压强的计算基准
- 格式:pptx
- 大小:500.94 KB
- 文档页数:5
第一节流体流体静压强及其特性一流体静压强的定义ΔPⅠΔAⅡⅡ作用在受压面整个面积上的压力称为总压力或压力作用在单位面积上的压力是压力强度,简称压强Ap p ∆∆=(2-1-1)App A ∆∆=→∆0lim(2-1-2)当面积ΔA 无限缩小时,则得某点的静压强,为:压强的国际制单位是N/m 2或Pa ;工程单位tf/m 2是或kgf/cm 2。
第一节流体流体静压强及其特性二流体静压强的特性pABCp 1τzxydz dxdyP xP yP nP zdydzp P x x 21⋅=dzdxp P y y 21⋅=dxdyp P z z 21⋅=dAp P n n ⋅=xx f dxdydz F ⋅⋅=61ρyy f dxdydz F ⋅⋅=61ρzz f dxdydz F ⋅⋅=61ρ0)cos(=+∧-x n x F x n P P 061)cos(21=⋅+∧-⋅x n x f dxdydz x n dA p dydz p ρdydzx n dA 21)cos(=∧nx p p =压强方向的假设压强大小计算ΔhΔlΔA第一节流体流体静压强及其特性结论流体静压强的方向与作用面垂直,并指向作用面任意一点各方向的流体静压强大小相等,与作用面的方位无关第二节流体静压强的分布规律p 1p 2Gα0cos 12=⋅--αG P P 0cos 12=∆⋅--αγldA dA p dA p h p p ∆=-γ12hp p γ+=0一液体静压强的基本方程式hp p γ+=12p 0hpph11200z1h2z2z011hppγ+=)(11zzpp-+=γγ/1110zpzp+=+γγ22hppγ+=)(22zzpp-+=γγ/1220zpzp+=+γγCzp=+γ结论:压强水头,压强必须为相对压强位置水头测压管水头,同一容器的静止液体中各点测压管水头相等。
测压管水头表示单位重量流体具有的单位势能。
测压管水头线上的各点,其压强与当地大气压相等。
物体的质量m、重量G、密度ρ、体积V、压力F、压强p的关系1.V=a·b·c (a、b、c为长方体的长、宽高)2.V=a2·h (a物体的横截面为正方形的边长、h为它高)3.V=a3(a物体的边长)4.V=s·h (s为规则物体的横截面、h为它的高)5.m=ρ·V6.G=gρ·V (G为物体的重力,且方向垂直向下)7.F=G (当由物体所施加的力F 与G同向,且垂直于受力面S时。
一下的F同意)8.P==(S为垂直于F的受力面。
)9.P = F/ a2= G / a2(a物体的横截面为正方形的边长)10.P=F/ S = /S( S为规则物体的横截面)********************************************************液体的压强p、压力F、液柱高度h的关系(相关字母的含义如上)1.V=a2·h=s·h2.G=ρg a2·h=ρg·s·h(G为液体的重力,且方向垂直向下)3.F=G (G为液体的重力,且F等于物体的重力,它与G同向均垂直向下)4.P==(p为液体对受力面S的压强,S为垂直于F的受力面。
)5.P = F / a2= G / a2=ρg a2·h/ a2=ρg·h(a物体的横截面为正方形的边长,h=a且是水平距离)6.P= F / S= G / S=ρg·h·s/s=ρg·h(h为液体的垂直高度)(注:由液体重力产生的压强P,它与液体密度ρ及液体垂直高度h乘积成正比例P。
h非液体柱的长度L)(如:一封底的玻璃管,其灌入一定量的液体h0,其对底部产生的压强p不一定是ρg·h0,此时灌入高度h0与它液面对地的垂直高h,即h0≥h,∴ρg·h0≥ρg·h)*******************************************************************(液体)连通器两端口的压强p与液柱高度h的关系(相关字母的含义如上)连通器两端开口:1. p H = P大气(P大气为外界的大气的压强,即H处的压强)(一般P大气作比较压强大小的基准,而某处的实际的压强应是P实=P+ P大气,即P= P实-P大气,计为此处的压强,表压强简称压强,工程上P大气计为0压强,P实际上是某处的压强与大气压之差。
流体力学绝对压强
相对压强:以当时当地大气压强为基准点计算的压强,又称为计示压强.
其中,相对压强按绝对压强与当时当地大气压强的相对大小,又可分为两种:
(1) 表压强:被测试流体的绝对压强高于当时当地大气压强的部分,即
表压强=绝对压强-当时当地大气压强
(2) 真空压强:被测试流体的绝对压强低于当时当地大气压强的部分,也称真空值,即
真空压强=当时当地大气压强-绝对压强
进一步可求真空度,真空度是指真空值与当时当地大气压比值的百分数,即
真空度=真空值/当时当地大气压强
用表压强,即相对压强.相对压强比绝对压强少一个当地大气压,解此类问题都是针对某一隔离出来的流体(称隔离体)进行受力分析的,作用于隔离体表面上的大气压力总是相抵消的,即大气压力的合力为零,在任意方向上的分力也为零.必须明白:隔离体表面接触大气的部分受大气压作用,不与大气接触而与固体相接触的部分,根据帕斯卡定理仍作用有大气压力,这一点一般教材没明确说明,须特别注意。
连续介质模型:认为液体充满一个体积时是不留任何间隙的,其中没有真空,也没有分子间隙,认为流体是连续介质密度:ρ=m / v (kg/m3g/cm3)水:1.0*103 kg/m3 水银:13.6*103 kg/m3重度γ(伽玛)=w/v w=mg γ(伽玛)= ρg牛顿内摩擦定律:作层流运动的液体,相互邻近层间单位面积上所作用的内摩擦力(或粘滞力),与流速梯度成正比,同时与液体的性质无关。
根据牛顿内摩擦定律:T=μA (du/dy)μ为比例系数,称为粘度,单位N·s/m2即Pa·s T为液体的内摩擦力应力:单位面积上受到的力设τ(套)为单位面积上的内摩擦力,即粘性切应力则τ(套)=T/A=μ(du/dy)温度、压强对粘性的影响:温度↑液体↓气体↑压强对粘度影响很小可以忽略牛顿流体:凡是符合牛顿内摩擦定律的流体称为牛顿流体,如水,空气、酒精和汽油理想液体:是指不考虑粘性的液体作用在液体上的力质量力(体积力):G=ma;mg;mw2r——与质量成正比表面力(面积力):切向力;压力;表面张力——与作用面积成反比静水压强有两个重要特性:静水压强的方向垂直指向作用面;同一点不同方向上的静水压强大小相等设液面压强为p0,均质液体重度为γ,该点在液面以下的深度为hP=p0+γh γ=ρg静水压强方程式的意义:几何意义与水力学意义静止液体内任何一点的测压管水头等于常数,即z+p/ϒ=Cz——位置高度(位置水头)p/ϒ——测压管高度(压强水头)z+p/ϒ——测压管液面相对于基准面的高度。
(测压管水头)物理意义压强的两种计算基准:1. 以毫无一点气体存在的绝对真空为零点起算的压强,称为绝对压强,以p’表示2. 以同高程大气压强p a为零点起算的压强,称为相对压强,以p表示绝对压强和相对压强是按两种不同起算点计算的压强,它们之间相差一个大气压p a 即p= p’-p a绝对压强只能是正值,而相对压强则可正可负真空:当取相对压强为负值时,其绝对值表示的压强为真空度压强的三种量度单位:1.从压强的基本定义出发,国际单位N/m2 1Pa=1N/m2工程单位是kgf/cm2 kgf/m22.用大气压的倍数来表示,1.01*105Pa=1个标准大气压(atm)=10.33mH2O=760mmHg如未说明,大气压强均指工程大气压1at=1kgf/cm2=98 kgf/m2=0.98*105Pa=10mH2O3.用液柱高度来表示h=p/γ1工程大气压=98kPa测量压强的仪器:1.测压管:测压管是一根玻璃直管或U形管,一端连接在需要测定的容器孔扣上,另一端开口,直接和大气相通2.压差计:压差计是测定两点间的压强差或测压管水头差的仪器,常用U形管制成作用在平面壁上的静水总压力1. 静水总压力大小水平:P=p c A =γh c A 垂直:P=γV体p c为受压面形心的相对压强;h c为受压面形心在水平面下的深度总压力:P=(P水2+P垂直2)1/2方向:垂直指向作用面tanα= P垂直/ P水2.3. 作用点4. 压力体的绘制求压力中心y D=y C+J C/y C A常见平面图形 A y C J C1.矩形bh 1/2 h 1/12 bh32.圆形πr21/4πr4例题:一弧形闸门如图2—22所示。
压强的定义及其计算方式
一、压强的定义
流体垂直作用于单位面积上的力,称为流体的静压强,简称压强,习惯上仍称为压力,而作用于整个面上的力称为总压力。
二、压强的计算
压强可表示为式中
P——垂直作用于表面的总压力,N;
A -- 作用面的面积,m2;
P——压强,N∕m2(Pa)。
由于习惯,除了国际单位Pa以外,常用的压强单位有:物理大气压(atm)、液柱高(mmHg,mH20)等,早年还有工程大气压(at)o各种单位之间的关系如下1atm=1.033at(kgf∕cm2)=10.33mH20=760mmHg=1.0133×105Pa
压强的基准以绝对真空为基准测得的压强称为绝对压强(绝压),以大气压为基准测得的压强称为表压或真空度。
表压为绝对压强与当地大气压之差,是压力表的读数值。
真空度为当地大气压与绝对压强之差,是真空表的读数值,即
表压=绝压一大气压(当地)
真空度=大气压(当地)一绝压,表压=一真空度
【例】某水泵进口管处真空表读数为35kPa,出口管处压力表读数为180kPa o试问水泵前后水的压强差为多少kPa?
解:
AP=P出-P进=180—(—35)=215(kPa)。