铅酸蓄电池达不到设计使用寿命的原因
- 格式:pdf
- 大小:156.39 KB
- 文档页数:2
铅酸蓄电池使用寿命的因素蓄电池是UPS系统中的一个重要组成部分,它的优劣直接关系到整个UPS系统的可靠程度。
不管UPS设计的多么先进,功能多么齐备,一旦蓄电池失效,再好的UPS也无法提供不间断供电。
千万不要因贪图便宜而选用劣质铅酸蓄电池,这样会影响整个UPS系统的可靠性,并将因此造成更大的损失。
下面介绍一下关乎铅酸蓄电池使用寿命的因素:1 环境温度对电池的影响较大。
环境温度过高,会使电池过充电产生气体,环境温度过低,则会使电池充电不足,这都会影响电池的使用寿命。
因此,一般要求环境温度在25℃左右, UPS浮充电压值也是按此温度来设定的。
实际应用时,蓄电池一般在5℃~35℃范围内进行充电,低于5℃或高于35℃都会大大降低电池的容量、缩短电池的使用寿命。
2 放电深度对电池使用寿命的影响也非常大。
电池放电深度越深,其循环使用次数就越少,因此在使用时应避免深度放电。
虽然UPS都有电池低电位保护功能,一般单节电池放电至10.5V左右时,UPS就会自动关机。
但是,如果UPS处于轻载放电或空载放电的情况下,也会造成电池的深度放电。
3 电池在存放、运输、安装过程中,会因自放电而失去部分容量。
因此,在安装后投入使用前,应根据电池的开路电压判断电池的剩余容量,然后采用不同的方法对蓄电池进行补充充电。
对备用搁置的蓄电池,每3个月应进行一次补充充电。
可以通过测量电池开路电压来判断电池的好坏。
以12V 电池为例,若开路电压高于12.5V,则表示电池储能还有80%以上,若开路电压低于12.5V,则应该立刻进行补充充电。
若开路电压低于12V,则表示电池存储电能不到20%,电池不堪使用。
4 充电电压。
由于UPS电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。
为延长电池的使用寿命, UPS的充电器一般采用恒压限流的方式控制,电池充满后即转为浮充状态,每节浮充电压设置为13.6V左右。
如果充电电压过高就会使电池过充电,反之会使电池充电不足。
铅酸电池的设计寿命通常在4-8年不等,但实际使用寿命受多种因素影响。
具体如下:
1.使用条件:铅酸电池的使用寿命受其使用条件的影响很大。
例如,作为汽车起动用的铅酸蓄电池,设计使用寿命通常为4~5年以上,但实际中往往因为各种原因,如充放电不当、温度过高或过低等,导致电池几个月至一年就报废。
2.环境温度:温度对铅酸电池的寿命影响显著。
理想的使用温度范围是20-25摄氏度。
据理论数据显示,环境温度每变动10度,电池寿命可能减少20-25%。
3.充电方式:铅酸电池的充电方式也会影响其寿命。
设计浮充寿命指的是电池在恒定电压下持续充电的状态下的预期寿命,这种状态下12V铅酸电池的设计寿命可达5-8年。
然而,如果电池经常进行深度循环充放电,其寿命可能会大幅缩短。
4.内阻变化:电池的内阻及其变化趋势可以用来预测电池的寿命。
内阻值越高,表示电池容量越低,性能越差。
当内阻值达到初始内阻值的1.3倍到1.5倍之间时,通常建议进行更换。
综上所述,尽管铅酸电池有其设计寿命,但其实际使用寿命会因使用和维护的方式、环境条件等多种因素而有所不同。
正确维护和使用铅酸电池,可以在一定程度上延长其使用寿命。
1.影响蓄电池质量的技术问题1)电池构成VRLA电池由正极板、负极板、AGM隔膜、正负汇流条、电解液、安全阀、盖和壳组成。
其中正极板栅厚度、合金成份、AGM隔膜厚度均匀性、汇流条合金、电解液量、安全阀开闭压力、壳盖材料、电池生产工艺等对电池寿命和容量均匀性具有重要影响。
2)板栅合金VRLA电池负板栅合金一般为Pb-Ca系列合金,正板栅合金有Pb-Ca系列、Pb-Sb(低)系列和纯Pb等,其中Pb-Ca、Pb-Sb(低)合金正板栅电池浮充寿命相近,但循环寿命相差较大,对于经常停电地区选用低锑合金电池可靠性好。
3)板栅厚度极板的正板栅厚度决定电池的设计寿命。
4)安全阀安全阀是电池的一个关键部件,具有滤酸、防爆和单向开放功能,YD/T7991 996规定安全开闭压力范围为1-49kPa,但是,对于长寿命电池,必须考虑单向密封,防止空气进人电池内部,同时防止内部水蒸气在较高温度下跑掉。
5)AGM隔膜隔膜孔隙率和厚度均匀性,直接影响隔膜吸酸饱和度和装配压缩比,从而影响电池寿命和容量均匀性。
6)壳盖材料VRLA电池壳盖材料有PP、ABS和PVC,PP材料相对较好。
7)酸量和化成工艺分为电池化成和槽化成两种,电池化成可以定量注酸并记录每个电池单体化成全过程数据,能准确判断每个出厂电池综合生产质量状况,但化成时间较长。
槽化成是对极板化成,化成时间短,极板化成较充分,但对电池组装质量不能通过化成过程数据记录判断。
8)涂板工艺涂板工艺要保证极板厚度和每片极板活性物质的均匀性。
9)密封技术VRLA电池密封技术包括极柱密封、壳盖材料透水性、壳盖密封和安全阀密封。
10)氧复合效率AGM电池具有良好的氧复合效率,贫液状态下按有关标准测试氧复合效率一般大于98%,因此具有良好的免维护性能。
2.影响蓄电池寿命的环境因素1)环境温度蓄电池正常运行的温度是20~40℃,最佳运行温度是25℃。
当温度每升高5℃,蓄电池的使用寿命降低10%,且容易发生热失控。
铅酸蓄电池锂电池等电池容量衰减原因电池的能量存储可以分为三个虚拟区域,即可填充的空白区、提供能量的可用区以及由于使用和老化作用造成的闲置不可用区域,或者说是岩石区,如图1所示。
电池能量存储虚拟区域示意图电池从制造完成时就开始衰减,一个新电池须提供100%的容量,但大多数使用中的电池组是达不到的。
随着电池的可用区域缩小,可填充的能量降低,充电时间逐渐缩短。
在大多数情况下,由于周期循环和老化的原因,电池容量呈线性衰减。
此外,深度放电给电池造成的压力大于不完全放电,因此最好不要把电池电量全部耗尽,而是经常性充电。
对于镍基电池以及作为校准部件的智能电池则应周期性深度放电,这有助于消除镍基电池的“记忆效应”。
镍基锂电池在容量衰减到80%之前可以完全充放电循环300~500周。
充放电循环并不是容量衰减的唯一原因,高温下存储锂电池也会导致容量衰减。
一个充满电的锂电池在40℃(104°F)保存一年而不使用的情况下会造成35%的容量损失。
超快速充放对电池也是有害的,会使电池寿命减少一半,这对于单体锂电池是非常明显的。
电池组比能量高,但由于单体电池的差异而显得特别微妙。
设备的规格参数往往基于新电池,但这仅仅是初试阶段的短暂现象,而不能维持太长的时间。
就像一个体育运动员,成绩会随着时间的推移而逐渐下降,并且如果任其发展,将会最终导致电池相关的故障。
电池需要经常计算其容量衰减和最终寿命。
容量衰减到80%就需要更换电池组,电池组的最终寿命极限应根据应用的不同、用户的喜好以及公司的保障而改变。
由于机械故障比较罕见,容量衰减便成了最终替代计划的一个最佳指标,这一指标可以通过对现役电池每三个月进行一次容量核实来完成。
此外,充电器充电运行状态表征的技术也在研发中。
除了与老化相关的衰减,硫酸盐化和板栅腐蚀是铅酸蓄电池衰减的主要影响因素。
硫酸盐化是指电池停留在较低倍率充电时,在阴极极板上形成的薄膜层。
如果发现及时,可以通过均衡充电来消除这一状况。
铅酸蓄电池的失效模式(朱松然)(2012-07-15 12:23:21)转载▼标签:分类:电池失效铅酸蓄电池在使用初期,随着使用时间的增加,其放电容量也增加,逐渐达到最大值;然后,随着放电次数的增加,放电容量减少。
电池在达到规定的使用期限时,对容量有一定的要求。
牵引电池的容量不得低于80%;对于启动电池,应不低于70%。
电动助力车电池标准规定也为70%。
一、铅酸蓄电池的失效模式由于极板的种类、制造条件、使用方法有差异,最终导致蓄电池失效的原因各异。
归纳起来,铅酸蓄电池的失效有下述几种情况:1、正极板的腐蚀变型目前生产上使用的合金有3类:传统的铅锑合金,锑的含量在4%~7%质量分数;低锑或超低锑合金,锑的含量在2%质量分数或者低于1%质量分数,含有锡、铜、镉、硫等变型晶剂;铅钙系列,实际为铅—钙-锡-铝四元合金,钙的含量在0.06%~0.1%质量分数。
上述合金铸成的正极板栅,在蓄电池充电过程中都会被氧化成硫酸铅和二氧化铅,最后导致丧失支撑活性物质的作用而使电池失效;或者由于二氧化铅腐蚀层的形成,使铅合金产生应力,使板栅长大变形,这种变形超过4%时将使极板整体遭到破坏,活性物质与板栅接触不良而脱落,或在汇流排处短路。
2、正极板活性物质脱落、软化除板栅长大引起活性物质脱落之外,随着充放电反复进行,二氧化铅颗粒之间的结合也松弛,软化,从板栅上脱落下来。
板栅的制造、装配的松紧和充放电条件等一系列因素,都对正极板活性物质的软化、脱落有影响。
3、不可逆硫酸盐化蓄电池过放电并且长期在放电状态下贮存时,其负极将形成一种粗大的、难以接受充电的硫酸铅结晶,此现象称为不可逆硫酸盐化。
轻微的不可逆硫酸盐化,尚可用一些方法使它恢复,严重时,则电极失效,充不进电。
4、容量过早的损失当低锑或铅钙为板栅合金时,在蓄电池使用初期(大约20个循环)出现容量突然下降的现象,使电池失效。
5、锑在活性物质上的严重积累正极板栅上的锑随着循环,部分地转移到负极板活性物质的表面上,由于H+在锑上还原比在铅上还原的超电势约低200mV,于是在锑积累时充电电压降低,大部分电流均用于水分解,电池不能正常充电因而失效。
影响基站阀控电池寿命原因及措施摘要本文对目前造成基站阀控电池使用过程中容量下降、寿命缩短的各种原因进行分析和探讨,并提出相关改进措施。
关键词阀控电池使用寿命改进措施1 前言基站蓄电池从目前使用情况来看,普遍存在蓄电池容量下降过快,使用寿命短,甚至短短1~2年时间蓄电池的容量只有标称容量的30%~40%,有的只有10%~20%,而大部分基站蓄电池经过1~4年运行,其容量只有其标称容量的50%左右,远远达不到其设计使用寿命,与交换局站同类蓄电池相比,其使用寿命也大大降低,按蓄电池使用维护标准要求,蓄电池容量只要下降到其标称容量的80%,其使用寿命就终止,应对其进行更换,本文对造成基站蓄电池容量下降过快,使用寿命缩短的原因进行分析和探讨,并在此提出相关的改进措施,希望对各运营商能有所帮助。
本文蓄电池特指阀控式密封铅酸蓄电池。
2 影响基站蓄电池使用寿命的原因从目前国内几家大型阀控式密封电池厂家生产电池的质量来讲,应都能满足各运营商要求,虽然各厂家生产蓄电池质量、性能上有所差别,从现网调查使用情况来看,笔者认为厂家生产蓄电池的质量因素应不是影响目前各运营商基站蓄电池容量下降过快、使用寿命缩短的主要原因。
因为从阀控式密封电池产品结构、产品性能、基站蓄电池使用过程现场勘察情况等综合因素来看,结合交换局站使用情况,阀控式密封电池在正常情况下使用1~4年后,其容量下降应不会这么快,因此笔者认为造成基站蓄电池容量下降过快、使用寿命缩短的主要原因应在于基站本身蓄电池使用特点及其基站使用环境有关。
笔者从浙江移动、浙江联通的调查情况来看,认为影响基站蓄电池容量下降过快、使用寿命缩短的原因主要有以下几个方面。
第一,基站频繁停电、停电时间长、停电时间无规律,使蓄电池频繁充放电,是造成蓄电池容量下降过快和使用寿命缩短的一个最主要原因。
根据目前厂家对基站报废蓄电池解剖情况来看,导致蓄电池寿命终止的原因在于蓄电池负极板的硫酸化,这是蓄电池早期容量衰竭(PCL)的一种典型现象。
摘要本文阐述了铅酸蓄电池的发展过程,铅酸蓄电池基本特性,包括其物理性质和化学性质,结构,组成,分类等。
其次是对铅酸蓄电池的寿命做了进一步的分析,包括铅酸蓄电池的失效模式,如正极板栅的腐蚀变形、正极活性物质软化变形、不可逆硫酸盐化、热失控等,以及影响蓄电池寿命并最终导致寿命缩短的一些因素,如极板特性、电解液的浓度、温度、放电深度、充放电电流密度等。
最后陈述了蓄电池的日常使用过程中的维护和保养,通过对电池的正确的使用及保养以延长电池的使用寿命。
关键词:铅酸蓄电池;失效;寿命;维护ABSTRACTThis paper expounds the development process of lead acid battery, the basic characteristics of lead-acid batteries, including its physical and chemical characteristics, structure, composition, classification, etc. Second is the life of the battery to do a further analysis, including the lead-acid battery failure mode, such as the corrosion of the gate is plate deformation, positive active substances softening deformation, irreversible sulfuric acid salinization, thermal runaway, etc, and the impact battery life and eventually lead to some of the life shorten factors, such as plate characteristics, electrolyte concentration, temperature, discharge, charge and discharge current density and depth. The final statement in the process of using the daily maintenance and maintenance, through to the correct use of the battery and maintenance to extend the life of the battery.Keywords: lead-acid battery ;failure ;life; maintenance目录摘要 (I)绪论 (1)第1章铅酸电池概述 (3)1.1铅酸蓄电池发展简介 (3)1.2 铅酸蓄电池结构、组成 (4)1.3 铅酸蓄电池的分类 (6)1.4 铅酸蓄电池的电池反应 (7)第2章铅酸蓄电池寿命分析 (8)2.1 铅酸蓄电池的失效模式 (8)2.2 影响铅酸寿命的因素分析 (10)第3章铅酸蓄电池的蓄电池维护与使用 (15)3.1铅酸蓄电池的维护 (15)3.2 蓄电池的使用与保养 (16)展望 (18)致谢 (18)参考文献 (21)绪论铅酸蓄电池是一类安全性高,电性能稳定,制造成本低,应用领域广泛的电池,它与电力、交通、信息产业息息相关,与国防、计算机、科研、港口等国民经济各领域不可分割,是低成本再生利用的“资源循环型”能源产品。
影响电池使用寿命的因素及预防措施蓄电池是UPS的重要组成部件,在市电停电时其提供的后备能量保证UPS输出不中断,如果电池供电容量不足,则系统会发生后备时间不足、宕机的危险。
可见电池性能直接影响电源系统的可靠性。
实践表明,蓄电池问题是UPS问题中最常见的一种。
绝大多数UPS使用的是密封式免维护铅酸蓄电池,所谓的免维护并非完全不需维护,而是指不需要象传统铅酸蓄电池那样定期加水。
由于结构和材料的原因,电池的价格通常都比较高,因此正确对蓄电池组进行维护保养,是延长UPS使用寿命、降低系统运营成本的关键。
常见电池的寿命为3~5年,但应用中会有少量电池提前损坏。
这是因为,电池的寿命除了与内部材料、化学组成有关外,还与温度环境、电网环境、操作使用、维护保养等密切相关。
例如,在经常停电(如供电不足、电网改造等)的地区,电池发生故障的比例相对就高些。
近两年,我国部分地区因电力供应不足,经常发生拉闸限电,严重的地区,甚至是三天供电两天停电。
这样的供电环境,对电池十分不利,往往会导致电池容量下降,寿命提前终止。
在这些地区,电池更加需要适当的操作和维护保养。
一、有关影响电池寿命的因素(一)有关电池容量的标准:关于电池容量的定义,一般是以20HR来定义的,即在25℃条件下以0.05C放电可以放电20小时,属于标准容量。
关于电池寿命终止是以0.25C放电,25℃条件下放电容量仅为额定容量的50%以下。
(二)有关电池寿命浮充寿命现以NP型电池为例,浮充寿命一般在3~5年(20℃),三年时,有一些电池寿命终止,五年时,NP电池寿命基本终止。
电池浮充寿命受放电次数、放电深度、浮充充电的温度、浮充充电的电压等因素影响。
以下是电池浮充寿命特性:(三)电池未充饱、过放电对电池寿命的影响电池未充饱情况下没有及时进行充电就放电,会造成电池极板硫化,使活性物质不能还原,从而影响电池的容量,最终导致电池寿命提前终止。
因铅酸电池放电后产物是硫酸铅,在正常工作中,负极板上的PbSO4颗粒小,放电很容易恢复为绒状铅,但有的时候电池内部生成了难以还原的硫酸铅,称为硫酸盐化,从而导致蓄电池的内阻增大,甚至使个别电池产生“反极性”现象。
铅酸电池容量下降的原因引言:铅酸电池是一种常见的蓄电池,广泛应用于汽车、UPS电源等领域。
然而,随着使用时间的增长,铅酸电池的容量会逐渐下降,影响其使用寿命和性能。
本文将探讨导致铅酸电池容量下降的原因,并提出相应的解决方法。
一、活性物质损耗铅酸电池的负极由铅和活性物质构成,正极由铅和四氧化三铅构成。
在充放电的过程中,活性物质会逐渐溶解,导致电池容量下降。
此外,电池的极板也会因反复充放电而逐渐损耗,进一步影响电池的容量。
解决方法:1. 增加活性物质:可以通过增加活性物质的含量来延长电池的使用寿命。
工程师可以通过改变电池的设计和材料选择,增加活性物质的比例,从而提高电池的容量。
2. 降低极板腐蚀:采用抗腐蚀材料制作极板,可以有效降低极板的腐蚀速度,延长电池的使用寿命。
二、硫化物沉积在铅酸电池的使用过程中,正极板上会生成硫酸铅和硫酸铅酸钠。
随着充放电次数的增加,这些硫化物会沉积在极板上,形成硫化物层,阻碍电子传导,导致电池容量下降。
解决方法:1. 增加电池的充电电压:适当提高电池的充电电压,可以促使硫化物的溶解和清除,减少硫化物的沉积。
2. 定期进行放电操作:定期进行深度放电操作,可以帮助清除硫化物层,恢复电池的容量。
三、极板硫化铅酸电池在长期使用中,极板会因为硫化作用而产生硫化铅,导致极板表面积减小,进而影响电池的容量。
解决方法:1. 控制电池的工作温度:高温环境下,硫化作用会更加剧烈。
因此,控制电池的工作温度,避免过高的温度对电池的影响,可以减缓极板硫化的速度。
2. 定期维护电池:定期对电池进行维护和检查,及时清除硫化物,保持极板的清洁,有助于延长电池的使用寿命。
四、自放电铅酸电池在放置一段时间后,即使没有使用也会自动放电。
这是因为铅酸电池内部存在微小的电流流动,导致电池内部的化学反应,从而引起容量的损耗。
解决方法:1. 定期充电:定期对电池进行充电,可以补充自放电损失的电量,延长电池的使用寿命。
铅酸电池循环寿命分析前言影响铅酸蓄电池寿命的因素是多方面的,包括电池的内在因素,如蓄电池结构、正负极板栅材料、正负极活性物质、隔板、电解液浓度等,也取决于一系的外在因素,如放电电流密度、温度、放电深度、维护状况和贮存时间等。
放电度越深,使用寿命越短。
过充电也会使寿命缩短。
随着酸浓度增加,电池寿命降低。
在大容量铅酸蓄电池研究过程中我们发现铅绒短路是造成蓄电池性能下降并失效的重要原因。
此外正极板栅的腐蚀变形、正极活性物质脱落、软化、不可逆硫酸盐化、锑在活性物质上的严重积累都是影响蓄电池寿命的关键因素。
为了防止正极板栅腐蚀,研制了多元低锑合金。
这种多元合金的耐腐蚀性大幅度提高。
负极板栅采用镀铅铜拉网。
铜板栅重量与活性物质之比为1:3,蓄池的比能量得到显著提高。
而且由于铜板栅负极电性能好,充电接受能力强,提了蓄电池充放电循环寿命。
在正负极活性物质中加入添加剂,提高活性物质利用率,延长使用寿命。
为了防止铅绒短路采取了全面的防短路措施。
采用了高性能的板和一系列的新装配工艺。
铅酸蓄电池发展简介铅酸蓄电池最早由盖斯腾·普朗特于1860年制成,至今己有140多年的历史。
一百多年来,随着科学技术的发展,铅酸蓄电池的工艺、结构、生产机械化和自动化程度不断完善,性能不断提高。
由于其优良的性能价格比,直到今天铅酸蓄电池的产量和应用仍处于各种化学电源的首位”。
其应用主要包括动力、起动、应急和工作电源,使用对象包括车辆、船舶、飞机、电信系统、电脑、仪器以及其它设备、设施,尤其在汽车电池和工业蓄电池中,铅酸蓄电池占有90%以上的市场份额,具有绝对优势121。
1800年原始的Valta电堆首次出现。
1801年戈泰罗特已经观察到所谓“二次电流”,即在充电后可以得到和充电电流方向相反的电流。
德拉·早维从1836~1843年研究了Pb02在硫酸溶液中作为正极的原电池。
铅酸蓄电池的几种电极形式和主要工序的制造工艺是在1860~1910年的半个世纪中逐步确定下来的。
浅析影响阀控式密封铅酸蓄电池使用寿命的原因及预防措施摘要:该文章分析了影响阀控式密封铅酸蓄电池使用寿命的内部因素和外部因素,并提出了延长蓄电池使用寿命的预防措施,在实践工作中做好对阀控式密封铅酸蓄电池的运行管理,尽可能减少蓄电池失效的几率,以确保阀控式密封铅酸蓄电池直流系统可靠稳定的运行。
关键词:阀控式密封铅酸蓄电池寿命影响因素预防措施阀控式密封铅酸蓄电池性能稳定、可靠、维护工作量小,受到设计和运行人员的欢迎。
但阀控式密封铅酸蓄电池对温度的反应灵敏,不允许过充电和欠充电,对充放电要求较为严格,要求有性能较好的充电装置,使用维护不当将严重缩短蓄电池的使用寿命。
1.阀控式密封铅酸蓄电池的寿命阀控式密封铅酸蓄电池的寿命分为设计使用寿命和使用寿命。
1.1设计使用寿命设计使用寿命是厂家设计的按规定的环境运行的寿命。
一般的阀控式密封铅酸蓄电池的正常运行条件是在温度为25oc、浮充电压在2.25~2.27v(13.5~13.62v系6单体),2v蓄电池的寿命为10~15年,而6v和12v系列设计使用寿命为3~6年。
1.2使用寿命使用寿命是阀控式密封铅酸蓄电池在安装现场的实际运行使用寿命。
一般阀控式密封铅酸蓄电池的使用寿命小于其设计使用寿命,一般使用寿命为不到设计使用寿命的一半或更短。
2.影响阀控式密封铅酸蓄电池寿命的因素由于极板种类、制造条件、使用方式有差异,导致蓄电池失效的原因也各异,这些归纳为铅酸蓄电池失效的内部因素。
除此之外,蓄电池失效还和一些外部因素有关,如放电深度、放电电流密度、充电电流倍率等。
2.1影响阀控式密封铅酸蓄电池寿命的内部因素2.1.1阀控式密封铅酸蓄电池硫酸盐化(1)硫酸盐化的原因蓄电池由于长期欠充电或过充电,浮充电压低于2.23~2.28v (25oc)或高于2.23~2.28v (25oc),使蓄电池缺水严重,电解液密度过高,在蓄电池负极形成一种较大的、难以接受充电的pbso4结晶,此现象成为不可逆硫酸盐化。
铅酸蓄电池常见损坏原因和实际修复效果随着全球对环保的逐渐重视,国家对节能减排的力度的不断加大,以及各个通信企业不断强化精细化管理,降低企业的经营成本,更多的体现企业的社会责任感和贡献于社会的迫切愿望,作为通信网络基础的铅酸电池利旧,成为一个重要课题。
原有的电池活化技术修复率低,周期长,不能满足要求。
随着技术的进步,一种新的电池活化技术应运而生,它具有修复率高,修复周期短,安全环保的特点,在没有物理损伤的情况下,基本容量可恢复在90%以上,是一种值得推广和应用的新技术。
下面就从电池损坏原因,普遍应用的电池修复技术,新电池修复技术的特点方法,几个方面对这种新技术进行比较和剖析。
(注;本产品适用于所有铅酸电池,包括各种车辆,电力,金融,通信等行业,本文以通信行业为例作以简单介绍,不详之处请与指正。
)以下就电池的损坏及达不到理论设计寿命的原因,基本上归结为以下几点,供参考:1.电池硫酸结晶化严重上图为百万倍显微镜下的硫酸盐结晶形态上图为硫酸盐在极板表面形成的结晶化状态电池漏液在极柱周围形成的硫酸盐团块导致极柱松动2.失水严重左图为由于失水严重导致极板上硫酸盐脱落在壳体内堆积右图为由于失水严重导致极板断栅,断格等物理损伤3.物理损伤上图为连接栅部分脱落上图为正极板严重腐蚀导致断裂上图为负极板与连接栅完全断裂上图为极板断格现象上图为极板出现的物理损伤上图为极板弯曲现象随着电池使用年数的增加使硫酸盐变得粗大化逐渐吸附在极板上,使内阻增大,极板的有效面积减少,有效负荷电压逐渐低下,因此大部分极板损伤的原因也是因为硫酸盐的生成所造成的。
可参照上图及下图:由于频繁停,断电等基站的使用条件及恶劣的自然环境所造成的电池寿命缩短。
例如:现在通信基站使用的部分2类电池,这种电池的使用温度是0-35度适用于室内使用,而在实际使用中,电池使用基站的温差变化大,冬季室外站,电池在零下15度工作的情况也是经常看到的。
上图为由于频繁停断电等原因使电池温度过热及气体排放不畅所引起的壳体开裂和鼓包现象在通信行业的废弃电池中,除30%左右有外部及内部极板物理损伤外,其余70%左右的电池主要是由于硫酸盐的结晶化使得电池容量降低,性能劣化而内部极板没有明显的物理损伤及较轻物理损伤的电池是完全可以恢复容量以及部分恢复容量继续使用的。
铅酸蓄电池老化的原因汽车一般使用的是铅酸蓄电池,蓄电池作为“方便电源”一直被人们所广泛使用,随着汽车在我国普及化程度不断提高,蓄电池越来越多的贴近百姓生活,但人们又对蓄电池的知识了解甚少,比如铅酸蓄电池老化的原因,如何保养铅酸蓄电池等等,今天要知道,任何车载电器的工作电压都有一个标准范围,超过这个范围电器容易短路甚至烧毁,低于这个范围电器无法启动或正常工作,甚至影响起使用寿命,车载电器和蓄电池都是这样。
很多用户在使用电动车时往往是几天充电一次,有的每天行程超过新电瓶标称里程的60%2、过充“过充”就是过量给蓄电池充电而产生的一种对蓄电池化学和物理性能起破坏作用的现象。
“过充”首先是充电器的原因。
目前的电动车充电器都有安全充电电压设置,充电电压一般设定在电瓶标准电压的1.2倍以内,如48V的蓄电池,充电电压设定在57.2V以内。
蓄电池在放电过程中,电压会逐步下降,当再次给电瓶充电时,充电器的红灯会亮起,表示充电进行时,当电能不断的输入电瓶后,电压会不断升高,直至接近或等于充电电压时充电器绿灯会亮起,此时,充电停止或涓流充电。
如果充电器电压元件失灵,充电就不会停止,充电电流会不间断地输入电瓶,电压就会不断升高,电压升高的结果就会加剧电解液的热反应,轻则蓄电池外壳会变形(膨胀),重则致使蓄电池被充爆。
其次是因为蓄电池间电压的不平衡性造成“过充”。
上面讲过,电瓶组是由2-5节12V的蓄电池组成,电瓶刚出厂时,每节电瓶的电压十分接近才配组,但使用一段时间后,蓄电池之间的电压就会产生差异,即所谓的“压差”。
电动车充电器在充电时是同时给串联而成的蓄电池组充电,电压较高的电瓶会先充满电,电压较低的蓄电池会后充满甚至一直在充电,由于充电器是以总体电压为充电或停止充电设定的,因此,先充满电的蓄电池就会处在“过充”状态。
“压差”小时对电瓶影响不大,“压差”大时,经常“过充”的蓄电池一样会产生电解液热反应加剧,直至把这节蓄电池充坏。
铅酸蓄电池达不到设计使用寿命的原因
1 引言
尽管今天铅酸蓄电池在结构设计与使用原材料方面比过去有了很大的改进,性能有了相当大的提高,许多设计和用料精良的免维护铅酸蓄电池浮充使用的理论寿命为15~20年以上,但真正能在使用中达到如此寿命的电池恐怕是少之又少。
拿汽车与摩托车广泛使用的干荷电少维护起动用铅酸蓄电池来说,设计使用寿命为4~5年以上,通过调查发现,很少能达到以上水平,大部份几个月至一年就夭折了,究其原因,我们认为有以下几点:
1)充电设备的设计不够完善,使用也不方便。
2)铅酸蓄电池放电后得不到及时的补充充电,特别是过放电对电池造成致命之伤。
3)少数厂家的产品质量低劣,以次充好。
以上原因,我们认为2)、3)从技术上讲是比较容易预防和做好的,唯1)牵涉比较难以解决的技术问题,下面着重谈谈这方面存在的问题。
2 蓄电池的充电技术要求
厂家提供的铅酸蓄电池保证使用寿命的技术指标是在环境温度为25℃下给出的。
由于单体铅酸蓄电池电压具有温度每上升1℃下降约4mv的特性,那幺一个由6个单体电池串联组成的12V蓄电池,25℃时的浮充电压为
13.5V;当环境温度降为0℃时,浮充电压应为14.1V;当环境温度升至40℃时,浮充电压应为13.14V。
同时铅酸蓄电池还有一个特性,当环境温度一定,充电电压比要求的电压高100mv,充电电流将增大数倍,因此,将导致电池的热失控和过充损坏。
当充电电压比要求电压低100mv时,又将使电池充电不足,也会导致电池损坏。
另外铅酸蓄电池的容量也和温度有关,大约。