形光滑金属线框在水平向右的外力F 作用下紧贴MN 从静止开始做匀加速运动,外力F 随时间t 变化的图线如图乙所示.已知线框质量m =1 kg ,电阻R =2 Ω,则( )A .磁场宽度为4 mB .匀强磁场的磁感应强度为 2 TC .线框穿过磁场过程中,通过线框的电荷量为2 CD .线框穿过磁场过程中,线框产生的热量为1 J【解析】 线框的加速度为a =F 0m =21 m/s 2=2 m/s 2,磁场宽度d =12at 22=4 m ,A 正确;当线框全部进入磁场的瞬间有L =12a -t 21=1 m ,F 1-F 安=ma ,F 安=B 2L 2v R =B 2L 2at 1R ,解得B= 2 T ,B 正确;线框穿过磁场的过程中,通过线圈的电荷量为零,线框进入磁场过程中,线框产生的热量为Q =W -12mv 2>1 J ,C 、D 错误.【答案】 AB2.(2019·河北衡水模拟)如图甲所示,一个U 形光滑足够长的金属导轨固定在水平桌面上,电阻R =10 Ω,其余电阻均不计,两导轨间的距离l =0.2 m ,有一垂直于桌面向下并随时间变化的匀强磁场,磁感应强度B 随时间t 的变化规律如图乙所示.一个电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨两边垂直.在t =0时刻,金属杆紧靠在最左端,杆在外力的作用下以速度v =0.5 m/s 向右做匀速运动.下列说法中正确的是( D )A .当t =4 s 时,穿过回路的磁通量为0.16 WbB .当t =4 s 时,电路中感应电动势的大小E =0.02 VC .当t =4 s 时,金属杆所受到的安培力的大小为8×10-5N D .在0~4 s 内,流过电阻R 的感应电流随时间均匀增加解析:当t =4 s 时,金属杆的位移为x =vt =0.5×4 m=2 m ,则穿过回路的磁通量为Φ=BS =Blvt =0.2×0.2×4×0.5 Wb=0.08 Wb ,电路中感应电动势大小为E =Blv +ΔΦΔt =0.2×0.2×0.5 V+0.084 V =0.04 V ,根据闭合电路欧姆定律可得电路中的电流为I =ER=0.0410A =0.004 A ,金属杆所受到的安培力的大小为F =IBl =0.2×0.004×0.2 N=1.6×10-4N ,故A 、B 、C 错误.根据法拉第电磁感应定律得E =Blv +ΔΦΔt ,其中B =kt =0.24t =0.05t ,ΔΦΔt =ΔB Δt S =ΔB Δt ·l ·vt =0.24×0.2×0.5t =0.005t ,故E =Blv +ΔΦΔt=0.05t ×0.2×0.5+0.005t =0.01t ,则感应电流I =E R =0.01t 10=0.001t ,故D 正确.解决图象问题的方法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项.比如:对于线圈一进一出的问题,q =n ΔΦR 总=0,i t 图象中t 轴上方的面积和t 轴下方的面积相等.(2)数形结合法:根据题目所给条件结合法拉第电磁感应定律、牛顿第二定律、欧姆定律等定量地写出两个物理量之间的函数关系式,由函数关系式对图象进行分析和判断,比如分析斜率的变化、截距的含义等.突破2 电磁感应中的动量问题1.动量定理在电磁感应现象中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I 安=B I Lt =BLq ,通过导体棒或金属框的电荷量为:q =I Δt =ER 总Δt =n ΔΦΔtR 总Δt =n ΔΦR 总,磁通量变化量:ΔΦ=B ΔS =BLx .如果安培力是导体棒或金属框受到的合外力,则I 安=mv 2-mv 1.当题目中涉及速度v 、电荷量q 、运动时间t 、运动位移x 时常用动量定理求解更方便. 2.动量守恒定律在电磁感应现象中的应用当双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律求解比较方便.如图所示,在空间中有一垂直纸面方向的匀强磁场区域,磁场上下边缘间距为h =5.2 m ,磁感应强度为B =1 T ,边长为L =1 m 、电阻为R =1 Ω、质量为m =1 kg 的正方形导线框紧贴磁场区域的上边从静止下落,当线圈PQ 边到达磁场的下边缘时,恰好开始做匀速运动,重力加速度为g =10 m/s ,求:(1)导线框的MN 边刚好进磁场时的速度大小.(2)导线框从开始下落到PQ 边到达磁场下边缘所经历的时间.[审题指导] (1)对导线框进行受力分析和运动过程分析,导线框在进入磁场的过程中做变加速直线运动,完全进入磁场后做匀加速直线运动.(2)当题目中涉及速度v 、电荷量q 、运动时间t 、运动位移x 时常用动量定理求解更方便.【解析】 (1)设导线框MN 边进入磁场的速度为v 0,PQ 边运动到磁场下边缘时的速度为vPQ 边到达磁场的下边缘时导线框受力平衡,则有: mg =B 2L 2v R解得:v =10 m/s导线框完全进入磁场到PQ 离开磁场的过程中,导线框机械能守恒,有12mv 2-12mv 20=mg (h-L )解得:v 0=4 m/s(2)设导线框从开始下落到PQ 边到达磁场下边缘所经历的时间为t ,根据动量定理得mgt -BIL Δt =mvΔt 为导线框进入磁场所经历的时间 又q =I Δt =ΔΦR得mgt -BqL =mv 解得t =1.1 s【答案】 (1)4 m/s (2)1.1 s3.如图,在光滑水平桌面上有一边长为L 的正方形导线框abcd ,在导线框右侧有一宽度为d (d >L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以速度v 1向右运动靠近磁场,然后进入磁场,完全进入磁场后速度为v 2,最后滑出磁场,滑出磁场后速度为v 3.下列关于v 1、v 2、v 3的关系式正确的是( C )A .v 2<v 1+v 32B .v 2>v 1+v 32C .v 2=v 1+v 32D .无法确定解析:设导线框进入磁场的时间为t 1,滑出磁场的时间为t 2,取线框运动方向为正.在线框进入磁场的过程中由动量定理得:-F 1t 1=mv 2-mv 1,其中F 1=B I 1L ;在线框滑出磁场的过程中由动量定理得:-F 2t 2=mv 3-mv 2,其中F 2=B I 2L ,又I 1t 1=I 2t 2=ΔΦR =BL2R,所以mv 2-mv 1=mv 3-mv 2,解得v 2=v 1+v 32,故C 项正确,A 、B 、D 项错误.4.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L .导轨上面垂直放置两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻均为R ,回路中其余部分的电阻可不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,则:(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的34时,cd 棒的加速度是多少?解析:(1)两棒速度相同时产生的焦耳热最多,从开始到两棒达到相同速度v 的过程中,两棒的总动量守恒,有mv 0=2mv根据能量守恒定律,整个过程中产生的焦耳热Q =12mv 20-12(2m )v 2=14mv 20.(2)设ab 棒的速度变为34v 0时,cd 棒的速度为v ′,则由动量守恒定律可知mv 0=34mv 0+mv ′解得v ′=14v 0,回路中的电动势E =34BLv 0-14BLv 0=12BLv 0此时回路中电流I =E 2R =BLv 04R此时cd 棒所受的安培力F =BIL =B 2L 2v 04R由牛顿第二定律可得,cd 棒的加速度a =F m =B 2L 2v 04mR.答案:(1)14mv 20 (2)B 2L 2v 04mR(1)在导体棒或金属框在磁场中做非匀变速运动时,力和运动观点不能再使用,此时应考虑应用动能定理.因为动量定理既适用于恒力,也适用于变力.(2)若出现双杆切割磁感线情况,可先分析系统受力,若满足合外力为零,优先考虑动量守恒定律.学习至此,请完成课时作业36。
新人教高中物理必修2教案
教学内容:电磁感应
教学目标:通过本节课的学习,学生能够理解电磁感应的基本原理,掌握法拉第电磁感应定律,能够运用相关知识解决实际问题。
教学重点:法拉第电磁感应定律的理解和运用。
教学难点:运用法拉第电磁感应定律解决实际问题。
教学准备:教材、投影仪、实验仪器等。
教学过程:
一、导入
通过实际生活中的例子引出电磁感应的概念,并引出本节课的主题。
二、概念讲解
1. 电磁感应的概念及原理
2. 法拉第电磁感应定律的表述和解释
三、实验操作
1. 利用实验仪器进行电磁感应实验
2. 观察实验现象并分析
3. 总结实验结果,验证法拉第电磁感应定律
四、应用练习
1. 练习运用法拉第电磁感应定律解决实际问题
2. 分组讨论,展示解题过程和结果
五、课堂讨论
1. 学生提问和解答
2. 教师引导讨论,澄清问题和加深理解
六、课堂小结
总结本节课的重点内容,并强化学生的理解和记忆。
七、作业布置
1. 完成课后练习题
2. 复习相关知识,准备下节课的内容
教学反思:
通过本节课的教学,学生对电磁感应的概念和法拉第电磁感应定律有了更深入的理解,并能够灵活运用相关知识解决实际问题。
同时,学生也通过实验和练习加深了对知识的理解和记忆。
在以后的教学中,需要继续引导学生运用知识解决实际问题,并加强实验操作能力的培养。
第2讲 法拉第电磁感应定律 自感 涡流一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E =n ΔΦΔt,其中n 为线圈匝数。
(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r 。
3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv 。
(2)v ∥B 时,E =0。
二、自感、涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。
(2)自感电动势①定义:在自感现象中产生的感应电动势叫作自感电动势。
②表达式:E =L ΔIΔt。
(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。
②单位:亨利(H),1 mH =10-3H,1 μH=10-6H 。
2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡,所以叫涡流。
授课提示:对应学生用书第196页命题点一 对法拉第电磁感应定律的理解及应用 自主探究1.感应电动势的决定因素(1)由E =n ΔΦΔt 知,感应电动势的大小由穿过电路的磁通量的变化率ΔΦΔt 和线圈匝数n 共同决定,磁通量Φ较大或磁通量的变化量ΔΦ较大时,感应电动势不一定较大。
(2)ΔΦΔt 为单匝线圈产生的感应电动势大小。
2.法拉第电磁感应定律的三个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB·S,E =n ΔBΔt S 。
(2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B·ΔS,E =nB ΔSΔt。
(3)磁通量的变化是由面积和磁场变化共同引起时,则ΔΦ=Φ末-Φ初,E =n B 2S 2-B 1S 1Δt ≠n ΔB·ΔSΔt。
人教版高中物理必修第三册《电磁感应现象及应用》教案及教学反思教案:电磁感应现象及应用课时安排:课时主题内容第一课时引入与讲解了解电磁感应现象的基本概念和原理第二课时感应电动势与感性电阻介绍感应电动势的概念和计算,介绍感性电阻的原理以及串、并联电感的计算第三课时感应电流和发电机了解感应电流的概念、产生和演变,讲解电动机和发电机的原理第四课时变压器介绍变压器的结构和原理,计算变压器的电压比教学内容:一、电磁感应现象的基本概念和原理讲解电磁感应现象的定义、发现过程、基本规律和应用。
二、感应电动势和感性电阻介绍感应电动势的概念和计算方法,讲解产生感应电动势的条件,讲解感性电阻的原理以及串、并联电感的计算方法。
三、感应电流和发电机了解感应电流的概念、产生和演变过程,讲解电动机和发电机的原理和结构,介绍发电机的分类和工作原理。
四、变压器讲解变压器的基本结构和原理,计算变压器的电压比,了解变压器的应用领域和作用。
教学目标:1.理解电磁感应现象的基本概念和原理;2.理解感应电动势和感性电阻的概念、计算方法和应用;3.理解感应电流的概念、产生和演变过程,讲解电动机和发电机的原理和结构;4.讲解变压器的基本结构和原理,计算变压器的电压比,了解变压器的应用领域和作用。
教学反思在这次课程教学中,我采用了多种教学方法,包括讲解、解题、模拟实验和互动学习等。
通过本次教学实践,我收获了以下几点体会和感悟:1.注重激发学生兴趣物理课程中往往会遇到一些抽象的、难以理解的概念和知识点,因此需要教师采用多种方式来激发学生的兴趣,让他们对知识点产生浓厚的兴趣和好奇心。
例如,我在讲授变压器的时候,带领学生一起观察变压器内部的电路,让学生在实践中理解知识点,这样学生更容易掌握和理解所学的知识。
2.强调学习方法在教学过程中,我强调了学习方法和解题技巧,让学生了解如何快速准确地解决物理题。
例如,在讲解感应电动势的时候,我结合练习题,让学生掌握感应电动势的计算方法和应用技巧,提高了学生的掌握能力。
电磁感应复习教案教育教学目标:1、理解产生感应电流的条件2、掌握感应电流方向的判别方法3、掌握感应电动势大小的求法重点:产生感应电流条件的理解、感应电流方向的判别、公式E= 和的掌握和应用。
难点:磁通量、磁通量变化及磁通量的变化率之间的区别和联系。
教学过程这节课我和大家按学案把《电磁感应》这一章共同来复习一下。
首先看一下这章的知识结构。
下面我们就按知识结构将主要知识点逐一复习。
一、感应电流的产生及方向判断1、电磁感应现象:磁场----------电流2、感应电流产生的条件:实验①闭合电路的一部分导体切割磁感线②穿过闭合电路的磁通量发生变化说明:能量转化守恒3、感应电流的方向判定:①右手定则适用范围:导体切割磁感线产生感应电流;②楞次定律A、适用范围:磁通量变化产生感应电动势;B、内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
说明:a、两个磁场:原磁场-------感应电流磁场;b、阻碍:增反减同。
C、应用:(1)明确闭合电路内原磁场方向;(2)明确穿过闭合电路的磁通量是增加还是减少;(3)根据“阻碍…变化”,判定感应电流磁场方向;(4)根据“安培定则”,判定感应电流的方向。
③、楞磁定律的另一种描述:A、感应电流的效果总是阻碍物体间的相对运动;B、原因有三个: B 变化、I变化、相对运动。
二、感应电动势⑴感应电动势:在电磁感应现象中产生的电动势叫做感应电动势。
⑵法拉第电磁感应定律:公式:E= n△φ/△t 其中:n---线圈匝数;△φ---磁通量变化,△φ/△t ---磁通量变化率: 说明: E∝△φ/△t 与φ大小无直接关系;E 为平均值,由φ变化引起,与电路是否闭合无关;⑶平动切割计算式E=BLv sinα(α是B与v之间的夹角)(瞬时值)公式推导:A.α=900 B.α=θ⑷转动切割计算式三、自感1、自感现象:由于导体本身电流发生变化而产生的电磁感应现象。
第十二章电磁感应高考调研 考 纲 导 航命 题 取 向1.近几年高考中对本章的考查,命题频率较高的是感应电流的产生条件、方向判定和导体切割磁感线产生感应电动势的计算,这部分是高考的热点.2.电磁感应现象与磁场、电路、力学等知识相联系的综合题仍然为考查学生综合能力的好题,预计今后几年高考会出现有关题目.3.电磁感应与实际相结合的问题:录音原理、话筒工作原理、继电器控制电路的工作原理、日光灯工作原理等在复习备考中也要引起足够的重视.本章高考命题集中在以下四个方面:(1)产生感应电流的条件,运用楞次定律和右手定则判定E 感和I 感的方向; (2)运用E n t∆Φ=∆和E=BLv 分析和计算感应电动势的大小以及通电和断电过程中自感现象的分析;(3)电磁感应现象与磁场、电路、力学、能量等知识相联系的综合题的分析与计算; (4)电磁感应图象问题.今后的命题依然集中在这四个方面,尤其是电磁感应与受力分析,能量转化综合的方面. 备 考 方 略本章要重点掌握产生感应电流的条件——穿过闭合线圈的磁通量发生变化;掌握判断感应电流方向的重要方法——楞次定律;掌握确定感应电动势大小的一般规律——法拉第电磁感应定律.在解题时要审清题意,如果是求Δt 时间内的平均感应电动势,要考虑用E n t∆Φ=⋅∆ 计算;如果求瞬时感应电动势或者是求导体切割磁感线方面的平均感应电动势,应考虑用公式E BLv E BLv.==瞬瞬或要严格区别磁通量Φ和磁通量的变化量ΔΦ及磁通量的变化率t∆Φ∆等重要概念. 学好本章知识是学好“交流电”一章的基础. 要重视本章内容与其他知识的综合问题.第一课时电磁感应现象楞次定律第一关:基础关展望高考基 础 知 识 一、磁通量 知识讲解(1)定义:设在磁感应强度为B 的匀强磁场中,有一个与磁场方向垂直的平面,面积为S ,我们把B 与S 的乘积叫做穿过这个面积的磁通量,简称磁通.(2)公式:Φ=BS(条件B ⊥S)如果B 与S 的夹角为α,则Φ=BSsin α.(3)单位:在国际单位制中,磁通量的单位是韦伯,简称韦,符合是Wb. 二、磁通量的变化 知识讲解磁通量是标量,但有正负之分.若规定从某一方向穿过平面的磁通量为正,则反向穿过的磁通量为负,求合磁通量时应注意相反方向抵消后所剩余的净磁通量.(1)磁通量的变化ΔΦ=Φ2-Φ1(2)几种常见引起磁通变化的情形①投影面积不变,磁感应强度变化,即ΔΦ=ΔB\5S②磁感应强度不变,投影面积发生变化,即ΔΦ=B\5ΔS,其中投影面积的变化又有两种形式:a.处在磁场中的闭合回路面积发生变化.b.闭合回路面积不变,但与磁场方向的夹角发生变化,从而引起投影面积变化.∆Φ=∆⋅∆,而采用公③磁感应强度和投影面积均发生变化,但此时不能简单地认为B S式ΔΦ=Φ2-Φ1.活学活用1.面积为S的矩形导线框abcd处在磁感应强度为B的匀强磁场中,磁场方向与线框平面为θ角(如图所示).当线框以ab为轴顺时针转过90°的过程中,穿过abcd的磁通量的变化量ΔΦ=_____________.2.解析:磁通量由磁感应强度矢量在垂直于线框平面方向上的分量决定.选平面法线n的方向为正,开始时B与线框平面成θ角,磁通量Φ1=B·S·sinθ;线框平面按题意方向转动时,磁通量减少,当转过90°时,磁通量变为Φ2=-B·S·cosθ.可见,磁通量的变化量为ΔΦ=Φ2-Φ1=-BScosθ-BS·sinθ=-BS(cosθ+sinθ),即穿过线框的正向磁通量减少了BS (cosθ+sinθ).实际上,在线框转过90°的过程中,穿过线框的磁通量是由正向BS·sin θ减小到零,再由零增大到负向BS·cosθ.答案:-BS(cosθ+sinθ)三、电磁感应知识讲解因磁通量变化而产生电流的现象叫做电磁感应,所产生的电流叫做感应电流.法拉第把引起电流的原因概括为五类:变化的电流、变化的磁场、运动的恒定电流、运动的磁场、在磁场中运动的导体.四、产生感应电流的条件知识讲解只要穿过闭合电路的磁通量发生变化,闭合电路就有感应电流产生,即产生感应电流的条件有两个:(1)电路为闭合回路;(2)回路中磁通量发生变化,ΔΦ≠0.活学活用2.如图所示,在无限长的直线电流的磁场中,有一个闭合的金属线框abcd,线框平面与直导线在同一个平面内,要使线框中产生感应电流,则()A.增大导线中的电流B.金属框水平向左平动C.金属框竖直向下平动D.垂直纸面向外平动解析:增大导线中的电流,线框内任一点的磁感应强度都增大,则穿过线圈的磁通量增大;离导线越远,磁感应强度越小,与导线距离相等的点,磁感应强度大小相等,则金属框水平向左平动,磁通量不变;竖直向下平动,磁通量变小;垂直纸面向外平动,磁通量也变小,由感应电流产生的条件可知,选项A、C、D的方法可使线框中产生感应电流,故应选A、C、D.答案:ACD第二关:技法关解读高考解题技法一、关于磁通量的理解及计算技法讲解1.对磁通量的理解(1)磁通量Φ表示穿过某一面积磁感线的条数(这是在人为规定画磁感线时要使穿过单位面积的磁感线条数等于该处的磁感应强度值之后的一种形象说法),对于匀强磁场,Φ=BS,其中S是垂直于磁场方向上的面积,若平面与磁场不垂直,则需求出它在垂直于磁场方向上投影平面的面积,才能用上式计算.(2)磁通量是标量,但有正负,若磁感线从某一方向穿过S规定为正时,那么从相反方向穿过S时则为负.2.关于磁通量的计算(1)磁通量为穿过某一面积的磁感线的条数.如果穿过某一面积的磁感线由两部分组成时,应注意:①两部分磁感线同向时,Φ=Φ1+Φ2;②两部分磁感线反向时,Φ=|Φ1-Φ2|.(2)磁通量与线圈的匝数无关,也就是磁通量的大小不受线圈匝数的影响,同理,磁通量的变化量ΔΦ=Φ末-Φ初,也不受线圈匝数的影响.(3)根据磁通量的计算式知,引起磁通量变化的原因可能是S未变,B发生变化;也可能是B未变,S发生变化;或者B和S均未变,而它们之间夹角有变化等,要具体问题具体分析.求磁通量的变化用公式ΔΦ=Φ末-Φ初,公式应用时先规定一个正面,然后根据从正面穿过为正,从反面穿过为负,把初、末磁通量代入计算.典例剖析例1如图所示,大圆导线环A中通有电流I,方向如图.另在导线环所在的平面画了一个圆B,它的一半面积在A环内,一半面积在A环外,试判断圆B内的磁通量的方向.解析:在A环内磁场方向垂直纸面向里,A环外部磁场方向垂直纸面向外,由于磁感线是闭合曲线,所以在A的内部及外部磁感线条数相等,由于A外部的面积比内部面积大得多,那么B内>B外,B圆面一半在A内一半在A外,可得Φ内=B内S>Φ外=B外 S,由于穿过的方向不同,抵消后,剩余的是垂直于纸面向里穿的磁感线,故B圆面内总的磁通量是垂直于纸面向里的.答案:垂直纸面向里例2与磁感应强度B=0.8 T的匀强磁场垂直的单匝线圈,面积S为0.05 m2,求穿过线圈的磁通量多大?若线圈的匝数为N=50匝,磁通量又是多少?当线圈绕一垂直于磁场的轴转过120°后,磁通量的变化量多大?(线圈始终处在匀强磁场中)解析:磁通量是穿过某一面积磁感线的“条数”,它与线圈的匝数无关.磁通量尽管是标量,但也有“方向”,特别是在计算磁通量的变化量时必须注意这一点.因此正确的解答为Φ=BS=4.0×10-2 Wb;由于与线圈的匝数无关,所以Φ2=Φ1=BS=4.0×10-2 Wb,由以上分析知Φ3=BScosα=-2.0×10-2 Wb,故ΔΦ=|Φ3-Φ1|=6.0×10-2 Wb.答案:4.0×10-2Wb4.0×10-2 Wb6.0×10-2 Wb二、如何理解并能正确应用楞次定律技法讲解楞次定律指出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化.“阻碍”两字是定律的核心.从以下几方面正确理解这一定律.(1)“阻碍”两字的含义“阻碍”是指阻碍原磁场的磁通量的变化.由于这种阻碍作用使原磁场缓变,而不是指感应电流的磁场一定与原磁场方向相反.若穿过闭合回路的磁通量增加,则感应电流的磁场就要阻碍这一增加,其方向与原磁场方向相反;若穿过闭合回路的磁通量减少,则感应电流的磁场就要阻碍这一减少,其方向与原磁场方向相同.以上规律可简单概括为“增反减同”四个字.(2)从能量角度理解能量守恒是自然界的普遍规律,能量的转化是通过做功来量度的,这一点正是楞次定律的根据所在,实际上楞次定律是能量转化和守恒定律在电磁感应现象中的具体体现.(3)从力的角度理解由能量观点可以推论出产生磁场的物体与闭合线圈之间的相互作用力,可概括为四个字“近斥远拉”,即感应电流受到的安培力指向减弱原磁通量变化的方向.(4)从两个磁通量的关系理解当原磁通量增加时,闭合回路本身要“设法”制约原磁通量的增加;当原磁通量减少时,则闭合回路本身要“设法”增加磁通量来补充原磁通,也就是说,原磁通量与感应电流的磁通量是互相制约和补充的.典例剖析例3如图所示,ab是一个可绕垂直于纸面的轴O转动的闭合矩形导线框,当滑动变阻器的滑片P自左向右滑动时,从纸外向纸内看,线框ab将()A.保持静止不动B.逆时针转动C.顺时针转动D.发生转动,但电源极性不明,无法确定转动方向解析:无论电源的极性如何,在两电磁铁中间的区域内应产生水平的某一方向磁场,当滑片P 向右滑动时,电流减小,两电磁铁之间的磁场减弱,即穿过ab线框的磁通量减小.虽然不知ab中的感应电流方向,但由楞次定律中的“阻碍”可直接判定线框ab应顺时针方向转动(即向穿过线框的磁通量增大的位置——竖直位置转动).所以应选C.答案:C例4如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动,则PQ所做的运动可能是()A.向右匀加速运动B.向左匀加速运动C.向右匀减速运动D.向左匀减速运动解析:设PQ向右运动,用右手定则和安培定则判定可知穿过L1的磁感线方向向上,若PQ向右加速运动,则穿过L1的磁通量增加,用楞次定律判定可知通过MN的感应电流方向是N→M,对MN用左手定则判定可知MN向左运动,可见A选项不正确.若PQ向右减速运动,则穿过L1的磁通量减少,用楞次定律判定可知通过MN的感应电流方向是M→N,用左手定则判定可知MN是向右运动,可见C正确.同理设PQ向左运动,用上述类似方法可判定B正确而D错误.本题应选BC.答案:BC第三关:训练关笑对高考随堂训练1.水平放置的扁平条形磁铁,在磁铁的左端正上方有一线框,线框平面与磁铁垂直,当线框从左端正上方沿水平方向移到右端正上方的过程中,穿过它的磁通量的变化是()A.先减小后增大B.始终减小C.始终增大D.先增大后减小解析:规范画出条形磁铁的磁感线空间分布的剖面图,如右图所示.利用Φ=B·S定性判断出穿过闭合线圈的磁通量先增大后减小,选D项.答案:D2如图所示为地磁场磁感线的示意图,在北半球地磁场的竖直分量向下.飞机在我国上空匀速巡航,机翼保持水平,飞机高度不变,由于地磁场的作用,金属机翼两端有电势差.设飞行员左方机翼末端处的电势为φ1,右方机翼末端处的电势为φ2,则()A.若飞机从西往东飞,φ1比φ2高B.若飞机从东往西飞,φ2比φ1高C.若飞机从南往北飞,φ1比φ2高D.若飞机从北往南飞,φ2比φ1高解析:飞机水平飞行,飞机的机翼相当于一个导体要切割地磁场向下的分量,产生感应电动势,两端电势高低不同.用右手定则可判断出机翼中假想的电流方向,即由低电势指向高电势的方向,判断出A、C正确.答案:AC3.如图所示,在匀强磁场中放有平行铜导轨,它与大线圈M相连接,要使小线圈N获得顺时针方向的感应电流,则放在导轨上的裸金属棒ab的运动情况是(两线圈共面放置)()A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动解析:欲使N产生顺时针方向的感应电流,感应电流的磁场方向为垂直纸面向里,由楞次定律可知有两种情况:一是M中有顺时针方向逐渐减小的电流,使其在N中的磁场方向向里,且磁通量在减小;二是M中有逆时针方向逐渐增大的电流,使其在N中的磁场方向向外,且磁通量在增大.因此,对于前者,应使ab减速向右运动;对于后者,则应使ab加速向左运动,故应选B、C.(注意:匀速运动只能产生恒定电流;匀变速运动产生均匀变化的电流)答案:BC4如图所示,竖直放置的螺线管与导线abcd构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平桌面上有一导体环,导线abcd所围区域内磁场的磁感应强度按图中哪一图线所示的方式变化时,导体圆环将受到向上的磁场作用力()解析:由楞次定律环受到向上的磁场作用力的原因螺线管磁场的变化导体中电流的变化导体所围区域内磁场的变化.线圈受到向上的磁场力,根据楞次定律意义,可知螺线管产生的磁场在减弱,使穿过线圈的磁通量在减少,从而线圈在磁场力作用下欲往上运动,阻碍磁通量的减少,而螺线管的磁场在减弱,即其中的感应电流在减小,由此可知穿过导体所围区域内的磁场的磁感应强度B随时间的变化越来越慢,反映在图象上就是图线的斜率越来越小,故正确的选项是A.答案:A5.小明制作了如图(a)所示的电磁翘翘板参加学校的科技节活动,该电磁翘翘板是在两端封闭的透明塑料管中放有一块磁性很强的磁铁,塑料管外绕有金属丝作为线圈,在线圈两端并取两只发光二极管,其电路如图(b)所示,二极管具有单向导电性,演示时,将塑料管上下翘动,这时会看见两只发光二极管轮流发光.请回答下列问题:(1)电磁翘翘板中发光二极管轮流发光是根据______原理工作的,也是根据这一原理工作的_____________(填“电动机”或“发电机”)(2)电磁翘翘板上下翘动时,为什么发光二极管会轮流发光?答案:(1)电磁感应,发电机(2)磁铁在线圈中左右移动,相当于线圈导体在磁场中做切割磁感线运动,便会在线圈中产生感应电流,磁铁在线圈中左右移动的方向不同,在线圈中产生的感应电流方向也就不同,因此二极管会轮流发光.课时作业三十九电磁感应现象楞次定律1.法拉第通过精心设计的一系列实验,发现了电磁感应定律,将历史上认为各自独立的学科“电学”与“磁学”联系起来.在下面几个典型的实验设计思想中,所作的推论后来被实验否定的是()A.既然磁铁可使近旁的铁块带磁,静电荷可使近旁的导体表面感应出电荷,那么静止导线上的稳恒电流也可在近旁静止的线圈中感应出电流B.既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流C.既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的在磁铁也可在近旁运动的导体中感应出电动势D.既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可在近旁的线圈中感应出电流解析:电磁感应现象的产生条件是:穿过电路的磁通量发生变化.静止导线上的稳恒电流产生恒定的磁场,静止导线周围的磁通量没有发生变化,近旁静止线圈中不会有感应电流产生,A错.而B、C、D三项中都会产生电磁感应现象,有感应电动势(或感应电流)产生.答案:A3.矩形导线框abcd固定匀强磁场中,磁感线的方向与导线框所在平面垂直.规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图甲所示,若规定顺时针方向为感应电流i的正方向,下列i-t图乙中正确的是()解析:由楞次定律可判断出在前4 s内感应电流的方向分别为负方向、正方向、正方向、负方向.由题图可知:在每一秒内,磁感应强度的变化率B t ∆∆的大小相同,导线框中磁通量的变化率B t t ∆Φ∆=∆∆·S的大小相同,形成的感应电流的大小eitRR∆Φ==∆相同.因此选D.答案:D3.如图所示,沿x轴、y轴有两根长直导线,互相绝缘.x轴上的导线中有-x方向的电流,y轴上的导线中有+y方向的电流,两虚线是坐标轴所夹角的角平分线.a、b、c、d是四个圆心在虚线上、与坐标原点等距的相同的圆形导线环.当两直导线中的电流从相同大小,以相同的快慢均匀减少时,各导线环中的感应电流情况是()A.a中有逆时针方向的电流B.b中有顺时针方向的电流C.c中有逆时针方向的电流D.d中有顺时针方向的电流答案:BC4.如图,老师做了一个物理小实验让学生观察:一轻质横杆两侧各固定一金属环,横杆可绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象是()A.磁铁插向左环,横杆发生转动B.磁铁插向右环,横杆发生转动C.无论磁铁插向左环还是右环,横杆都不发生转动D.无论磁铁插向左环还是右环,横杆都发生转动解析:右环闭合,在此过程中可产生感应电流,环受安培力作用,横杆转动,左环不闭合,无感应电流,无以上现象,选B.答案:B5.在沿水平方向的匀强磁场中,有一圆形金属线圈可绕沿其直径的竖直轴自由转动,开始时线圈静止,线圈平面与磁场方向既不平行也不垂直,所成的锐角为α.在磁场开始增强后的一个极短时间内,线圈平面()A.维持不动B.将向使α减小的方向转动C.将向使α增大的方向转动D.将转动,因不知磁场方向,不能确定α会增大还是会减小解析:穿过线圈的磁通量Φ=BSsinα,由楞次定律可知,当原磁场增强时,sinα应变小,即α角变小,故B正确.答案:B6.如图所示,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力F N及在水平方向运动趋势的正确判断是()A.F N先小于mg后大于mg,运动趋势向左B.F N先大于mg后小于mg,运动趋势向左C.F N先小于mg后大于mg,运动趋势向右D.F N先大于mg后小于mg,运动趋势向右解析:当条形磁铁从线圈上方等高快速经过时,线圈中的磁通量先增大后减小,由楞次定律可知,当磁铁靠近线圈时,线圈有向减小磁通量方向运动的趋势,即向下向右;当磁铁远离时,线圈有向上向右运动的趋势;线圈在整个过程中处于静止状态.所以线圈受到的支持力F N先大于mg后小于mg,运动趋势向右,选D.答案:D7.某部小说中描述一种窃听电话:窃贼将并排在一起的两根电话线分开,在其中一根电话线旁边铺设一条两端分别与耳机连接的导线,这条导线与电话线是绝缘的,如图所示.下列说法正确的是()A.不能窃听到电话,因为电话线中电流太小B.不能窃听到电话,因为电话线与耳机没有接通C.可以窃听到电话,因为电话中的电流是恒定电流,在耳机电路中引起感应电流D.可以窃听到电话,因为电话中的电流是交流电,在耳机电路中引起感应电流解析:电话线与耳机线相互绝缘,故电话线中的电流不可能进入耳机内,由于电话线中电流是音频电流(即交变电流),不断变化,耳机、导线组成的闭合电路中有不断变化的磁通量,故耳机中产生与电话线中频率一样的感应电流,人可以窃听到谈话内容.答案:D8.如图所示,在匀强磁场中,MN、PQ是两根平行的金属导轨,而ab、cd为串有电压表和电流表的两根金属棒,同时以相同速度向右运动时,正确的有()A.电压表有读数,电流表有读数B.电压表无读数,电流表有读数C.电压表无读数,电流表无读数D.电压表有读数,电流表无读数解析:此题考查对电磁感应现象的理解和对电压表、电流表示数的理解.两棒以相同速度向右运动时,因穿过面abcd的磁通量不变,回路中没有感应电流,电流表和电压表均不会有读数.答案:C9.在探究电磁感应现象的实验中:(1)首先要确定电流表指针偏转方向与电流方向间的关系.实验中所用电流表量程为100 μA,电源电动势为1.5 V ,待选的保护电阻有三种R 1=100 k Ω,R 2=1 k Ω,R 3=10 Ω,应选用_______.(2○+接线柱流入,由于某种原因,螺线管副线圈绕线标识已没有了,通过实验查找绕线方向.如图所示,当磁铁 N 极插入线圈时,电流表指针向左偏,在图中画出副线圈的绕线方向.(3)在图示甲装置中,若将条形磁铁S 极在下端,从螺线管中拔出,这时电流表的指针应向___________偏.解析:(1)316g E 1.5R 1510,R R.I 10010-==Ω=⨯Ω⨯>不会使电流表超过量程,达到保护的作用.选R 1.(2)当磁铁 N 极插入螺线管时,根据楞次定律,感应电流的磁场阻碍磁通量的增加,螺线管上端应为 N 极,下端为S 极,又电流表指针向左偏,可知电流方向是由电流表○+线柱流出至螺线管上端接线柱,由安培定则可判断螺线管的绕线方向如图乙所示.(3)若将条形磁铁S 极在下端,从螺线管中拨出时,感应电流磁场方向为阻碍磁通量的减少,螺线管上端应为 N 极,下端为S 极,由螺线管的绕线方向可以判定电流是从电流表的○+.答案:(1)R 1(2)如图乙(3)左10.为观察电磁感应现象,某学生将电流表、螺线管A 和B 、蓄电池、开关用导线连接成如图所示的实验电路.(1)当接通和断开开关时,电流表的指针都没有偏转,其原因是()A.开关位置接错B.电流表的正、负极接反C.线圈B的接头3、4接反D.蓄电池的正、负极接反(2)在开始实验之前,需要先确定电流表指针偏转方向与电流方向之间的关系,为此还需要的器材是__________________.具体方法是______________.解析:本题考查了感应电流产生的条件.(1)因感应电流产生的条件是闭合回路中的磁通量发生了变化,由电路图可知,若把开关接在线圈的3、4接头,因与1、2接头相连的电路电流不改变,所以不可能有感应电流,电流表也不可能偏转,开关应接在1、2接头与电源之间.(2)利用干电池已确定了正负极,把电流表接入电路,可以确定电流的流向与指针偏转方向的关系.答案:(1)A(2)一节电池、保护电阻用一节电池与电流表、保护电阻连接11.如图所示,一根光滑圆木棒的中部密绕若干匝线圈,并通过开关与电源相连,线圈两侧各套一个闭合的铝环a和b,在接通电路的瞬间,两环的运动状态为a环向___移动,b 环向_________移动.解析:当电路接通瞬间,穿过线圈的磁通量在增加,使得穿过a,b铝环的磁通量都在增加,由楞次定律可知a,b中感应电流的磁场与线圈中磁场方向相反,即受到线圈磁场的排斥作用,使a,b两铝环分别向外侧移动,即a环向左,b环向右移动.在此类题中,无论电源方向及线圈绕线方向如何,当闭合开关电流增大时,两环均向外侧移动,而不必去具体判断。