2010年浙江省金华市中考数学试卷及答案
- 格式:doc
- 大小:534.00 KB
- 文档页数:8
浙江省金华市中考数学试卷带答案含答案解析版Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,﹣12,﹣1四个数中,最小的数是( )A .0B .1C .−12 D .﹣1 2.计算(﹣a )3÷a 结果正确的是( ) A .a 2 B .﹣a 2C .﹣a 3D .﹣a 43.如图,∠B 的同位角可以是( )A .∠1B .∠2C .∠3D .∠44.若分式x −3x +3的值为0,则x 的值为( )A .3B .﹣3C .3或﹣3D .05.一个几何体的三视图如图所示,该几何体是( )A .直三棱柱B .长方体C .圆锥D .立方体6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .7127.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( )A .(5,30)B .(8,10)C .(9,10)D .(10,10)8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .xxxx xxxxB .xxxx xxxxC .xxxx xxxxD .xxxx xxxx9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.某通讯公司就上宽带网推出A ,B ,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h )的函数关系如图所示,则下列判断错误的是( )A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.化简(x﹣1)(x+1)的结果是.12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.对于两个非零实数x,y,定义一种新的运算:x*y=xx+xx.若1*(﹣1)=2,则(﹣2)*2的值是.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则xx xx的值是.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.18.解不等式组:{x3+2<x2x+2≥3(x−1)19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20(8分)(2018金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O的半径.22.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值最大值是多少(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数y=xx与y=xx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018金华)在0,1,﹣12,﹣1四个数中,最小的数是()A.0 B.1 C.−12D.﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣12<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2018金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)(2018金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)(2018金华)若分式x−3x+3的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)(2018金华)一个几何体的三视图如图所示,该几何体是()A .直三棱柱B .长方体C .圆锥D .立方体【考点】U3:由三视图判断几何体. 【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状. 【解答】解:观察三视图可知,该几何体是直三棱柱. 故选:A .【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)(2018金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .712 【考点】X5:几何概率. 【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°, 所以黄区域所占的面积比例为90360=14,即转动圆盘一次,指针停在黄区域的概率是1 4,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)(2018金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)(2018金华)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .xxxx xxxxB .xxxx xxxxC .xxxx xxxxD .xxxx xxxx 【考点】T8:解直角三角形的应用. 【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题;【解答】解:在Rt △ABC 中,AB=xxxxxx,在Rt △ACD 中,AD=xxxxxx,∴AB :AD=xx xxxx :xx xxxx =xxxxxxxx ,故选:B .【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)(2018金华)如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)(2018金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A .每月上网时间不足25h 时,选择A 方式最省钱B .每月上网费用为60元时,B 方式可上网的时间比A 方式多C .每月上网时间为35h 时,选择B 方式最省钱D .每月上网时间超过70h 时,选择C 方式最省钱 【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A 、观察函数图象,可得出:每月上网时间不足25 h 时,选择A 方式最省钱,结论A 正确;B 、观察函数图象,可得出:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确;C 、利用待定系数法求出:当x ≥25时,y A 与x 之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A 的值,将其与50比较后即可得出结论C 正确;D 、利用待定系数法求出:当x ≥50时,y B 与x 之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B 的值,将其与120比较后即可得出结论D 错误. 综上即可得出结论.【解答】解:A 、观察函数图象,可知:每月上网时间不足25 h 时,选择A 方式最省钱,结论A 正确;B 、观察函数图象,可知:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确;C 、设当x ≥25时,y A =kx+b ,将(25,30)、(55,120)代入y A =kx+b ,得: {25x +x =3055x +x =120,解得:{x =3x =−45,∴y A =3x ﹣45(x ≥25), 当x=35时,y A =3x ﹣45=60>50,∴每月上网时间为35h 时,选择B 方式最省钱,结论C 正确; D 、设当x ≥50时,y B =mx+n ,将(50,50)、(55,65)代入y B =mx+n ,得: {50x +x =5055x +x =65,解得:{x =3x =−100,∴y B =3x ﹣100(x ≥50),当x=70时,y B =3x ﹣100=110<120, ∴结论D 错误. 故选:D .【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018金华)化简(x ﹣1)(x+1)的结果是 x 2﹣1 . 【考点】4F :平方差公式. 【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果. 【解答】解:原式=x 2﹣1, 故答案为:x 2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)(2018金华)如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是 AC=BC .【考点】KB:全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中{∠xxx=∠xxx ∠xxx=∠xxx xx=xx,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)(2018金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是% .【考点】W5:众数. 【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是%、%、%、%、%, 则这5年增长速度的众数是%, 故答案为:%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)(2018金华)对于两个非零实数x ,y ,定义一种新的运算:x*y=x x +xx .若1*(﹣1)=2,则(﹣2)*2的值是 ﹣1 .【考点】2C :实数的运算.【专题】11 :计算题;36 :整体思想. 【分析】根据新定义的运算法则即可求出答案. 【解答】解:∵1*(﹣1)=2, ∴x 1+x −1=2 即a ﹣b=2∴原式=x −2+x 2=−12(a ﹣b )=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)(2018金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则xx xx 的值是 √2+14.【考点】LB :矩形的性质;IM :七巧板. 【专题】556:矩形 菱形 正方形.【分析】设七巧板的边长为x ,根据正方形的性质、矩形的性质分别表示出AB ,BC ,进一步求出xxxx 的值.【解答】解:设七巧板的边长为x ,则AB=12x+√22x , BC=12x+x+12x=2x , xx xx =12x +√22x 2x =√2+14. 故答案为:√2+14.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB ,BC 的长.16.(4分)(2018金华)如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm ,∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1,C 1的距离为 30√3 cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 10√5﹣10 cm .【考点】M3:垂径定理的应用;KU:勾股定理的应用;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是x1xx1̂的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15√3∴B1C1=30√3∴弓臂两端B1,C1的距离为30√3(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=120x30 180,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2=√302−202=10√5∴D1D2=10√5﹣10.故答案为30√3,10√5﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018金华)计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2√2+1﹣4×√2 2+2=2√2+1﹣2√2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)(2018金华)解不等式组:{x3+2<x2x+2≥3(x−1)【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式x3+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2018金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)(2018金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)(2018金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O的半径.【考点】ME:切线的判定与性质;T7:解直角三角形.【专题】55A:与圆有关的位置关系.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB=√42+82=4√5,∴OA=4√5﹣r,在Rt△ACD中,tan∠1=tanB=1 2,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4√5﹣r)2=r2+20,解得:r=3√5 2.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)(2018金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值最大值是多少(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣1 4t2+52t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣1 4,抛物线的函数表达式为y=﹣14x2+52x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣14t2+52t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣14t2+52t)]=﹣12t 2+t+20 =﹣12(t ﹣1)2+412, ∵﹣12<0, ∴当t=1时,矩形ABCD 的周长有最大值,最大值为412;(3)如图,当t=2时,点A 、B 、C 、D 的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD 对角线的交点P 的坐标为(5,2),当平移后的抛物线过点A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分;当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分;∴当G 、H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形的面积平分,当点G 、H 分别落在线段AB 、DC 上时,直线GH 过点P 必平分矩形ABCD 的面积,∵AB ∥CD ,∴线段OD 平移后得到的线段GH ,∴线段OD 的中点Q 平移后的对应点是P ,在△OBD 中,PQ 是中位线,∴PQ=12OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)(2018金华)如图,四边形ABCD 的四个顶点分别在反比例函数y=x x 与y=x x(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4.(1)当m=4,n=20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形若能,求此时m ,n 之间的数量关系;若不能,试说明理由.【考点】GB :反比例函数综合题.【专题】15 :综合题.【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论; ②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论;(2)先确定出B (4,x 4),进而得出A (4﹣t ,x 4+t ),即:(4﹣t )(x 4+t )=m ,即可得出点D (4,8﹣x 4),即可得出结论. 【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=4x,当x=4时,y=1,∴B (4,1),当y=2时,∴2=4x, ∴x=2,∴A (2,2),设直线AB 的解析式为y=kx+b ,∴{2x +x =24x +x =1, ∴{x =−12x =3,∴直线AB 的解析式为y=﹣12x+3;②四边形ABCD 是菱形,理由如下:如图2,由①知,B (4,1),∵BD ∥y 轴,∴D (4,5),∵点P 是线段BD 的中点,∴P (4,3),当y=3时,由y=4x 得,x=43, 由y=20x 得,x=203, ∴PA=4﹣43=83,PC=203﹣4=83, ∴PA=PC ,∵PB=PD ,∴四边形ABCD 为平行四边形,∵BD ⊥AC ,∴四边形ABCD 是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y=xx=x4,∴B(4,x4),∴A(4﹣t,x4+t),C(4+t,x4+t),∴(4﹣t)(x4+t)=m,∴t=4﹣x 4,∴C(8﹣x4,4),∴(8﹣x4)×4=n,∴m+n=32,∵点D的纵坐标为x4+2t=x4+2(4﹣x4)=8﹣x4,∴D(4,8﹣x4),∴4(8﹣x4)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)(2018金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形若存在,求该三角形的腰长;若不存在,试说明理由.【考点】LO :四边形综合题.【专题】152:几何综合题.【分析】(1)①只要证明△ACF ∽△GEF ,推出xx xx =xx xx,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D 中线段BC 上时,此时只有GF=GD ,②如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,③如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE 中,DG=GE=6,中Rt △AEG 中,AG=√xx 2+xx 2=6√5,∵EG ∥AC ,∴△ACF ∽△GEF ,∴xx xx =xx xx, ∴xx xx =612=12, ∴FG=13AG=2√5.②如图1中,正方形ACDE 中,AE=ED ,∠AEF=∠DEF=45°,∵EF=EF ,∴△AEF ≌△DEF ,∴∠1=∠2,设∠1=∠2=x ,∵AE ∥BC ,∴∠B=∠1=x ,∵GF=GD ,∴∠3=∠2=x ,在△DBF 中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt △ABC 中,BC=xx xxx30°=12√3.(2)在Rt △ABC 中,AB=√xx 2+xx 2=√122+92=15,如图2中,当点D 中线段BC 上时,此时只有GF=GD ,∵DG ∥AC ,∴△BDG ∽△BCA ,设BD=3x ,则DG=4x ,BG=5x ,∴GF=GD=4x ,则AF=15﹣9x ,∵AE ∥CB ,∴△AEF ∽△BCF ,∴xx xx =xx xx, ∴9−3x 9=15−9x 9x, 整理得:x 2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD 为=4x=4.如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,设AE=3x ,则EG=4x ,AG=5x ,∴FG=DG=12+4x ,∵AE ∥BC ,∴△AEF ∽△BCF ,∴xx xx =xx xx,∴3x 9=9x +129x +27, 解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,过点D 作DH ⊥FG .设AE=3x ,则EG=4x ,AG=5x ,DG=4x+12,∴FH=GH=DGcos ∠DGB=(4x+12)×45=16x +485, ∴GF=2GH=32x +965, ∴AF=GF ﹣AG=7x +965, ∵AC ∥DG ,∴△ACF ∽△GEF ,∴xx xx =xx xx, ∴124x =7x +96532x +965, 解得x=12√147或﹣12√147(舍弃), ∴腰长GD=4x+12=84+48√147, 如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,作DH ⊥AG 于H . 设AE=3x ,则EG=4x ,AG=5x ,DG=4x ﹣12,∴FH=GH=DGcos ∠DGB=16x −485, ∴FG=2FH=32x −965, ∴AF=AG ﹣FG=96−7x 5, ∵AC ∥EG ,∴△ACF ∽△GEF ,∴xx xx =xx xx, ∴124x =96−7x 532x 965,解得x=12√147或﹣12√147(舍弃),∴腰长DG=4x﹣12=−84+48√147,综上所述,等腰三角形△DFG的腰长为4或20或84+48√147或−84+48√147.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
浙江省金华市2010年数学中考试题卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分)(10浙江金华)1. 在 -3,-3, -1, 0 这四个实数中,最大的是( ▲ )A. -3B.-3C. -1D. 0(10浙江金华)2. 据报道,5月28日参观2010上海世博会的人数达35.6万﹒用科学记数法表示数35.6万是( ▲ )A .3.56×101B .3.56×104C .3.56×105D .35.6×104(10浙江金华)3. 在平面直角坐标系中,点P (-1,3)位于( ▲ ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 (10浙江金华)4. 下图所示几何体的主视图是( ▲ ) A. B. C. D. (10浙江金华)5. 小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( ▲ ) A.21B.31 C.61 D.121 (10浙江金华)6.如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为(▲ ) A. 20° B . 40° C . 60° D. 80°(10浙江金华)7. 如果33-=-b a ,那么代数式b a 35+-的值是( ▲ ) A .0 B .2C .5D .8 (10浙江金华) 8. 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( ▲ )A. 最小值 -3B. 最大值-3C. 最小值2D. 最大值2(10浙江金华)9. 如图,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示正确的是( ▲ ) A .a <1<-aB .a <-a <1C .1<-a <aD .-a <a <1(10浙江金华)10. 如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60º,BC =2cm ,则梯形ABCD 的面积为( ▲ )A .33cm2B .6 cm 2(第6题图) AC B OCD 正面 01A(第9题图)(第14题图)AOxy12 -1 -2 -3-11234-4BCA 1C 1B 15 C .36cm2D .12 cm 2卷 Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸相应位的置上. 二、填空题 (本题有6小题,每小题4分,共24分) (10浙江金华)11. 分解因式=-92x ▲ .(10浙江金华)12.分式方程112x =-的解是 ▲ .(10浙江金华)13. 如果半径为3cm 的⊙O 1与半径为4cm 的⊙O 2内切,那么两圆的圆心距O 1O 2= ▲ cm. (10浙江金华)14﹒如图, 在平面直角坐标系中, 若△ABC 与△A 1B 1C 1关于E 点成中心对称, 则对称中心E 点的坐标是 ▲ .(10浙江金华)15若二次函数k x x y ++-=22的部分图象如图所示,则关于x 的一元二次方程022=++-k x x 的一个解31=x ,另一个解=2x ▲ ;(10浙江金华)16. 如图在边长为2的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点, 以O 为圆心,以OE 为半径画弧EF .P 是上的一个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O 的切线,分别交射线AB 于点M ,交直线BC 于点G . 若3=BMBG,则BK ﹦ ▲ .三、解答题 (本题有8小题, 共66分,各小题都必须写出解答过程) (10浙江金华)17.(本题6分)计算:3274cos30°.(10浙江金华)18.(本题6分)如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其他字母),并给出证明. (1)你添加的条件是: ▲ ; (2)证明:y(第15题图)Ox1 3AODBFKE(第16题G MCACBF(10浙江金华)19.(本题6分)在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C 处(如图).现已知风筝A 的引线(线段AC )长20m ,风筝B 的引线(线段BC )长24m ,在C 处测得风筝A 的仰角为60°,风筝B 的仰角为45°. (1)试通过计算,比较风筝A 与风筝B 谁离地面更高?(2)求风筝A 与风筝B 的水平距离.(精确到0.01 m ;参考数据:sin45°≈0.707,cos45°≈0.707, tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)(10浙江金华)20.(本题8分)已知二次函数y =ax 2+bx -3的图象经过点A (2,-3),B (-1,0). (1)求二次函数的解析式;(2)填空:要使该二次函数的图象与x 轴只有一个交点,应把图象沿y 轴向上平移 ▲ 个单位.(10浙江金华) 21.(本题8分)如图,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .(1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ▲ ,CE 的长是 ▲ .(10浙江金华)22.(本题10分)一方有难,八方支援.2010年4月14日青海玉树发生7.1级强烈地震,给玉树人民 造成了巨大的损失﹒灾难发生后,实验中学举行了爱心捐款活动,全校同学纷纷拿出自己 的零花钱, 踊跃捐款支援灾区人民﹒小慧对捐款情况进行了抽样调查,抽取了40名同学 的捐款数据,把数据进行分组、列频数分布表后,绘制了频数分布直方图.图中从左到右各长方形 高度之比为3∶4∶5∶7∶1(如图).40名同学捐款的频数分布直AB 45°60°CED (第19题ACBD(第21题图)E F O12(1)捐款20元这一组的频数是 ▲ ; (2)40名同学捐款数据的中位数是 ▲ ; (3)若该校捐款金额不少于34500 元,请估算该校捐款同学的人数至少有多少名?(10浙江金华)23. (本题10分)已知点P 的坐标为(m ,0),在x 轴上存在点Q (不与P 点重合),以PQ 为边作正方形PQMN ,使点M落在反比例函数y = 2x-的图像上.小明对上述问题进行了探究,发现不论m 取何值,符合上述条件的正方形只有..两个,且一个正方形的顶点M 在第四象限,另一个正方形的顶点M 1在第二象限. (1)如图所示,若反比例函数解析式为y = 2x-,P 点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN ,请你在图中画出符合条件的另一个正方形PQ 1M 1N 1,并写出点M 1的坐标;(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)M 1的坐标是 ▲(2) 请你通过改变P 点坐标,对直线M 1 M 的解析式y ﹦kx +b 进行探究可得 k ﹦ ▲ , 若点P 的坐标为(m ,0)时,则b ﹦ ▲ ;(3) 依据(2)的规律,如果点P 的坐标为(6,0),请你求出点M 1和点M 的坐标.(10浙江金华)24. (本题12分)如图,把含有30°角的三角板ABO 置入平面直角坐标系中,A ,B 两点坐标分别为 (3,0)和(0,.动点P 从A 点开始沿折线AO-OB-BA 运动,点P 在AO ,OB ,BA 上运动的速度分别为12 (长度单位/秒)﹒一直尺的上边缘l 从x 轴的位置开始以33(长度单位/秒)的速度向上平行移动(即移动过程中保持l ∥x 轴),且分别与OB , AB 交于E ,F 两点﹒设动点P 与动直线l 同时出发,运动时间为t 秒,当点P 沿折线(第23题AO -OB -BA 运动一周时,直线l 和动点P 同时停止运动.请解答下列问题:(1)过A ,B 两点的直线解析式是 ▲ ;(2)当t ﹦4时,点P 的坐标为 ▲ ;当t ﹦ ▲ ,点P 与点E 重合; (3)① 作点P 关于直线EF 的对称点P′. 在运动过程中,若形成的四边形PEP′F 为菱形,则t 的值是多少?② 当t ﹦2时,是否存在着点Q ,使得△FEQ ∽△BEP ?若存在, 求出点Q 的坐标;若不存在,请说明理由.浙江省2010年初中毕业生学业考试(金华卷) 数学卷参考答案及评分标准一、二、填空题(本题有6小题,每小题4分,共24分)11.(x -3)(x +3); 12.x =3; 13. 1; 14.(3,-1); 15. -1; 16. 31, 35.(每个2分)三、解答题(本题有8小题,共66分) 17. (本题6分)解:原式﹦1+33-32…………5分(三式化简对1个2分,对2个4分,对3个5分) ﹦1+3.……………………………………………………………………………1分 18.(本题6分)解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中A任选一个即可﹒………………………………2分(2)以DC BD =为例进行证明:∵CF ∥BE , ∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC ﹦∠EDB ,∴△BDE ≌△CDF .…………………4分 19.(本题6分) 解:(1)分别过A ,B 作地面的垂线,垂足分别为D ,E . 在Rt △ADC 中,∵AC ﹦20,∠ACD ﹦60°,∴AD ﹦20×sin 60°﹦103≈17.32m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴BE ﹦24×sin 45°﹦122≈16.97 m∵17.32>16.97∴风筝A 比风筝B 离地面更高. ………………………………………………………3分 (2)在Rt △ADC 中,∵AC ﹦20,∠ACD ﹦60°, ∴DC ﹦20×cos 60°﹦10 m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴EC ﹦BC ≈16.97 m∴EC -DC ≈16.97-10﹦6.97m即风筝A 与风筝B 的水平距离约为6.97m .…………………………………………3分 20. (本题8分)解:(1)由已知,有⎩⎨⎧=---=-+033324b a b a ,即⎩⎨⎧=-=+3024b a b a ,解得⎩⎨⎧-==21b a∴所求的二次函数的解析式为322--=x x y . …………………………………………6分 (2) 4 …………………………………………………………………………………………2分 21. (本题8分)解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90°又∵CE ⊥AB , ∴∠CEB ﹦90° ∴∠2﹦90°-∠A ﹦∠1又∵C 是弧BD 的中点,∴∠1﹦∠A∴∠1﹦∠2,∴ CF ﹦BF ﹒ …………………4分 (2) ⊙O 的半径为5 , CE 的长是524﹒ ………4分(各2分) 22.(本题10分)AB 45°60°CED40名同学捐款情况统计图A C BDEF O12解:(1)14 ………3分 (2)15 …………3分(3) 设该校捐款的同学有x 人 由题意得 15x ≥ 34500 解得 x ≥2300答:该校捐款的同学至少有2300人. ……4分23.(本题10分)解:(1)如图;M 1 的坐标为(-1,2) (2)(2)1-=k ,m b = …………………4分(各2 (3)由(2)知,直线M 1 M 的解析式为+-=x y 则M (x ,y )满足2)6(-=+-⋅x x 解得1131+=x ,1132-=x ∴ 1131-=y ,1132+=y∴M 1,M 的坐标分别为(113-,113+),(113+,113-).……………4分 24.(本题12分)解:(1)333+-=x y ;………4分 (2)(0,3),29=t ;……4分(各2分) (3)①当点P 在线段AO 上时,过F 作FG ⊥x 轴,G ∵FG OE =,FP EP =,∠=EOP ∠=FGP 90° ∴△EOP ≌△FGP ,∴PG OP =﹒又∵t FG OE 33==,∠=A 60°,∴FG AG 60tan 0== 而t AP =,∴t OP -=3,t AG AP PG 32=-=由t t 323=-得 59=t ;………………………………………………………………1分当点P 在线段OB 当点P 在线段BA 上时, 过P 作PH ⊥EF ,PM ⊥OB ,H 、M ∵t OE 33=,∴t BE 3333-=,∴360tan 0BE EF == ∴6921tEF EH MP -===, 又∵)6(2-=t BP 在Rt △BMP 中,MP BP =⋅060cos(图1)即6921)6(2t t -=⋅-,解得745=t .…………………………………………………1分 ②存在﹒理由如下: ∵2=t ,∴332=OE ,2=AP ,1=OP 将△BEP 绕点E 顺时针方向旋转90°,得到 △EC B '(如图3)∵OB ⊥EF ,∴点B '在直线EF 上,C 点坐标为(332,332-1)过F 作FQ ∥C B ',交EC 于点Q ,则△FEQ ∽△EC B '由3=='=QE CE FE E B FE BE ,可得Q 的坐标为(-32,33)………………………1分 根据对称性可得,Q 关于直线EF 的对称点Q '(-32,3)也符合条件.……1分(图3)。
ABCDE12某某省某某市2010年中考数学模拟试卷一、选择题(每小题4分,共32分)1、已知-1<b <0,0<a <1,那么代数式a +b ,a -b ,a +b 2,a 2+b 中,对任意的a 、b ,对应的代数式的值最大的是 ( ) A 、a +b B 、a -b C 、a +b 2 D 、a 2+b2、33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是( ) A 、41 B 、39 C 、31 D 、293、已知a 、b 、c为的三边,且满足,则的形状为( )A 、直角三角形B 、等腰直角三角形C 、直角三角形或等腰三角形D 、等腰三角形4、如图,△ABC 中,D 是AB 上一点,AD ∶BD =3∶4, E 是BC 上一点,如BD =DC ,∠1=∠2,则S △ADC ∶S △DEB = ( ) A 、 7∶4 B 、9∶16 C 、 5∶4 D 、7∶35、某企业有甲、乙两个长方体的蓄水池,将甲水池中的水以每小时6立方米的速度注入乙y (米)与注水时间x (时)之间的( )323 5339 113413 15 1719A BCO E F DC 、 0.6小时D 、 1小时6、如图,△ABC 的三边分别为a 、b 、c ,O 是△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,则OD ∶OE ∶OF = ( ) A 、a ∶b ∶c B 、a 1∶b 1∶c1 C 、cosA ∶cosB ∶cosC D 、 sinA ∶sinB ∶sinC7、如图,某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口A 、B 、Cx 1、x 2、x 3分别表示该时段单位AB 、BC 、CA 的机动车辆数,(假设单位时间( )A 、x 1>x 2>x 3B 、x 1>x 3>x 2C 、x 2>x 3>x 1D 、x 3>x 2>x 18、如图,Rt △APC 的顶点A 、P 在反比例函数y =x1的图像上, 已知P 的坐标为(1,1),tanA =n1(n ≥2的自然数); 当n =2、3、4……2010时,A 的横坐标相应为a 2、a 3、 a 4、……a 2010,则21a +31a +41a +……+20101a = ( )A 、20210541B 、2021054C 、2022060D 、20101二、填空题(每小题5分,共30分)9、某超市购进了一批不同价格的皮鞋,下表是该市近几年统计的平均数据,要使该超市销售皮鞋收入最大,该超市应 多购进单价▲元的皮鞋。
浙江省金华市中考数学试卷带答案含答案解析版 It was last revised on January 2, 20212018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,﹣12,﹣1四个数中,最小的数是( ) A .0 B .1 C .−12 D .﹣12.计算(﹣a )3÷a 结果正确的是( )A .a 2B .﹣a 2C .﹣a 3D .﹣a 43.如图,∠B 的同位角可以是( )A .∠1B .∠2C .∠3D .∠44.若分式x−3x+3的值为0,则x 的值为( ) A .3 B .﹣3 C .3或﹣3 D .05.一个几何体的三视图如图所示,该几何体是( )A .直三棱柱B .长方体C .圆锥D .立方体6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .7127.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( )A .(5,30)B .(8,10)C .(9,10)D .(10,10)8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tanαtanβB .sinβsinαC .sinαsinβD .cosβcosα9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.化简(x﹣1)(x+1)的结果是.12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.对于两个非零实数x,y,定义一种新的运算:x*y=ax+by.若1*(﹣1)=2,则(﹣2)*2的值是.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则ABBC的值是.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.18.解不等式组:{x3+2<x2x+2≥3(x−1)19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20(8分)(2018?金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O的半径.22.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值最大值是多少(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数y=mx与y=nx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018?金华)在0,1,﹣12,﹣1四个数中,最小的数是( ) A .0 B .1 C .−12 D .﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣12<0<1, ∴最小的数是﹣1,故选:D .【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2018?金华)计算(﹣a )3÷a 结果正确的是( )A .a 2B .﹣a 2C .﹣a 3D .﹣a 4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a )3÷a=﹣a 3÷a=﹣a 3﹣1=﹣a 2,故选:B .【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)(2018?金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)(2018?金华)若分式x−3x+3的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)(2018?金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱 B.长方体C.圆锥D.立方体【考点】U3:由三视图判断几何体.【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A .【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)(2018?金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .712【考点】X5:几何概率.【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为90360=14, 即转动圆盘一次,指针停在黄区域的概率是14, 故选:B .【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)(2018?金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( )A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)(2018?金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tanαtanβB.sinβsinαC.sinαsinβD.cosβcosα【考点】T8:解直角三角形的应用.【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinβsinα,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)(2018?金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)(2018?金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B 、观察函数图象,可知:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确;C 、设当x ≥25时,y A =kx +b ,将(25,30)、(55,120)代入y A =kx +b ,得:{25k +b =3055k +b =120,解得:{k =3b =−45, ∴y A =3x ﹣45(x ≥25),当x=35时,y A =3x ﹣45=60>50,∴每月上网时间为35h 时,选择B 方式最省钱,结论C 正确;D 、设当x ≥50时,y B =mx +n ,将(50,50)、(55,65)代入y B =mx +n ,得:{50m +n =5055m +n =65,解得:{m =3n =−100, ∴y B =3x ﹣100(x ≥50),当x=70时,y B =3x ﹣100=110<120,∴结论D 错误.故选:D .【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018?金华)化简(x ﹣1)(x +1)的结果是 x 2﹣1 .【考点】4F :平方差公式.【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x 2﹣1,故答案为:x 2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)(2018?金华)如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是 AC=BC .【考点】KB :全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC ,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC ,然后再添加AC=BC 可利用AAS 判定△ADC ≌△BEC .【解答】解:添加AC=BC ,∵△ABC 的两条高AD ,BE ,∴∠ADC=∠BEC=90°,∴∠DAC +∠C=90°,∠EBC +∠C=90°,∴∠EBC=∠DAC ,在△ADC 和△BEC 中{∠BEC =∠ADC∠EBC =∠DAC AC =BC,∴△ADC ≌△BEC (AAS ),故答案为:AC=BC .【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)(2018?金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是%.【考点】W5:众数.【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是%、%、%、%、%,则这5年增长速度的众数是%,故答案为:%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)(2018?金华)对于两个非零实数x,y,定义一种新的运算:x*y=ax+by.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【考点】2C:实数的运算.【专题】11 :计算题;36 :整体思想.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴a1+b−1=2即a﹣b=2∴原式=a−2+b2=−12(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)(2018?金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则AB BC 的值是 √2+14 . 【考点】LB :矩形的性质;IM :七巧板.【专题】556:矩形 菱形 正方形.【分析】设七巧板的边长为x ,根据正方形的性质、矩形的性质分别表示出AB ,BC ,进一步求出AB BC的值. 【解答】解:设七巧板的边长为x ,则AB=12x +√22x , BC=12x +x +12x=2x , AB BC =12x+√22x 2x =√2+14. 故答案为:√2+14. 【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB ,BC 的长.16.(4分)(2018?金华)如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm ,∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1,C 1的距离为 30√3 cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 10√5﹣10 cm .【考点】M3:垂径定理的应用;KU :勾股定理的应用;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是B1AC1̂的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15√3,∴B1C1=30√3∴弓臂两端B1,C1的距离为30√3(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=120π30 180,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2=2−202√5∴D1D2=10√10.故答案为30√10√10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018?金华)计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2√+1﹣4×√22+2=2√2+1﹣2√2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)(2018?金华)解不等式组:{x3+2<x2x+2≥3(x−1)【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式x3+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2018?金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)(2018?金华)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)(2018?金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O的半径.【考点】ME:切线的判定与性质;T7:解直角三角形.【专题】55A:与圆有关的位置关系.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB=√42+82=4√5,∴OA=4√5﹣r,在Rt△ACD中,tan∠1=tanB=1 2,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4√5﹣r)2=r2+20,解得:r=3√5 2.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)(2018?金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A (t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值最大值是多少(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣14t2+52t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD 的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣1 4,抛物线的函数表达式为y=﹣14x2+52x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣14t2+52t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣14t2+52t)]=﹣12t 2+t +20 =﹣12(t ﹣1)2+412, ∵﹣12<0, ∴当t=1时,矩形ABCD 的周长有最大值,最大值为412; (3)如图,当t=2时,点A 、B 、C 、D 的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD 对角线的交点P 的坐标为(5,2),当平移后的抛物线过点A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分;当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分;∴当G 、H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形的面积平分, 当点G 、H 分别落在线段AB 、DC 上时,直线GH 过点P 必平分矩形ABCD 的面积, ∵AB ∥CD ,∴线段OD 平移后得到的线段GH ,∴线段OD 的中点Q 平移后的对应点是P ,在△OBD 中,PQ 是中位线,∴PQ=12OB=4, 所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)(2018?金华)如图,四边形ABCD的四个顶点分别在反比例函数y=m x与y=nx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,m4),进而得出A(4﹣t,m4+t),即:(4﹣t)(m4+t)=m,即可得出点D(4,8﹣m4),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=4 x ,当x=4时,y=1,∴B(4,1),当y=2时,∴2=4x,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴{2k +b =24k +b =1, ∴{k =−12b =3, ∴直线AB 的解析式为y=﹣12x +3; ②四边形ABCD 是菱形,理由如下:如图2,由①知,B (4,1),∵BD ∥y 轴,∴D (4,5),∵点P 是线段BD 的中点,∴P (4,3),当y=3时,由y=4x 得,x=43, 由y=20x 得,x=203, ∴PA=4﹣43=83,PC=203﹣4=83, ∴PA=PC ,∵PB=PD ,∴四边形ABCD 为平行四边形,∵BD ⊥AC ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,∴PA=PB=PC=PD ,(设为t ,t ≠0),当x=4时,y=m x =m 4, ∴B (4,m 4),∴A (4﹣t ,m 4+t ),C (4+t ,m 4+t ), ∴(4﹣t )(m 4+t )=m , ∴t=4﹣m 4, ∴C (8﹣m 4,4), ∴(8﹣m 4)×4=n , ∴m +n=32,∵点D 的纵坐标为m 4+2t=m 4+2(4﹣m 4)=8﹣m 4, ∴D (4,8﹣m 4), ∴4(8﹣m 4)=n , ∴m +n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键.24.(12分)(2018?金华)在Rt △ABC 中,∠ACB=90°,AC=12.点D 在直线CB 上,以CA ,CD 为边作矩形ACDE ,直线AB 与直线CE ,DE 的交点分别为F ,G .(1)如图,点D 在线段CB 上,四边形ACDE 是正方形.①若点G 为DE 中点,求FG 的长.②若DG=GF ,求BC 的长.(2)已知BC=9,是否存在点D ,使得△DFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【考点】LO :四边形综合题.【专题】152:几何综合题.【分析】(1)①只要证明△ACF∽△GEF,推出FGAF=EGAC,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG=√AE2+EG2=6√5,∵EG∥AC,∴△ACF∽△GEF,∴FGAF=EGAC,∴FGAF=612=12,∴FG=13AG=2√5.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC=ACtan30°=12√3.(2)在Rt△ABC中,AB=√AC2+BC22+92,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴AEBC=AFBF,∴9−3x9=15−9x9x,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴AE BC =AF BF, ∴3x 9=9x+129x+27, 解得x=2或﹣2(舍弃),∴腰长DG=4x +12=20.如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,过点D 作DH ⊥FG .设AE=3x ,则EG=4x ,AG=5x ,DG=4x +12,∴FH=GH=DG?cos ∠DGB=(4x +12)×45=16x+485,∴GF=2GH=32x+965,∴AF=GF ﹣AG=7x+965,∵AC ∥DG ,∴△ACF ∽△GEF ,∴AC EG =AF FG ,∴124x =7x+96532x+965,解得x=12√147或﹣12√147(舍弃),∴腰长GD=4x +12=84+48√147,如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,作DH ⊥AG 于H . 设AE=3x ,则EG=4x ,AG=5x ,DG=4x ﹣12,∴FH=GH=DG?cos ∠DGB=16x−485,∴FG=2FH=32x−965,∴AF=AG ﹣FG=96−7x 5,∵AC ∥EG ,∴△ACF ∽△GEF ,∴AC EG =AF FG, ∴124x =96−7x 532x−965, 解得x=12√147或﹣12√147(舍弃), ∴腰长DG=4x ﹣12=−84+48√147, 综上所述,等腰三角形△DFG 的腰长为4或20或84+48√147或−84+48√147. 【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
浙江省金华市中考数学试卷带答案含答案解析版 Updated by Jack on December 25,2020 at 10:00 am2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,﹣12,﹣1四个数中,最小的数是( ) A .0 B .1 C .−12 D .﹣12.计算(﹣a )3÷a 结果正确的是( )A .a 2B .﹣a 2C .﹣a 3D .﹣a 43.如图,∠B 的同位角可以是( )A .∠1B .∠2C .∠3D .∠44.若分式x−3x+3的值为0,则x 的值为( ) A .3 B .﹣3 C .3或﹣3 D .05.一个几何体的三视图如图所示,该几何体是( )A .直三棱柱B .长方体C .圆锥D .立方体6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .712 7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( )A .(5,30)B .(8,10)C .(9,10)D .(10,10)8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tanαtanβB .sinβsinα C .sinαsinβ D .cosβcosα9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A.55°B.60°C.65°D.70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.化简(x﹣1)(x+1)的结果是.12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.对于两个非零实数x,y,定义一种新的运算:x*y=ax+by.若1*(﹣1)=2,则(﹣2)*2的值是.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则ABBC的值是.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.18.解不等式组:{x3+2<x2x+2≥3(x−1)19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20(8分)(2018?金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O的半径.22.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值最大值是多少(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数y=mx与y=nx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018?金华)在0,1,﹣12,﹣1四个数中,最小的数是()A.0 B.1 C.−12D.﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣12<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2018?金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)(2018?金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)(2018?金华)若分式x−3x+3的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0 【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)(2018?金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱 B.长方体C.圆锥D.立方体【考点】U3:由三视图判断几何体.【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)(2018?金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .712 【考点】X5:几何概率.【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为90360=14, 即转动圆盘一次,指针停在黄区域的概率是14, 故选:B .【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)(2018?金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( )A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)(2018?金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tanαtanβB.sinβsinαC.sinαsinβD.cosβcosα【考点】T8:解直角三角形的应用.【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinβsinα,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)(2018?金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)(2018?金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D 、利用待定系数法求出:当x ≥50时,y B 与x 之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B 的值,将其与120比较后即可得出结论D 错误.综上即可得出结论.【解答】解:A 、观察函数图象,可知:每月上网时间不足25 h 时,选择A 方式最省钱,结论A 正确;B 、观察函数图象,可知:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确;C 、设当x ≥25时,y A =kx +b ,将(25,30)、(55,120)代入y A =kx +b ,得:{25k +b =3055k +b =120,解得:{k =3b =−45, ∴y A =3x ﹣45(x ≥25),当x=35时,y A =3x ﹣45=60>50,∴每月上网时间为35h 时,选择B 方式最省钱,结论C 正确;D 、设当x ≥50时,y B =mx +n ,将(50,50)、(55,65)代入y B =mx +n ,得:{50m +n =5055m +n =65,解得:{m =3n =−100, ∴y B =3x ﹣100(x ≥50),当x=70时,y B =3x ﹣100=110<120,∴结论D 错误.故选:D .【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018?金华)化简(x﹣1)(x+1)的结果是x2﹣1.【考点】4F:平方差公式.【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)(2018?金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【考点】KB:全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC ,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC ,然后再添加AC=BC 可利用AAS 判定△ADC ≌△BEC .【解答】解:添加AC=BC ,∵△ABC 的两条高AD ,BE ,∴∠ADC=∠BEC=90°,∴∠DAC +∠C=90°,∠EBC +∠C=90°,∴∠EBC=∠DAC ,在△ADC 和△BEC 中{∠BEC =∠ADC∠EBC =∠DAC AC =BC,∴△ADC ≌△BEC (AAS ),故答案为:AC=BC .【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)(2018?金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 % .【考点】W5:众数.【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是%、%、%、%、%,则这5年增长速度的众数是%,故答案为:%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)(2018?金华)对于两个非零实数x ,y ,定义一种新的运算:x*y=a x +b y.若1*(﹣1)=2,则(﹣2)*2的值是 ﹣1 . 【考点】2C :实数的运算.【专题】11 :计算题;36 :整体思想.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴a 1+b −1=2 即a ﹣b=2∴原式=a −2+b 2=−12(a ﹣b )=﹣1 故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)(2018?金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则AB BC 的值是 √2+14.【考点】LB :矩形的性质;IM :七巧板.【专题】556:矩形 菱形 正方形.【分析】设七巧板的边长为x ,根据正方形的性质、矩形的性质分别表示出AB ,BC ,进一步求出ABBC 的值. 【解答】解:设七巧板的边长为x ,则AB=12x +√22x , BC=12x +x +12x=2x , ABBC =12x+√22x 2x =√2+14. 故答案为:√2+14. 【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB ,BC 的长.16.(4分)(2018?金华)如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30√3cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10√5﹣10cm.【考点】M3:垂径定理的应用;KU:勾股定理的应用;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30̂的圆心,∴D1是B1AC1∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15√3,∴B1C1=30√3∴弓臂两端B1,C1的距离为30√3(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=120π30 180,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2=√302−202=10√5∴D1D2=10√5﹣10.故答案为30√3,10√5﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018?金华)计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2√1﹣4×√22+2=2√2+1﹣2√2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)(2018?金华)解不等式组:{x3+2<x2x+2≥3(x−1)【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式x3+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2018?金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)(2018?金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)(2018?金华)如图,在Rt△ABC中,点O在斜边AB上,以O 为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O的半径.【考点】ME:切线的判定与性质;T7:解直角三角形.【专题】55A:与圆有关的位置关系.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB=√42+82=4√5,∴OA=4√5﹣r,在Rt△ACD中,tan∠1=tanB=1 2,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4√5﹣r)2=r2+20,解得:r=3√5 2.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)(2018?金华)如图,抛物线y=ax 2+bx (a <0)过点E (10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A (t ,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值最大值是多少(3)保持t=2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.【考点】HF :二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.【分析】(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t ,据此知AB=10﹣2t ,再由x=t 时AD=﹣14t 2+52t ,根据矩形的周长公式列出函数解析式,配方成顶点式即可得; (3)由t=2得出点A 、B 、C 、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P ,根据AB ∥CD 知线段OD 平移后得到的线段是GH ,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax (x ﹣10),∵当t=2时,AD=4,∴点D 的坐标为(2,4),∴将点D 坐标代入解析式得﹣16a=4,解得:a=﹣14,抛物线的函数表达式为y=﹣14x 2+52x ;(2)由抛物线的对称性得BE=OA=t ,∴AB=10﹣2t ,当x=t 时,AD=﹣14t 2+52t ,∴矩形ABCD 的周长=2(AB +AD )=2[(10﹣2t )+(﹣14t 2+52t )]=﹣12t 2+t +20=﹣12(t ﹣1)2+412,∵﹣12<0,∴当t=1时,矩形ABCD 的周长有最大值,最大值为412;(3)如图,当t=2时,点A 、B 、C 、D 的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD 对角线的交点P 的坐标为(5,2),当平移后的抛物线过点A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分;当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分;∴当G 、H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形的面积平分,当点G 、H 分别落在线段AB 、DC 上时,直线GH 过点P 必平分矩形ABCD 的面积,∵AB ∥CD ,∴线段OD 平移后得到的线段GH ,∴线段OD 的中点Q 平移后的对应点是P ,在△OBD 中,PQ 是中位线,∴PQ=12OB=4, 所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)(2018?金华)如图,四边形ABCD的四个顶点分别在反比例函数y=mx与y=nx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B (4,m 4),进而得出A (4﹣t ,m 4+t ),即:(4﹣t )(m 4+t )=m ,即可得出点D (4,8﹣m 4),即可得出结论. 【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=4x ,当x=4时,y=1,∴B (4,1),当y=2时,∴2=4x ,∴x=2,∴A (2,2),设直线AB 的解析式为y=kx +b ,∴{2k +b =24k +b =1,∴{k =−12b =3,∴直线AB 的解析式为y=﹣12x +3;②四边形ABCD 是菱形,理由如下:如图2,由①知,B (4,1), ∵BD ∥y 轴,∴D (4,5),∵点P 是线段BD 的中点,∴P (4,3),当y=3时,由y=4x 得,x=43,由y=20x 得,x=203, ∴PA=4﹣43=83,PC=203﹣4=83, ∴PA=PC ,∵PB=PD ,∴四边形ABCD 为平行四边形,∵BD ⊥AC ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,∴PA=PB=PC=PD ,(设为t ,t ≠0),当x=4时,y=m x =m 4, ∴B (4,m 4), ∴A (4﹣t ,m 4+t ),C (4+t ,m 4+t ), ∴(4﹣t )(m 4+t )=m , ∴t=4﹣m 4, ∴C (8﹣m 4,4), ∴(8﹣m 4)×4=n , ∴m +n=32,∵点D 的纵坐标为m 4+2t=m 4+2(4﹣m 4)=8﹣m 4, ∴D (4,8﹣m 4), ∴4(8﹣m 4)=n ,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)(2018?金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)①只要证明△ACF∽△GEF,推出FGAF=EGAC,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE 中,DG=GE=6,中Rt △AEG 中,AG=√AE 2+EG 2=6√5,∵EG ∥AC ,∴△ACF ∽△GEF ,∴FG AF =EG AC, ∴FG AF =612=12, ∴FG=13AG=2√5.②如图1中,正方形ACDE 中,AE=ED ,∠AEF=∠DEF=45°,∵EF=EF ,∴△AEF ≌△DEF ,∴∠1=∠2,设∠1=∠2=x ,∵AE ∥BC ,∴∠B=∠1=x ,∵GF=GD ,∴∠3=∠2=x ,在△DBF 中,∠3+∠FDB +∠B=180°,∴x +(x +90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt △ABC 中,BC=AC tan30°=12√3.(2)在Rt △ABC 中,AB=√AC 2+BC 2=√122+92=15,如图2中,当点D 中线段BC 上时,此时只有GF=GD ,∵DG ∥AC ,∴△BDG ∽△BCA ,设BD=3x ,则DG=4x ,BG=5x ,∴GF=GD=4x ,则AF=15﹣9x ,∵AE ∥CB ,∴△AEF ∽△BCF ,∴AE BC =AF BF, ∴9−3x 9=15−9x 9x, 整理得:x 2﹣6x +5=0,解得x=1或5(舍弃)∴腰长GD 为=4x=4.如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,设AE=3x ,则EG=4x ,AG=5x ,∴FG=DG=12+4x ,∵AE ∥BC ,∴△AEF ∽△BCF ,∴AE BC =AF BF, ∴3x 9=9x+129x+27, 解得x=2或﹣2(舍弃),∴腰长DG=4x +12=20.如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,过点D 作DH ⊥FG .设AE=3x ,则EG=4x ,AG=5x ,DG=4x +12,∴FH=GH=DG?cos ∠DGB=(4x +12)×45=16x+485, ∴GF=2GH=32x+965, ∴AF=GF ﹣AG=7x+965, ∵AC ∥DG ,∴△ACF ∽△GEF ,∴AC EG =AF FG, ∴124x =7x+96532x+965, 解得x=12√147或﹣12√147(舍弃), ∴腰长GD=4x +12=84+48√147, 如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,作DH ⊥AG 于H .设AE=3x ,则EG=4x ,AG=5x ,DG=4x ﹣12,∴FH=GH=DG?cos ∠DGB=16x−485, ∴FG=2FH=32x−965, ∴AF=AG ﹣FG=96−7x 5, ∵AC ∥EG ,∴△ACF ∽△GEF ,∴AC EG =AF FG ,∴124x =96−7x 532x−965, 解得x=12√147或﹣12√147(舍弃), ∴腰长DG=4x ﹣12=−84+48√147, 综上所述,等腰三角形△DFG 的腰长为4或20或84+48√147或−84+48√147.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.初数4的相反数是()A. B. -4 C. D. 4【答案】 B【考点】相反数及有理数的相反数【解析】【解答】∵4的相反数是-4.故答案为:B.【分析】反数:数值相同,符号相反的两个数,由此即可得出答案.2.计算a6÷a3,正确的结果是()A. 2B. 3aC. a2D. a3【答案】 D【考点】同底数幂的除法【解析】【解答】解:a6÷a3=a6-3=a3故答案为:D.【分析】同底数幂除法:底数不变,指数相减,由此计算即可得出答案.3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 8【答案】 C【考点】三角形三边关系【解析】【解答】解:∵三角形三边长分别为:a,3,5,∴a的取值范围为:2<a<8,∴a的所有可能取值为:3,4,5,6,7.故答案为:C.【分析】三角形三边的关系:两边之和大于第三边,两边之差小于第三边,由此得出a的取值范围,从而可得答案.4.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】 C【考点】极差、标准差【解析】【解答】解:依题可得:星期一:10-3=7(℃),星期二:12-0=12(℃),星期三:11-(-2)=13(℃),星期四:9-(-3)=12(℃),∵7<12<13,∴这四天中温差最大的是星期三.故答案为:C.【分析】根据表中数据分别计算出每天的温差,再比较大小,从而可得出答案.5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.【答案】 A【考点】等可能事件的概率【解析】【解答】解:依题可得:布袋中一共有球:2+3+5=10(个),∴搅匀后任意摸出一个球,是白球的概率P= .故答案为:A.【分析】结合题意求得布袋中球的总个数,再根据概率公式即可求得答案.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南75°方向5km处【答案】 D【考点】钟面角、方位角【解析】【解答】解:依题可得:90°÷6=15°,∴15°×5=75°,∴目标A的位置为:南偏东75°方向5km处.故答案为:D.【分析】根据题意求出角的度数,再由图中数据和方位角的概念即可得出答案.7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=1【答案】 A【考点】配方法解一元二次方程【解析】【解答】解:∵x2-6x-8=0,∴x2-6x+9=8+9,∴(x-3)2=17.故答案为:A.【分析】根据配方法的原则:①二次项系数需为1,②加上一次项系数一半的平方,再根据完全平方公式即可得出答案.8.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A. ∠BDC=∠αB. BC=m·tanαC. AO=D. BD=【答案】 C【考点】锐角三角函数的定义【解析】【解答】解:A.∵矩形ABCD,∴AB=DC,∠ABC=∠DCB=90°,又∵BC=CB,∴△ABC≌△DCB(SAS),∴∠BDC=∠BAC=α,故正确,A不符合题意;B.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴tanα= ,∴BC=AB·tanα=mtanα,故正确,B不符合题意;C.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴cosα= ,∴AC= = ,∴A O= AC=故错误,C符合题意;D.∵矩形ABCD,∴AC=BD,由C知AC= = ,∴BD=AC= ,故正确,D不符合题意;故答案为:C.【分析】A.由矩形性质和全等三角形判定SAS可得△ABC≌△DCB,根据全等三角形性质可得∠BDC=∠BAC=α,故A正确;B.由矩形性质得∠ABC=90°,在Rt△ABC中,根据正切函数定义可得BC=AB·tanα=mtanα,故正确;C.由矩形性质得∠ABC=90°,在Rt△ABC中,根据余弦函数定义可得AC= = ,再由AO=AC即可求得AO长,故错误;D.由矩形性质得AC=BD,由C知AC= = ,从而可得BD长,故正确;9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.【答案】 D【考点】圆锥的计算【解析】【解答】解:设BD=2r,∵∠A=90°,∴AB=AD= r,∠ABD=45°,∵上面圆锥的侧面积S= ·2πr· r=1,∴r2= ,又∵∠ABC=105°,∴∠CBD=60°,又∵CB=CD,∴△CBD是边长为2r的等边三角形,∴下面圆锥的侧面积S= ·2πr·2r=2πr2=2π× = .故答案为:D.【分析】设BD=2r,根据勾股定理得AB=AD= r,∠ABD=45°,由圆锥侧面积公式得·2πr· r=1,求得r2= ,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. -1 C. D.【答案】 A【考点】剪纸问题【解析】【解答】解:设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,如图,依题可得:NM= a,FM=GN= ,∴NO= = ,∴GO= = ,∵正方形EFGH与五边形MCNGF的面积相等,∴x2= + a2,∴a= x,∴ = = .故答案为:A.【分析】设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,根据题意可得,NM=a,FM=GN= ,NO= = ,根据勾股定理得GO= ,由题意建立方程x2= + a2,解之可得a= x,由,将a= x代入即可得出答案.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x-6≤9的解是________.【答案】x≤5【考点】解一元一次不等式【解析】【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.12.数据3,4,10,7,6的中位数是________.【答案】 6【考点】中位数【解析】【解答】解:将这组数据从小到大排列为:3,4,6,7,10,∴这组数据的中位数为:6.故答案为:6.【分析】中位数:将一组数据从小到大排列或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;由此即可得出答案.13.当x=1,y= 时,代数式x2+2xy+y2的值是________.【答案】【考点】代数式求值【解析】【解答】解:∵x=1,y=- ,∴x2+2xy+y2=(x+y)2=(1- )2= .故答案为:.【分析】先利用完全平方公式合并,再将x、y值代入、计算即可得出答案.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。
2006年浙江省金华市初中毕业生学业水平考试数学试卷考生须知:1.全卷共三大题,24小题,满分为150分。
考试时间为100分钟。
本次考试采用开卷形式。
2.全卷分试卷Ⅰ(选择题)和试卷Ⅱ(非选择题)两部分。
试卷Ⅰ的答案必须填涂在“答题卡”上;试卷Ⅱ的答案必须做在“试卷Ⅱ答题卷”的相应位置上。
3.请用钢笔或圆珠笔在“答题卡”上先填写姓名和准考证号,再用2B铅笔将准考证号和考试科目对应的方框涂黑、涂满。
4.用钢笔或圆珠笔在“试卷Ⅱ答题卷”密封区内填写县(市、区)、学校、姓名和准考证号。
试卷I说明:本卷共有一大题,10小题。
一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1.当x=1时,代数式2x+5的值为()A.3 B.5 C.7 D.-22.直角坐标系中,点P(1,4)在()A.第一象限B.第二象限C.第三象限D.第四象限3.我省各级人民政府非常关注“三农问题”。
截止到2005年底,我省农村居民人均纯收入已连续二十一年位居全国各省区首位,据省统计局公布的数据,2005年底我省农村居民人均收入约6600元,用科学记数法表示应记为()A.0.66×104B.6.6×103C.66×102D.6.6×1044.下图所示的几何体的主视图是()5.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是()6.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是()A .相离B .外切C .内切D .相交7.不等式组⎨⎧≤≥+4235x x 的解是( ) A .-2≤x ≤2 B .x ≤2 C .x ≥-2 D .x <2 8.将叶片图案旋转180°后,得到的图形是( )9.下图能说明∠1>∠2的是( )10.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论:①a >0; ②c >0; ③b 2-4a c >0,其中正确的个数是( ) A .0个 B .1个 C .2个 D .3个试卷II说明:本卷共有两大题,14小题,共110分。
2010年部分省市中考数学试题分类汇编 压轴题(二)1. (金华卷)如图,把含有30°角的三角板ABO 置入平面直角坐标系中,A ,B 两点坐标分别为(3,0)和(0,.动点P 从A 点开始沿折线AO-OB-BA 运动,点P 在AO ,OB ,BA 上运动的速度分别为12 (长度单位/秒)﹒一直尺的上边缘l 从x 轴的位置开始以33(长度单位/秒)的速度向上平行移动(即移动过程中保持l ∥x 轴),且分别与OB ,AB 交于E ,F 两点﹒设动点P 与动直线l 同时出发,运动时间为t 秒,当点P 沿折线AO -OB -BA 运动一周时,直线l 和动点P 同时停止运动. 请解答下列问题:(1)过A ,B 两点的直线解析式是 ▲ ;(2)当t ﹦4时,点P 的坐标为 ▲ ;当t ﹦ ▲ ,点P 与点E 重合;(3)① 作点P 关于直线EF 的对称点P′. 在运动过程中,若形成的四边形PEP′F 为菱形,则t 的值是多少?② 当t ﹦2时,是否存在着点Q ,使得△FEQ ∽△BEP ?若存在, 求出点Q 的坐标;若不存在,请说明理由.解:(1)333+-=x y;………4分 (2)(0,3),29=t; (4)(3)①当点P 在线段AO 上时,过F 作FG ⊥x 轴,G 为垂足(如图1∵FGOE=,FPEP=,∠=EOP∠=FGP 90°∴△EOP ≌△FGP ,∴PGOP=﹒又∵tFG OE33==,∠=A60°,∴tFGAG3160tan 0==而tAP =,∴tOP-=3,tAG AP PG32=-=由tt323=-得59=t ;…………………1分当点P 在线段OB 上时,形成的是三角形,不存在菱形; 当点P 在线段BA 上时,过P 作PH ⊥EF ,PM ⊥OB ,H 、M 分别为垂足(如图2) ∵tOE33=,∴tBE3333-=,∴3360tan 0t BE EF-==∴6921t EF EH MP-===, 又∵)6(2-=t BP在Rt △BMP 中,MPBP =⋅060cos即6921)6(2t t -=⋅-,解得745=t. (1)分②存在﹒理由如下:∵2=t,∴332=OE,2=AP,1=OP将△BEP 绕点E 顺时针方向旋转90°,得到 △EC B '(如图3)∵OB ⊥EF ,∴点B '在直线EF 上,C 点坐标为(332,332-1)过F 作FQ ∥C B ',交EC 于点Q ,则△FEQ ∽△EC B ' 由3=='=QECE FEE B FEBE ,可得Q 的坐标为(-32,33) (1)分根据对称性可得,Q 关于直线EF 的对称点Q '(-32,3)也符合条件.……1分2.( 绍兴市)如图,设抛物线C 1:()512-+=x a y , C 2:()512+--=x a y ,C 1与C 2的交点为A , B ,点A 的坐标是)4,2(,点B 的横坐标是-2. (1)求a 的值及点B 的坐标;(2)点D 在线段AB 上,过D 作x 轴的垂线,垂足为点H ,在DH 的右侧作正三角形DHG . 记过C 2顶点M的 直线为l ,且l 与x 轴交于点N .① 若l 过△DHG 的顶点G ,点D 的坐标为 (1, 2),求点N 的横坐标;② 若l 与△DHG 的边DG 相交,求点N 的横 坐标的取值范围.解:(1)∵ 点A )4,2(在抛物线C 1上,∴ 把点A 坐标代入()512-+=x a y 得 a =1.∴ 抛物线C 1的解析式为422-+=x x y ,设B (-2,b ), ∴ b =-4, ∴ B (-2,-4) . (2)①如图1,y第24题图∵ M (1, 5),D (1, 2), 且DH ⊥x 轴,∴ 点M 在DH 上,MH =5. 过点G 作GE ⊥DH ,垂足为E,由△DHG 是正三角形,可得EG=3, EH =1, ∴ ME =4. 设N ( x , 0 ), 则 NH =x -1, 由△MEG ∽△MHN ,得 HNEG MHME =,∴1354-=x , ∴ =x 1345+,∴ 点N 的横坐标为1345+.② 当点D移到与点A 重合时,如图2,直线l 与DG 交于点G ,此时点N的横坐标最大. 过点G,M作x 轴的垂线,垂足分别为点Q,F , 设N(x ,0),∵ A (2, 4), ∴ G (322+, 2),∴ NQ =322--x ,NF =1-x , GQ =2, MF =5. ∵ △NGQ ∽△NMF , ∴ MFGQ NFNQ =,∴521322=---x x ,∴ 38310+=x .当点D 移到与点B 重合时,如图3, 直线l 与DG 交于点D ,即点B , 此时点N 的横坐标最小.∵ B (-2, -4), ∴ H (-2, 0), D (-2, -4), 设N (x ,0),∵ △BHN ∽△MFN , ∴ MFBH FN NH =,∴5412=-+xx , ∴ 32-=x .∴ 点N 横坐标的范围为 32-≤x ≤38310+.第24题图3图4第24题图1第24题图23. (丽水市卷)△ABC 中,∠A =∠B =30°,AB=把△ABC 放在平面直角坐标系中,使AB的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转. (1) 当点B2B 的横坐标;(2) 如果抛物线2ya xb x c=++(a ≠0)的对称轴经过点C① 当4a=12b=-,5c =-A ,B 两点是否都在这条抛物线上?并说明理由;② 设b =-2am ,是否存在这样的m 的值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 若不存在,请说明理由.解:ta n 3013O C O B =⨯︒==.……1分由此,可求得点C 的坐标为55), ……1分点A 的坐标为(5-5),∵ A ,B 两点关于原点对称, ∴ 点B 的坐标为55-).将点A 的横坐标代入(*)5,即等于点A 的纵坐标;将点B 的横坐标代入(*)式右边,计算得5-,即等于点B 的纵坐标.∴ 在这种情况下,A ,B 两点都在抛物线上.……2分情况2:设点C 在第四象限(如图乙),则点C 的坐标为55),点A 的坐标为55),点B 的坐标为(5-5-).经计算,A ,B 两点都不在这条抛物线上. ……1分 (情况2另解:经判断,如果A ,B 两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A ,B 两点不可能都在这条抛物线上) ② 存在.m 的值是1或-1. ……2分 (22()ya x m a mc=--+,因为这条抛物线的对称轴经过点C ,所以-1≤m ≤1.当m =±1时,点C 在x 轴上,此时A ,B 两点都在y 轴上.因此当m =±1时,A ,B 两点不可能(甲)(乙)(第24题)同时在这条抛物线上)4.(益阳市)如图9,在平面直角坐标系中,已知A 、B 、C 三点的坐标分别为A (-2,0),B (6,0),C (0,3).(1)求经过A 、B 、C 三点的抛物线的解析式;(2)过C点作CD 平行于x 轴交抛物线于点D ,写出D 点的坐标,并求AD 、BC 的交点E 的坐标;(3)若抛物线的顶点为P,连结PC 、PD ,判断四边形CEDP 的形状,并说明理由.解:⑴ 由于抛物线经过点)3,0(C ,可设抛物线的解析式为)0(32≠++=a bx axy ,则⎩⎨⎧=++=+-036360324b a b a ,解得⎪⎩⎪⎨⎧=-=141b a∴抛物线的解析式为3412++-=x xy ……………………………4分⑵ D 的坐标为)3,4(D ……………………………5分直线AD 的解析式为121+=x y 直线BC 的解析式为321+-=x y由⎪⎪⎩⎪⎪⎨⎧+-=+=321121x y x y求得交点E 的坐标为)2,2( ……………………………8分 ⑶ 连结PE 交CD 于F ,P 的坐标为)4,2(PA CD E Bo xy 1-119图又∵)2,2(,)3,4(),3,0(D C∴,1==EF PF 2==FD CF ,且PE CD ⊥∴四边形CEDP 是菱形 ……………………………12分5.(丹东市)如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N的坐标为(-6,-4). (1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C ); (2)求出过A ,B ,C 三点的抛物线的表达式;(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形...BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围;面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接..写出此时m 的值,并指出相等的邻边;若不存在,说明理由.解:(1) 利用中心对称性质,画出梯形OABC . ······················································ 1分 ∵A ,B ,C 三点与M ,N ,H 分别关于点O 中心对称,∴A (0,4),B (6,4),C (8,0) ········································································· 3分 (写错一个点的坐标扣1分)O MN HA C EFDB↑→ -8(-6,-4)xy(2)设过A ,B ,C 三点的抛物线关系式为2y a x b x c =++, ∵抛物线过点A (0,4),∴4c =.则抛物线关系式为24y a x b x =++. ······················································ 4分 将B (6,4), C (8,0)两点坐标代入关系式,得3664464840a b a b ++=⎧⎨++=⎩,. ·········································································································· 5分 解得1432a b ⎧=-⎪⎪⎨⎪=⎪⎩,. (6)分所求抛物线关系式为:213442y x x =-++. ··························································· 7分 (3)∵OA =4,OC =8,∴AF =4-m ,OE =8-m . ······················································ 8分 ∴A G F E O F B E C E F G B A B C O S S S S S =---△△△四边形梯形 21=OA (AB +OC )12-AF ·AG 12-OE ·OF 12-CE ·OAmm m m m 421)8(21)4(2186421⨯-----+⨯⨯=)(2882+-=m m ( 0<m <4) ··················································· 10分∵2(4)12S m =-+. ∴当4m =时,S 的取最小值.又∵0<m <4,∴不存在m 值,使S 的取得最小值. ·············································· 12分 (4)当2m =-+时,GB =GF ,当2m =时,BE =BG . ····································· 14分6.(威海市12分)(1)探究新知:①如图,已知AD ∥BC ,AD =BC ,点M ,N 是直线CD 上任意两点. 求证:△ABM 与△ABN 的面积相等.②如图,已知AD ∥BE ,AD =BE ,AB ∥CD ∥EF ,点M 是直线CD 上任一点,点G 是直线EF 上任一点.试判断△ABM 与△ABG 的面积是否相等,并说明理由.ABDCMN图 ①CA BDM(2)结论应用:如图③,抛物线c bx ax y ++=2的顶点为C (1,4),交x 轴于点A (3,0),交y 轴于点D .试探究在抛物线c bx ax y ++=2上是否存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等? 若存在,请求出此时点E 的坐标,若不存在,请说明理由.﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚解:﹙1﹚①证明:分别过点M ,N 作 ME ⊥AB ,NF ⊥AB ,垂足分别为点E ,F . ∵ AD ∥BC ,AD =BC , ∴ 四边形ABCD 为平行四边形. ∴ AB ∥CD . ∴ ME = NF . ∵S △ABM =MEAB ⋅21,S △ABN =NFAB ⋅21,∴ S △ABM = S △ABN . ……………………………………………………………………1分 ②相等.理由如下:分别过点D ,E 作DH ⊥AB ,EK ⊥AB ,垂足分别为H ,K . 则∠DHA =∠EKB =90°. ∵ AD ∥BE ,∴ ∠DAH =∠EBK .∵ AD =BE ,∴ △DAH ≌△EBK .∴ DH =EK . ……………………………2分∵ CD ∥AB ∥EF , ∴S △ABM =DHAB ⋅21,S △ABG =EKAB ⋅21,∴ S △ABM = S △ABG . …………………………………………………………………3分﹙2﹚答:存在. …………………………………………………………………………4分 解:因为抛物线的顶点坐标是C (1,4),所以,可设抛物线的表达式为4)1(2+-=x a y .ABD C M N 图 ①EF HC 图 ② A B DM F E G K图 ③又因为抛物线经过点A (3,0),将其坐标代入上式,得()41302+-=a ,解得1-=a .∴ 该抛物线的表达式为4)1(2+--=x y,即322++-=x x y .………………………5分∴ D 点坐标为(0,3).设直线AD 的表达式为3+=kx y ,代入点A 的坐标,得330+=k ,解得1-=k .∴ 直线AD 的表达式为3+-=x y .过C 点作CG ⊥x 轴,垂足为G ,交AD 于点H .则H 点的纵坐标为231=+-.∴ CH =CG -HG =4-2=2. …………………………………………………………6分 设点E 的横坐标为m ,则点E 的纵坐标为322++-m m .过E 点作EF ⊥x 轴,垂足为F ,交AD 于点P ,则点P 的纵坐标为m -3,EF ∥CG . 由﹙1﹚可知:若EP =CH ,则△ADE 与△ADC①若E 点在直线AD 的上方﹙如图③-1﹚,则PF =m -3,EF =322++-m m .∴ EP =EF -PF =)3(322m m m --++-=m m 32+-. ∴ 232=+-m m .解得21=m ,12=m . ……………………………7分当2=m 时,PF =3-2=1,EF=1+2=3.∴ E 点坐标为(2,3). 同理 当m =1时,E 点坐标为(1,4),与C 点重合. ………………………………8分 ②若E 点在直线AD 的下方﹙如图③-2,③-3﹚,则mmm mm PE 3)32()3(22-=++---=. ……………………………………………9分∴232=-m m .解得21733+=m ,21734-=m . ………………………………10分当2173+=m 时,E 点的纵坐标为2171221733+-=-+-; 当2173-=m时,E 点的纵坐标为2171221733+-=---.∴ 在抛物线上存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等,E 点的坐标为E 1(2,3);)21712173(2+-+,E ;)21712173(3+--,E . ………………12分﹙其他解法可酌情处理﹚7.(荆门市本题满分12分)已知:如图一次函数y =12x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =12x 2+bx +c 的图象与一次函数y =12x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.解:(1)将B (0,1),D (1,0)的坐标代入y =12x 2+bx +c 得1,10.2c b c =⎧⎪⎨++=⎪⎩得解析式y =12x 2-32x +1……………………………………………………3分(2)设C (x 0,y 0),则有00200011,213 1.22y x y x x ⎧=+⎪⎨⎪=-+⎩解得004,3.x y =⎧⎨=⎩∴C (4,3). (6)分由图可知:S =S △ACE -S △ABD .又由对称轴为x =32可知E (2,0).∴S =12AE ·y 0-12AD ×OB =12×4×3-12×3×1=92 (8)分当P 为直角顶点时,如图:过C 作CF ⊥x 轴于F .第24题图第24题图∵Rt △BOP ∽Rt △PFC ,∴B O O P P FC F=.即143a a=-.整理得a 2-4a +3=0.解得a =1或a =3 ∴所求的点P 的坐标为(1,0)或(3,0) 综上所述:满足条件的点P 共有二个………………………………………………………12分(3)设符合条件的点P 存在,令P (a ,0):8.(济宁市10分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段A B 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线B D 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,P A C ∆的面积最大?并求出此时P 点的坐标和P A C ∆的最大面积.解:(1)设抛物线为2(4)1y a x =--.∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =.∴抛物线为2211(4)12344y x x x =--=-+. ……………………………3分(2) 答:l 与⊙C 相交. (4)分证明:当21(4)104x --=时,12x =,26x =.∴B 为(2,0),C 为(6,0).∴A B ==.x(第23题)设⊙C 与B D 相切于点E ,连接C E ,则90B E C A O B ∠=︒=∠. ∵90A B D ∠=︒,∴90C B E A B O ∠=︒-∠.又∵90B A O A B O ∠=︒-∠,∴B A O C B E ∠=∠.∴A O B ∆∽B E C ∆. ∴C E B C O BA B=.∴2C E =.∴2C E =>.…………………………6分∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2.∴抛物线的对称轴l 与⊙C 相交. ……………………………………………7分(3) 解:如图,过点P 作平行于y 轴的直线交A C 于点Q .可求出A C 的解析式为132y x =-+.…………………………………………8分设P 点的坐标为(m ,21234mm -+),则Q 点的坐标为(m ,132m -+).∴2211133(23)2442P Q m m m mm =-+--+=-+.∵22113327()6(3)24244P A C P A Q P C Q S S S mm m ∆∆∆=+=⨯-+⨯=--+,∴当3m =时,P A C ∆的面积最大为274.此时,P 点的坐标为(3,34-). …………………………………………10分9.(中山市)如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题: (1)说明△FMN ∽△QWP ;(2)设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,△PWQ 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值.x(第23题)10.(青岛市本小题满分12分)已知:把Rt△ABC 和Rt△DEF 按如图(1)摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm ,BC = 6 cm ,EF = 9 cm .如图(2),△DEF 从图(1)的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式;是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由.(3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.(图(3)供同学们做题使用)解:(1)∵点A 在线段PQ 的垂直平分线上,第22题图(1)A C 图(3) A D F E ) 图(1)图(2)∴AP = AQ .∵∠DEF = 45°,∠ACB = 90°,∠DEF +∠ACB +∠EQC = 180°,∴∠EQC = 45°.∴∠DEF =∠EQC . ∴CE = CQ . 由题意知:CE = t ,BP =2 t ,∴CQ = t . ∴AQ = 8-t . 在Rt△ABC 中,由勾股定理得:AB = 10 cm .则AP = 10-2 t . ∴10-2 t = 8-t . 解得:t = 2.答:当t = 2 s 时,点A 在线段PQ 的垂直平分线上. ····· 4分(2)过P 作PM BE ⊥,交BE 于M ,∴90B M P ∠=︒.在Rt△ABC 和Rt△BPM 中,sinA C P MB A BB P==,∴8210P M t= . ∴PM =85t.∵BC = 6 cm ,CE = t , ∴ BE = 6-t . ∴y = S △ABC -S △BPE =12B C A C ⋅-12B E P M⋅=1682⨯⨯-()186t t25⨯-⨯=24242455t t -+ = ()2484355t-+.∵405a=>,∴抛物线开口向上.∴当t = 3时,y 最小=845.答:当t = 3s 时,四边形APEC 的面积最小,最小面积为845cm 2. ···· 8分(3)假设存在某一时刻t ,使点P 、Q 、F 三点在同一条直线上.过P 作P N A C ⊥,交AC 于N , ∴90A N P A C B P N Q ∠=∠=∠=︒.∵P A N B A C ∠=∠,∴△PAN ∽△BAC .∴P N A P A N B C A BA C ==.∴1026108P N t A N -==.∴665P Nt=-,885A Nt=-.∵NQ = AQ -AN , ∴NQ = 8-t -(885t-) =35t.∵∠ACB = 90°,B 、C (E )、F 在同一条直线上,∴∠QCF = 90°,∠QCF = ∠PNQ . ∵∠FQC = ∠PQN , ∴△QCF ∽△QNP .图(3)图(2)∴P N N Q F CC Q=. ∴636559t tt t -=- .∵0t<<4.5∴663595tt-=-解得:t = 1.答:当t = 1s ,点P 、Q 、F 三点在同一条直线上.12分11、(南充市)已知抛物线2142y x b x =-++上有不同的两点E 2(3,1)k k+-+和F 2(1,1)k k ---+. (1)求抛物线的解析式. (2)如图,抛物线2142y x b x =-++与x 轴和y 轴的正半轴分别交于点A 和B ,M 为AB的中点,∠PMQ 在AB 的同侧以M 为中心旋转,且∠PMQ =45°,MP 交y 轴于点C ,MQ 交x 轴于点D .设AD 的长为m (m >0),BC 的长为n ,求n 和m 之间的函数关系式. (3)当m ,n 为何值时,∠PMQ 的边过点F .解:(1)抛物线2142y x b x =-++的对称轴为122b x b =-=⎛⎫⨯- ⎪⎝⎭. ……..(1分)∵ 抛物线上不同两个点E 2(3,1)k k +-+和F 2(1,1)k k ---+的纵坐标相同,∴ 点E 和点F 关于抛物线对称轴对称,则 (3)(1)12k k b ++--==,且k ≠-2.∴ 抛物线的解析式为2142y x x =-++. ……..(2分)(2)抛物线2142y x x =-++与x 轴的交点为A (4,0),与y 轴的交点为B (0,4), ∴ AB=AM =BM= ……..(3分) 在∠PMQ 绕点M 在AB 同侧旋转过程中,∠MBC =∠DAM =∠PMQ =45°,在△BCM 中,∠BMC +∠BCM +∠MBC =180°,即∠BMC +∠BCM =135°, 在直线AB 上,∠BMC +∠PMQ +∠AMD =180°,即∠BMC +∠AMD =135°. ∴ ∠BCM =∠AMD .故 △BCM ∽△AMD . ……..(4分) ∴B C B M A MA D=,即m=,8n m=.故n 和m 之间的函数关系式为8n m=(m >0). ……..(5分)(3)∵ F 2(1,1)k k ---+在2142y x x =-++上,∴ 221(1)(1)412k k k---+--+=-+,化简得,2430k k -+=,∴ k 1=1,k 2=3.即F 1(-2,0)或F 2(-4,-8). ……..(6分) ①MF 过M (2,2)和F 1(-2,0),设MF 为y kx b =+,则 2220.k b k b +=⎧⎨-+=⎩, 解得,121.k b ⎧=⎪⎨⎪=⎩,∴ 直线MF 的解析式为112y x =+. 直线MF 与x 轴交点为(-2,0),与y 轴交点为(0,1). 若MP 过点F (-2,0),则n =4-1=3,m =83;若MQ 过点F (-2,0),则m =4-(-2)=6,n =43. ……..(7分)②MF 过M (2,2)和F 1(-4,-8),设MF 为y kx b =+,则 2248.k b k b +=⎧⎨-+=-⎩, 解得,534.3k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴ 直线MF 的解析式为5433y x =-.直线MF 与x 轴交点为(45,0),与y 轴交点为(0,43-).若MP 过点F (-4,-8),则n =4-(43-)=163,m =32;若MQ 过点F (-4,-8),则m =4-45=165,n =52. ……..(8分)故当118,33,m n ⎧=⎪⎨⎪=⎩ 226,4,3m n =⎧⎪⎨=⎪⎩ 333,2163m n ⎧=⎪⎪⎨⎪=⎪⎩或4416,552m n ⎧=⎪⎪⎨⎪=⎪⎩时,∠PMQ 的边过点F .12. ((衢州卷)本题12分)△ABC 中,∠A =∠B =30°,AB=.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1) 当点B2B 的横坐标;(2) 如果抛物线2ya xb x c=++(a ≠0)的对称轴经过点C ,请你探究: ①当4a=12b=-,5c=-A ,B 两点是否都在这条抛物线上?并说明理由;② 设b =-2am ,是否存在这样的m 的值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.ta n 3013O C O B =⨯︒==.……1分由此,可求得点C 的坐标为55), ……1分点A 的坐标为(5-5),∵ A ,B 两点关于原点对称, ∴ 点B 的坐标为55-).将点A 的横坐标代入(*)5,即等于点A 的纵坐标;将点B 的横坐标代入(*)式右边,计算得5-,即等于点B 的纵坐标.∴ 在这种情况下,A ,B 两点都在抛物线上.……2分情况2:设点C 在第四象限(如图乙),则点C 的坐标为55), 解:(1) ∵ 点O 是AB 的中点, ∴12O B A B == (1)(甲)(乙)设点B的横坐标是x(x>0),则2222x+=,……1分解得12x=22x=-(舍去).∴点B2.……2分(2)①当4a=12b=-,5c=-21425y x=--……(*)24520y x=--.……1分以下分两种情况讨论.情况1:设点C在第一象限(如图甲),则点C5,点A的坐标为55),点B的坐标为(5-5-).经计算,A,B两点都不在这条抛物线上.……1分(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上)②存在.m的值是1或-1.……2分(22()y a x m a m c=--+,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上)13.(莱芜市本题满分12分)如图,在平面直角坐标系中,已知抛物线cbxaxy++=2交x轴于)0,6(),0,2(BA两点,交y轴于点)32,0(C.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线xy2=交于点D,作⊙D与x轴相切,⊙D交y轴于点E、FEF的长;(3)P为此抛物线在第二象限图像上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.(第24题图)解:(1)∵抛物线c bx axy ++=2经过点)0,2(A ,)0,6(B ,)320(,C .∴⎪⎩⎪⎨⎧==++=++320636024c c b a c b a ,解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==3233463c b a .∴抛物线的解析式为:32334632+-=x xy . …………………………3分(2)易知抛物线的对称轴是4=x .把x =4代入y =2x 得y =8,∴点D 的坐标为(4,8). ∵⊙D 与x 轴相切,∴⊙D 的半径为8. …………………………4分连结DE 、DF ,作DM ⊥y 轴,垂足为点M .在Rt △MFD 中,FD =8,MD =4.∴cos ∠MDF =21.∴∠MDF =60°,∴∠EDF =120°. …………………………6分EF 的长为:π=⨯π⨯3168180120.…………………………7分(3)设直线AC 的解析式为y =kx +b . ∵直线AC 经过点)32,0(),0,2(C A .∴⎩⎨⎧==+3202b b k ,解得⎪⎩⎪⎨⎧=-=323b k .∴直线AC 的解析式为:323+-=x y . ………8分设点)0)(3233463,(2<+-m m mm P ,PG 交直线AC 于N ,则点N 坐标为)323,(+-m m .∵PN S S GNA PNA ::=∆∆∴①若PN ︰GN =1︰2,则PG ︰GN =3︰2,PG =23GN .即32334632+-m m=)(32323+-m .解得:m 1=-3, m 2=2(舍去). 当m =-3时,32334632+-m m=3215.∴此时点P 的坐标为)3215,3(-. …………………………10分②若PN ︰GN =2︰1,则PG ︰GN =3︰1, PG =3GN . 即32334632+-m m=)(3233+-m .解得:121-=m ,22=m (舍去).当121-=m 时,32334632+-m m=342.∴此时点P 的坐标为)342,12(-.综上所述,当点P 坐标为)3215,3(-或)342,12(-时,△PGA 的面积被直线AC 分成1︰2两部分. …………………12分14. (舟山卷 本题12分)△ABC 中,∠A =∠B =30°,AB=ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转. (1) 当点B2B 的横坐标;(2) 如果抛物线2y a x b x c=++(a ≠0)的对称轴经过点C ,请你探究:①当4a=12b=-,5c=-A ,B 两点是否都在这条抛物线上?并说明理由;② 设b =-2am ,是否存在这样的m 的值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.解:(1) ∵ 点O 是AB 的中点, ∴12O B A B == (1)分设点B 的横坐标是x (x >0),则2222x +=, ……1分解得12x =22x =-(舍去).(第24题)∴点B2.……2分(2)①当4a=12b=-,5c=-21425y x=--……(*)24520y x=--.……1分以下分两种情况讨论.情况1:设点C在第一象限(如图甲),则点C5,ta n3013O C O B=⨯︒==.……1分由此,可求得点C的坐标为55),……1分点A的坐标为(5-5),∵A,B两点关于原点对称,∴点B的坐标为55-).将点A的横坐标代入(*)5,即等于点A的纵坐标;将点B的横坐标代入(*)式右边,计算得5-,即等于点B的纵坐标.∴在这种情况下,A,B两点都在抛物线上.……2分情况2:设点C在第四象限(如图乙),则点C的坐标为55),点A的坐标为55),点B的坐标为(5-5-).经计算,A,B两点都不在这条抛物线上.……1分(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上)②存在.m的值是1或-1.……2分(22()y a x m a m c=--+,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.当m=±1时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上)(甲)(乙)15.(2010.十堰)(本小题满分10分)已知关于x 的方程mx 2-(3m -1)x +2m -2=0(1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的二次函数y= mx 2-(3m -1)x +2m -2的图象与x 轴两交点间的距离为2时,求抛物线的解析式.(3)在直角坐标系xoy 中,画出(2)中的函数图象,结合图象回答问题:当直线y =x +b与(2)中的函数图象只有两个交点时,求b 的取值范围. 解:(1)分两种情况讨论:①当m =0 时,方程为x -2=0,∴x =2 方程有实数根 ②当m ≠0时,则一元二次方程的根的判别式△=[-(3m -1)]2-4m (2m -2)=m 2+2m +1=(m +1)2≥0 不论m 为何实数,△≥0成立,∴方程恒有实数根综合①②,可知m 取任何实数,方程mx 2-(3m -1)x +2m -2=0恒有实数根.(2)设x 1,x 2为抛物线y= mx 2-(3m -1)x +2m -2与x 轴交点的横坐标. 则有x 1+x 2=31m m-,x 1·x 2=22m m-由| x 1-x 21||m m+,由| x 1-x 2|=2得1||m m+=2,∴1m m+=2或1m m+=-2∴m =1或m =13-∴所求抛物线的解析式为:y 1=x 2-2x 或y 2=13-x 2+2x -83即y 1= x (x -2)或y 2=13-(x -2)(x -4)其图象如右图所示.(3)在(2)的条件下,直线y =x +b 与抛物线y 1,y 2组成的图象只有两个交点,结合图象,求b 的取值范围.212y x x y x b ⎧=-⎨=+⎩,当y 1=y 时,得x 2-3x -b =0,△=9+4b =0,解得b =-94; 同理2218233 y x x y x b ⎧=-+-⎪⎨⎪=+⎩,可得△=9-4(8+3b )=0,得b =-2312 .观察函数图象可知当b <-94 或b >-2312 时,直线y =x +b 与(2)中的图象只有两个交点.由21222 18233y x x y x x ⎧=-⎪⎨=-+-⎪⎩当y 1=y 2时,有x =2或x =1 当x =1时,y =-1所以过两抛物线交点(1,-1),(2,0)的直线y =x -2,综上所述可知:当b <-94 或b >-2312 或b =-2时,直线y =x +b 与(2)中的图象只有两个交点.。
金华中考试题和答案数学一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是无理数?A. 22/7B. √2C. 0.33333D. 3.14答案:B2. 一个多项式的次数是5,那么它的最高次项的次数是:A. 1B. 3C. 4D. 5答案:D3. 一个三角形的内角和为:A. 90°B. 180°C. 360°D. 720°答案:B4. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A5. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3答案:B6. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 200π答案:C7. 一个等腰三角形的底边长是6,高是4,那么它的周长是:A. 12B. 16C. 20D. 24答案:C8. 一个数列的前三项是1,2,4,那么它的第四项是:A. 6B. 8C. 16D. 32答案:C9. 一个二次函数的顶点坐标是(2,-1),那么它的对称轴是:A. x = 1B. x = 2C. x = 3D. x = 4答案:B10. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是:A. 5B. 6C. 7D. 8答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 一个数的绝对值是5,那么这个数可以是______。
答案:±512. 一个二次函数的解析式是y = ax^2 + bx + c,其中a ≠ 0,那么它的开口方向是______。
答案:向上或向下13. 一个等差数列的前三项是2,5,8,那么它的公差是______。
答案:314. 一个三角形的三边长分别是3,4,5,那么它是一个______三角形。
答案:直角15. 一个圆的直径是10,那么它的周长是______。
答案:10π三、解答题(本题共4小题,共50分)16. 解方程:2x - 3 = 7答案:2x - 3 = 72x = 10x = 517. 已知一个等腰三角形的底边长是6,高是4,求它的周长。
2010年浙江省义乌市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣2的相反数是()A.﹣ B.﹣2 C.D.2【考点】M111 相反数【难度】容易题【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到﹣2的相反数是2,故选:D.【解答】D.【点评】此题主要考查了相反数,关键是掌握相反数的定义:只有符号不同的两个数叫做互为相反数即可得到﹣2的相反数是2。
2.(3分)(2010•义乌市)28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】M115 有理数M11U 乘方M11N 整式运算【难度】容易题【分析】根据有理数的乘方运算法则,计算28=24×24=16×16=256(cm)=2.56(m).然后根据生活实际来确定:A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【解答】C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.3.(3分)(2010•义乌市)下列运算正确的是()A.3ab﹣2ab=1 B.x4•x2=x6C.(x2)3=x5D.3x2÷x=2x【考点】M11N 整式运算M11O 指数幂M11U 乘方【难度】容易题【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算得:A、应为3ab﹣2ab=ab,故选项错误;B、x4•x2=x6,正确;C、应为(x2)3=x6,故选项错误;D、应为3x2÷x=3x,故选项错误.故选B.【解答】B.【点评】本题主要考查了同底数幂的乘法、除法运算,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.4.(3分)(2010•义乌市)下列几何图形中,即是中心对称图形又是轴对称图形的是()A.正三角形 B.等腰直角三角形C.等腰梯形 D.正方形【考点】M326 等腰三角形性质与判定M327 等边三角形性质与判定M328 直角三角形性质与判定M335 正方形的性质与判定M337 等腰梯形的性质与判定M412 图形的对称【难度】容易题【分析】根据轴对称图形与中心对称图形的概念求解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是中心对称图形又是轴对称图形,符合题意.故选D.【解答】D.【点评】掌握中心对称图形与轴对称图形的概念.①如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.②如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.5.(3分)(2010•义乌市)下列长度的三条线段能组成三角形的是()A.1、2、3.5 B.4、5、9 C.20、15、8 D.5、15、8【考点】M322 三角形三边的关系【难度】容易题【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,利用排除法求解.具体为:A、∵1+2=3<3.5,∴不能组成三角形;B、∵4+5=9,∴不能组成三角形;C、20、15、8,能组成三角形;D、5+8=13<15,不能组成三角形.故选:C.【解答】C.【点评】本题主要考查三角形的三边性质,需要熟练掌握.注意:三角形任意两边之和大于第三边,任意两边之差小于第三边。
浙江省2010年初中毕业生学业考试(金华卷)数 学 试 题 卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为100分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案 必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应的位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.5.本次考试不得使用计算器.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分)1. 在 -3-1, 0 这四个实数中,最大的是( ▲ )A. -3B.C. -1D. 02. 据报道,5月28日参观2010上海世博会的人数达35.6万﹒用科学记数法表示数35.6万是( ▲ )A .3.56×101B .3.56×104C .3.56×105D .35.6×1043. 在平面直角坐标系中,点P (-1,3)位于( ▲ )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 下图所示几何体的主视图是( ▲ ) A. B. C. D.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随 机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( ▲ )A.21 B.31 C.61 D.121 6.如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( ▲ )A. 20° B . 40° C . 60°7.如果33-=-ba,那么代数式b a 35+-的值是( ▲ ) A .0 B .2 C .5 D .88. 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( ▲ ) A. 最小值 -3B. 最大值-3C. 最小值2D. 最大值29. 如图,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示正确的是( ▲ ) A .a <1<-aB .a <-a <1C .1<-a <aD .-a <a <1(第6题图)正面 01A(第14题图)110. 如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60º,BC =2cm ,则梯形ABCD 的面积为( ▲ ) A .33cm2B .6 cm 2C .36cm2D .12 cm 2卷 Ⅱ 说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸相应位的置上. 二、填空题 (本题有6小题,每小题4分,共24分) 11. 分解因式=-92x ▲ .12.分式方程112x =-的解是 ▲ .13. 如果半径为3cm 的⊙O 1与半径为4cm 的⊙O 2内切,那么两圆的圆心距O 1O 2= ▲cm. 14﹒如图, 在平面直角坐标系中, 若△ABC 与△A 1B 1C 1关于E 点成中心对称, 则对称中心E15.若二次函数k x x y ++-=22的部分图象如图所示,则关于x 的一元二次方程022=++-k x x 的一个解31=x ,另一个解=2x ▲ ;16. 如图在边长为2的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点, 以O 为圆心,以OE 为半径画EF .P是上的一个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O的切线,分别交射线AB 于点M ,交直线BC 于点G . 若3=BMBG,则BK ﹦ ▲ .三、解答题 (本题有8小题, 共66分,各小题都必须写出解答过程) 17.(本题6分)计算:04cos30+°.(第15题图)A ODBFKE (第16题)G MCA CBD (第10题图)18.(本题6分)如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其他字母),并给出证明. (1)你添加的条件是: ▲ ; (2)证明:19.(本题6分)在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C 处(如图).现已知风筝A 的引线(线段AC )长20m ,风筝B 的引线(线段BC )长24m ,在C 处测得风筝A 的仰角为60°,风筝B 的仰角为45°. (1)试通过计算,比较风筝A 与风筝B 谁离地面更高?(2)求风筝A 与风筝B 的水平距离.(精确到0.01 m ;参考数据:sin45°≈0.707,cos45°≈0.707, tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)20.(本题8分)已知二次函数y =ax 2+bx -3的图象经过点A (2,-3),B (-1,0). (1)求二次函数的解析式;(2)填空:要使该二次函数的图象与x 轴只有一个交点,应把图象沿y 轴向上平移 ▲ 个单位.21.(本题8分)如图,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .(1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ▲ ,CE 的长是 ▲ .ACBDF E(第18题B(第21题图)B (第19题22. (本题10分)一方有难,八方支援.2010年4月14日青海玉树发生7.1级强烈地震,给玉树人民 造成了巨大的损失﹒灾难发生后,实验中学举行了爱心捐款活动,全校同学纷纷拿出自己 的零花钱, 踊跃捐款支援灾区人民﹒小慧对捐款情况进行了抽样调查,抽取了40名同学 的捐款数据,把数据进行分组、列频数分布表后,绘制了频数分布直方图.图中从左到右各长方形 高度之比为3∶4∶5∶7∶1(如图).(1)捐款20元这一组的频数是 ▲ ; (2)40名同学捐款数据的中位数是 ▲ ; (3)若该校捐款金额不少于34500 元,请估算该校捐款同学的人数至少有多少名?23. (本题10分)已知点P 的坐标为(m ,0),在x 轴上存在点Q (不与P 点重合),以PQ 为边作正方形PQMN ,使点M落在反比例函数y = 2x-的图像上.小明对上述问题进行了探究,发现不论m 取何值,符合上述条件的正方形只有..两个,且一个正方形的顶点M 在第四象限,另一个正方形的顶点M 1在第二象限. (1)如图所示,若反比例函数解析式为y = 2x -,P 点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN ,请你在图中画出符合条件的另一个正方形PQ 1M 1N 1,并写出点M 1的坐标;(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)M 1的坐标是 ▲(2) 请你通过改变P 点坐标,对直线M 1 M 的解析式y ﹦kx +b 进行探究可得 k ﹦ ▲ , 若点P 的坐标为(m ,0)时,则b ﹦ ▲ ;(3) 依据(2)的规律,如果点P 的坐标为(6,0),请你求出点M 1和点M 的坐标.40名同学捐款的频数分布直(第22题(第23题24. (本题12分)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,.动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的速度分别为12 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以33(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.请解答下列问题:(1)过A,B两点的直线解析式是▲ ;(2)当t﹦4时,点P的坐标为▲ ;当t ﹦▲ ,点P与点E重合;(3)①作点P关于直线EF的对称点P′. 在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?②当t﹦2时,是否存在着点Q,使得△FEQ ∽△BEP ?若存在, 求出点Q的坐标;若不存在,请说明理由.(第24题浙江省2010年初中毕业生学业考试(金华卷)数学卷参考答案及评分标准一、二、填空题(本题有6小题,每小题4分,共24分)11.(x -3)(x +3); 12.x =3; 13. 1; 14.(3,-1); 15. -1; 16. 31, 35.(每个2分)三、解答题(本题有8小题,共66分) 17. (本题6分)解:原式﹦1+33-32…………5分(三式化简对1个2分,对2个4分,对3个5分) ﹦1+3.……………………………………………………………………………1分 18.(本题6分)解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒………………………………2分(2)以DC BD =为例进行证明:∵CF ∥BE , ∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC ﹦∠EDB ,∴△BDE ≌△CDF .…………………4分 19.(本题6分) 解:(1)分别过A ,B 作地面的垂线,垂足分别为D 在Rt △ADC 中,∵AC ﹦20,∠ACD ﹦60°,∴AD ﹦20×sin 60°﹦103≈17.32m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴BE ﹦24×sin 45°﹦122≈16.97 m∵17.32>16.97∴风筝A 比风筝B 离地面更高. ………………………………………………………3分 (2)在Rt △ADC 中,∵AC ﹦20,∠ACD ﹦60°, ∴DC ﹦20×cos 60°﹦10 m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴EC ﹦BC ≈16.97 mACBDFE∴EC -DC ≈16.97-10﹦6.97m即风筝A 与风筝B 的水平距离约为6.97m .…………………………………………3分 20. (本题8分)解:(1)由已知,有⎩⎨⎧=---=-+033324b a b a ,即⎩⎨⎧=-=+3024b a b a ,解得⎩⎨⎧-==21b a∴所求的二次函数的解析式为322--=x x y . …………………………………………6分 (2) 4 …………………………………………………………………………………………2分 21. (本题8分)解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90°又∵CE ⊥AB , ∴∠CEB ﹦90° ∴∠2﹦90°-∠A ﹦∠1又∵C 是弧BD 的中点,∴∠1﹦∠A∴∠1﹦∠2,∴ CF ﹦BF ﹒ …………………4分 (2) ⊙O 的半径为5 , CE 的长是524﹒ ………4分(各2分) 22.(本题10分) 解:(1)14 ………3分 (2)15 …………3分(3) 设该校捐款的同学有x 人 由题意得 15x ≥ 34500 解得 x ≥2300答:该校捐款的同学至少有2300人. ……4分23.(本题10分)解:(1)如图;M 1 的坐标为(-1,2) ……2 (2)1-=k ,m b = …………………4分(各2 (3)由(2)知,直线M 1 M 的解析式为+-=x y 则M (x ,y )满足2)6(-=+-⋅x x 解得1131+=x ,1132-=x ∴ 1131-=y ,1132+=y∴M 1,M 的坐标分别为(113-,113+),(113+,113-).……………4分 24.(本题12分)解:(1)333+-=x y ;………4分 (2)(0,3),29=t ;……4分(各2分)A B(3)①当点P 在线段AO 上时,过F 作FG ⊥x 轴,G 为垂足(如图1)∵FG OE =,FP EP =,∠=EOP ∠=FGP 90° ∴△EOP ≌△FGP ,∴PG OP =﹒又∵t FG OE 33==,∠=A 60°,∴t FG AG 3160tan 0==而t AP =,∴t OP -=3,t AG AP PG 32=-=由t t 323=-得 59=t ;………………………………………………………………1分当点P 在线段OB 上时,形成的是三角形,不存在菱形; 当点P 在线段BA 上时,过P 作PH ⊥EF ,PM ⊥OB ,H 、M 分别为垂足(如图2)∵t OE 33=,∴t BE 3333-=,∴3360tan 0t BE EF -== ∴6921tEF EH MP -===, 又∵)6(2-=t BP 在Rt △BMP 中,MP BP =⋅060cos 即6921)6(2t t -=⋅-,解得745=t .…………………………………………………1分 ②存在﹒理由如下:∵2=t ,∴332=OE ,2=AP ,1=OP 将△BEP 绕点E 顺时针方向旋转90°,得到 △EC B '(如图3)∵OB ⊥EF ,∴点B '在直线EF 上, C 点坐标为(332,332-1)过F 作FQ ∥C B ',交EC 于点Q ,则△FEQ ∽△EC B '由3=='=QE CE FE E B FE BE ,可得Q 的坐标为(-32,33)………………………1分 根据对称性可得,Q 关于直线EF 的对称点Q '(-32,3)也符合条件.……1分y(图1)(图3)。