朝阳区2013年初三年级数学一模答案
- 格式:doc
- 大小:269.00 KB
- 文档页数:7
北京市朝阳区2013年初中毕业考试数学试卷第Ⅰ卷(选择题32分)一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1. -7 的相反数是A . 7B .-7C .71 D .71-2.中国航空母舰“辽宁号”的满载排水量为67500吨。
将数67500用科学记数法表示为A .0.675×105B . 6. 75×104C . 67.5×103D . 675×1023.把4张形状、质地完全相同的卡片分别写上数字1,2,3,4,再将这些卡片放在一个不透明的盒子里,随机从中抽取1张卡片,则抽取的卡片上的数字为奇数的概率是A .41 B .31 C .21 D . 14.北京2013年3月的一周中每天最高气温如下:7, 13,15,16,15,17,19,则在这一周中,最高气温的众数和中位数分别是A .15和15B .15和16C . 16和15D .19和16 5. 如图,已知直线l 1//l 2,∠1=40°,则∠2的度数为A .30°B . 40°C . 50°D . 60° 6.如图,⊙O 的半径为5,AB 是弦,OC ⊥AB 于点C ,若OC=3,则AB 的长为A . 3B . 4C . 6D .87.二次函数21(1)32y x =-+的顶点在A.第一象限. B .第二象限.C .第象限D .第象限.8.如图,矩形ABCD的两条对角线相交于点O,∠BOC=120°,AB=3,一动点P以1cm/s的速度延折线OB—BA运动,那么点P的运动时间x(s)与点C、O、P围成的三角形的面积y之间的函数图象为A B C D第Ⅱ卷(共68分)二.填空题(共5道小题,每小题4分,共20分)9. 若-2是方程062=+-mxx的一个根,则m= .10. 分解因式:2218m-=.11.侧面展开图是扇形的几何体是 .12.如图,菱形ABCD的一条对角线BD上一点O,到菱形一边AB的距离为2,那么点O到另外一边BC的距离为_________.13.若关于x的一元二次方程kx2-2x+1 = 0有两个实数根,则k的取值范围是.三.解答题(共9道小题,14题—20题每小题5分,21题6分,22题7分,共48 分)14.(本小题5分)计算:()1-)32(-45in2-82-1︒+s.解:15.(本小题5分)求不等式组()⎪⎩⎪⎨⎧≥-+>-12131325xxx的整数解.解:6如图所示,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,且BF=AC. 求证:DF=DC. 证明:17.列方程或方程组解应用题(本小题5分)动物园的门票售价:成人票每张50元,儿童票每张30元. 某日动物园售出门票700张,共得29000元. 请问当日儿童票售出多少张?解:18.(本小题5分)某学校为了解该校七年级学生的身高情况,抽样调查了部分同学身高,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm ,测量时精确到1cm ):(1)请根据所提供的信息补全频数分布直方图;(2)写出该样本中,七年级学生身高的中位数所在组的范围; ;(3)如果该校七年级共有500名学生,那么估计该校七年级身高在160cm 及160cm 以上的学生共有 人;(4)若该校所在区的七年级学生平均身高为155 cm ,请结合以上信息,对该校七年级学生的身高情况提出一个你的见解./cm165~170cm已知:一次函数2+=x y 与反比例函数xk y =相交于A 、B 两点且A 点的纵坐标为4.(1)求反比例函数的解析式; (2)求△AOB 的面积. 解:20.(本小题5分)如图,AB 为⊙O 的直径,BC 是弦,OE ⊥BC ,垂足为F ,且与⊙O 相交于点E ,连接CE 、AE ,延长OE 到点D ,使∠ODB=∠AEC. (1)求证:BD 是⊙O 的切线; (2)若cosD=54,BC=8,求AB 的长.(1)证明:(2)解:如图,抛物线c xy +-=243与x 轴分别交于点A 、B ,直线2343+-=x y 过点B ,与y 轴交于点E ,并与抛物线c x y +-=243相交于点C .(1)求抛物线c xy +-=243的解析式;(2)直接写出点C 的坐标;(3)若点M 在线段A B 上以每秒1个单位长度的速度从点A 向点B 运动(不与点A 、B 重合),同时,点N 在射线B C 上以每秒2个单位长度的速度从点B 向点C 运动.设点M 的运动时间为t 秒,请写出M N B △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,M N B △的面积最大,最大面积是多少?解:在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,求AB 的长.北京市朝阳区2013年初中毕业考试数学试卷参考答案及评分标准一、选择题(共8道小题,每小题4分,共32分)二、填空题(共5道小题,每小题4分,共20分)9. -5 10. )(3)3(2-+a a 11. 圆锥 12. 2 13. k ≤1且k ≠0三、解答题(共9道小题,14题—20题每小题5分,21题6分,22题7分,共48 分) 14.解:原式23222221-⨯-+=.…………………………………………………………………4分.212-=………………………………………………………………………………5分15.解: 523(1)132x x x ->+⎧⎪⎨-≥⎪⎩ ①1 ②解① 得 x >25. …………………………………………………………………………2分解② 得 x ≤4. ……………………………………………………………………………4分 原不等式组的整数解为3和4. ……………………………………………………………5分16. 证明:∵AD ⊥BC ,∴∠BDF =∠ADC =90°. ……………………………………………………………………1分 ∴∠A +∠C =90°.又∵BE ⊥AC , ∴∠B +∠C =90°.∴∠B =∠A . …………………………………………………………………………………2分 又∵BF=AC ,…………………………………………………………………………………3分∴△BDF ≌△ADC . …………………………………………………………………………4分 ∴DF =DC . …………………………………………………………………………………5分17.解:设当日儿童票售出x 张,成人票售出y 张. ………………………………………………1分根据题意,得⎨⎧=+=+.290005030,700y x y x ……………………………………………………………………3分 解得⎩⎨⎧==.400,300y x …………………………………………………………………………………4分答:当日儿童票售出300张,成人票售出400张. ……………………………………………5分18. 解:(1)补图(图略); …………………………………………………………………………2分(2)155—160;…………………………………………………………………………………3分 (3)160 ;………………………………………………………………………………………4分 (4)如:该校七年级多数学生的身高达到或者超过区平均身高. ………………………5分(说明:其他合理解答均可)19.(1)根据题意,得4= x+2,解得x =2.∴A (2,4). 把A (2,4)代入xk y =,解得8=k . ∴xy 8=. …………………………………………2分(2)当0=y 时,02=+x ,2-=x .∴B (-2,0). ………………………………………3分 ∴OB =2.如图,作AC ⊥x 轴于点C ,∵A (2,4),∴AC =4. ∴S △AOB =.421=⋅⋅AC OB …………………………5分20.(1)证明:∵∠D =∠AEC ,∠AEC =∠ABC ,∴∠D =∠ABC . ………………………………………………………………………1分 ∵OF ⊥BC , ∴∠D +∠DBC =90°. ∴∠ ABC +∠DBC =90°.∴BD 是⊙O 的切线. ……………………………………………………………2分(2)解:如图,连接AC .∵ AB 是⊙O 的直径,∴∠ACB =90°.………………………………………3分 ∵∠ABC =∠D . ∴cos ∠ABC= cos D =54.即B C A B=54,……………………………………………4分∵BC =8,∴AB =10. …………………………………………5分21.解:(1)由2343+-=x y ,当0=y 时,解得2=x . ∴B (2,0).∵抛物线c x y +-=243经过点B (2,0),∴3=c .∴此抛物线的解析式为3432+-=x y .………………………………………………2分(2)C (1-,49). ………………………………………………………………………3分(3) 如图,作ND ⊥x 轴于点D ,由2343+-=x y 得E (0,23). ∴BE=25.由3432+-=x y 得A (-2,0). ∴AB=4.由题意,得AM =t ,BM =4-t ,BN =2t . 由△BND ∽△BEO ,得BE BN OEDN =.∴56t DN =. ………………………………………4分∴△MNB 的面积S 56)4(2121t t ND BM ⋅-⋅=⋅⋅=.∴t t S 512532+-=.…………………………………5分 即512)2(532+--=t S ,自变量t 的取值范围是0<t <4. t= 2时,512=最大S .…………………………………6分22. (1)证明:在矩形ABCD 中,∠A =∠FDM =90°.又∵AM =DM ,∠AME =∠DMF , ∴△AME ≌△DMF .∴ME =MF . ………………………………………2分 (2)解:如图,过点G 作GH ⊥AD 于点H .∴四边形ABGH 是矩形.∵△EGF 是等腰直角三角形, 由(1)得,ME =MF , ∴ME =MG , ∠EMG =90°.∴∠AME +∠DMG =∠HGM +∠DMG= 90°. ∴∠AME =∠HGM . 又∵∠A =∠MHG ,∴△AME ≌△HGM . ……………………………3分 ∴AM=HG . ∴AB=HG=AM=21AD=2. ………………………4分(3)解:如图,过点G 作GH ⊥AD ,交AD 的延长线于点H .∴四边形ABGH 是矩形.∵△EGF 是等边三角形,∠MEG =60°, 由(1)得,ME =MF , ∴∠EMG =90°.∴∠AME +∠HMG =∠AME +∠AEM = 90°. ∴∠AEM =∠HMG . 又∵∠A =∠AHG ,∴△AEM ∽△HGM . ……………………………5分 ∴EMMG AMGH =.∴tan ∠MEG=EMMG AMGH == tan 60°=3.又∵AM=21AD=2,∴AB=GH=23.…………………………………7分。
1、(2013年门头沟)24.已知:在△ABC 中,AB =AC ,点D 为BC 边的中点,点F 是AB 边上一点,点E 在线段DF 的延长线上,点M 在线段DF 上,且∠BAE =∠BDF ,∠ABE =∠DBM . (1) 如图1,当∠ABC =45°时,线段 DM 与AE 之间的数量关系是 ; (2) 如图2,当∠ABC =60°时,线段 DM 与AE 之间的数量关系是 ;(3)① 如图3,当ABC α∠=(0<<90α︒︒)时,线段 DM 与AE 之间的数量关系是;② 在(2)的条件下延长BM 到P ,使MP =BM ,连结CP ,若AB =7,AE=求sin ∠ACP 的值.2、(2013年丰台区)24.在ABC △中,∠ACB =90°,AC >BC ,D 是AC 边上的动点,E 是BC 边上的动点,AD =BC ,CD =BE .(1) 如图1,若点E 与点C 重合,连结BD ,请写出∠BDE 的度数;(2)若点E 与点B 、C 不重合,连结AE 、BD 交于点F ,请在图2中补全图形,并求出∠BFE的度数.3、(2013年平谷)24.(1)如图(1),△ABC 是等边三角形,D 、E 分别是AB 、BC 上的点,且BD CE =,连接AE 、CD 相交于点P .请你补全图形,并直接写出∠APD 的度数;=(2)如图(2),Rt △ABC 中,∠B =90°,M 、N 分别是AB 、BC 上的点,且,AM BC =BM CN =,连接AN 、CM 相交于点P . 请你猜想∠APM = °,并写出你的推理过程.A B CD EFMMFED CBA ACD EF M 图1图2图34、(2013年顺义)24.如图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合.三角板的一边交CD 于点F ,另一边交CB 的延长线于点.G (1)求证:EF EG =;(2)如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变, (1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)如图3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”,且使三角板的一边经过点B ,其他条件不变,若AB a =,BC b =,求EFEG的值. 5、(2013年石景山)24.如图,△ABC 中,∠90ACB =︒, 2=AC ,以AC 为边向右侧作等边三角形ACD .(1)如图24-1,将线段AB 绕点A 逆时针旋转︒60,得到线段1AB ,联结1DB ,则与1DB 长度相等的线段为 (直接写出结论);(2)如图24-2,若P 是线段BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,求ADQ ∠的度数;(3)画图并探究:若P 是直线BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,是否存在点P ,使得以 A 、 C 、 Q 、 D 为顶点的四边形是梯形,若存在,请指出点P 的位置,并求出PC 的长;若不存在,请说明理由.图24-1 图24-2B 1ABCD备用图 A D备用图AD6、(2013年海淀)24.在△ABC 中,∠ACB =90︒.经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于ABC ∠,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E .(1)若45ABC ∠=︒,CD =1(如图),则AE 的长为 ; (2)写出线段AE 、CD 之间的数量关系,并加以证明; (3)若直线CE 、AB 交于点F , 56CF EF =,CD =4,求BD 的长.7、(2013年西城)24.在Rt △ABC 中,∠ACB =90°,∠ABC =α,点P 在△ABC 的内部.(1) 如图1,AB =2AC ,PB =3,点M 、N 分别在AB 、BC 边上,则cos α=_______, △PMN 周长的最小值为_______;(2) 如图2,若条件AB =2AC 不变,而P A =2,PB =10,PC =1,求△ABC 的面积; (3) 若P A =m ,PB =n ,PC =k ,且cos sin k m n αα==,直接写出∠APB 的度数.8、(2013年通州)24.已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧.(1)如图,当∠ADB=60°时,求AB 及CD 的长;(2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小.9、(2013年东城)24. 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,若∠MBN =12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想,不用证明;问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD的延长线上,若∠MBN =12∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系?写出你的猜想,并给予证明.A DB C10、(2013年朝阳)24.在Rt △ABC 中,∠A =90°,D 、E 分别为AB 、AC 上的点.(1)如图1,CE =AB ,BD =AE ,过点C 作CF ∥EB ,且CF =EB ,连接DF 交EB 于点G ,连接BF ,请你直接写出EBDC 的值;(2)如图2,CE =kAB ,BD =kAE ,12EB DC =,求k 的值.11、(2013年密云)24.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,, 60B =︒∠. (1)点E 到BC 的距离为 ;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.图2B 图1FB图1图2图3A D EB FC ADE BF C (备用)A D EBF C(备用)A DEB FC P N MA DE BF CPN M12、(2013年延庆)25. (本题满分8分) 如图1,在四边形ABCD 中,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,分别与BA CD 、的延长线交于点M N 、,则BME CNE ∠=∠(不需证明).(温馨提示:在图1中,连结BD ,取BD 的中点H ,连结HE HF 、,根据三角形中位线定理,证明HE HF =,从而12∠=∠,再利用平行线性质,可证得BME CNE ∠=∠.) 问题一:如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB CD =,E F 、分别是BC AD 、的中点,连结EF ,分别交DC AB 、于点M N 、,判断OMN △的形状,请直接写出结论. 问题二:如图3,在ABC △中,AC AB >,D 点在AC 上,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,与BA 的延长线交于点G ,若60EFC ∠=°,连结GD ,判断AGD △的形状并证明.13、(2013年房山)24(1)如图1,△ABC 和△CDE 都是等边三角形,且B 、C 、D 三点共线,联结AD 、BE相交于点P ,求证: BE = AD .(2)如图2,在△BCD 中,∠BCD <120°,分别以BC 、CD 和BD 为边在△BCD 外部作等边三角形ABC 、等边三角形CDE 和等边三角形BDF ,联结AD 、BE 和CF 交于点P ,下列结论中正确的是 (只填序号即可)①AD=BE=CF ;②∠BEC=∠ADC ;③∠DPE=∠EPC=∠CP A =60°; (3)如图2,在(2)的条件下,求证:PB+PC+PD=BE .AB 第24题图1第24题图2AD。
北京市朝阳区九年级综合练习(一)数 学 试 卷 2011.5一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.3的绝对值是A .3B .-3C .31D .31- 2.2011年3月11日,里氏9.0级的日本大地震导致当天地球的自转时间减少了0.000 001 6 秒,将0.000001 6用科学记数法表示为 A .16×10-7 B .1.6×10-6 C .1.6×10-5 D .0.16×10-5 3.下列运算正确的是A. x 2+x 2 =2x 4B. x x x 232=÷C. x 4 · x 2 = x 6D. 235()x x =4.从分别标有A 、B 、C 的3根纸签中随机抽取一根,然后放回,再随机抽取一根,两次抽签的所有可能结果的树形图如下:那么抽出的两根签中,一根标有A ,一根标有C 的概率是 A .91 B .92 C .31 D .94 5.在某次射击训练中,甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中,成绩发挥比较稳定的是A.甲B.乙C.丙D.丁6.在下面的四个几何体中,左视图与主视图不一定相同的几何体是7.一元钱硬币的直径约为24mm ,则用它能完全覆盖住的正六边形的边长最大不能超过 A .12 mm B .123mm C .6mm D .63mm 8.已知二次函数y=ax 2+bx 的图象经过点A (-1,1),则ab 有 A .最大值 1 B .最大值2 C .最小值0 D .最小值41-A正方体长方体B 圆柱C 圆锥D二、填空题(本题共16分,每小题4分)9.在函数21+=x y 中,自变量x 的取值范围是______.10.分解因式2233ax ay -=______.11.如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =40°, 点D 是弧BAC 上一点,则∠D 的度数是______. 12.如图,P 为△ABC 的边BC 上的任意一点,设BC=a ,当B 1、C 1分别为AB 、AC 的中点时,B 1C 1=a 21, 当B 2、C 2分别为BB 1、CC 1的中点时,B 2C 2=a 43,当B 3、C 3分别为BB 2、CC 2的中点时,B 3C 3=a 87,当B 4、C 4分别为BB 3、CC 3的中点时,B 4C 4=a 1615,当B 5、C 5分别为BB 4、CC 4的中点时,B 5C 5=______, ……当B n 、C n 分别为BB n-1、CC n-1的中点时,则B n C n = ;设△ABC 中BC 边上的高为h ,则△PB n C n 的面积为______(用含a 、h 的式子表示). 三、解答题(本题共30分,每小题5分)13.计算: ()12130tan 32101+-+︒-⎪⎭⎫ ⎝⎛-π.14.已知0122=-+a a ,求)2)(2()1(3)2(2-++--+a a a a 的值.15.已知:如图,在梯形ABCD 中,AD ∥BC ,E 是AB 的中点,CE 的延长线与DA 的延长线相交于点F . (1)求证:△BCE ≌△AFE ;(2)连接AC 、FB ,则AC 与FB 的数量关系是 ,位置关系是 .B(第12题图)(第11题图)16.如图,一次函数y=kx +2的图象与x 轴交于点B ,与反比例函数xmy的图象的一个交 点为A (2,3). (1)分别求出反比例函数和一次函数的解析式;(2)过点A 作AC ⊥x 轴,垂足为C ,若点P 在反比例函数图象上,且△PBC 的面积等于18,求P 点的坐标.17.列方程或方程组解应用题:某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息: 信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元. 根据以上信息,原来报名参加的学生有多少人?18.如图,在矩形ABCD 中,AB =5,BC =4,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,求FC 的长.四、解答题(本题共20分,第19、20题每小题5分,第21题6分,第22题4分) 19.已知关于x 的方程 (m -1) x 2 - 2x + 1=0有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为非负整数,求抛物线y =(m -1)x 2 - 2x + 1的顶点坐标.20.2011年北京春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:消费者年收入统计表 消费者打算购买住房面积统计图请你根据以上信息,回答下列问题: (1)补全统计表和统计图;(2)打算购买住房面积小于100平方米 的消费者人数占被调查人数的百分 比为 ;(3)求被调查的消费者平均每人年收入 为多少万元?21.已知:如图,⊙O 的半径OC 垂直弦AB 于点H ,连接BC ,过点A 作弦AE ∥BC ,过点C 作CD ∥BA交EA 延长线于点D ,延长CO 交AE 于点F .(1)求证:CD 为⊙O 的切线;(2)若BC =5,AB =8,求OF 的长.22.阅读并操作:如图①,这是由十个边长为1的小正方形组成的一个图形,对这个图形进行适当分割(如图②),然后拼接成新的图形(如图③).拼接时不重叠、无空隙,并且拼接后新图形的顶点在所给正方形网格图中的格点上(网格图中每个小正方形边长都为1).图①图② 图③请你参照上述操作过程,将由图①所得到的符合要求的新图形画在下边的正方形网格图中.(1)新图形为平行四边形;(2)新图形为等腰梯形.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8,34tan=∠CAD,CA=CD,E、F分别是线段AD、AC上的动点(点E与点A、D不重合),且∠FEC=∠ACB,设DE=x,CF=y.(1)求AC和AD的长;(2)求y与x的函数关系式;(3)当△EFC为等腰三角形时,求x的值.24.已知抛物线()13)2(2++-+-=mxmxy.(1)求证:无论m为任何实数,抛物线与x轴总有交点;(2)设抛物线与y轴交于点C,当抛物线与x轴有两个交点A、B(点A在点B的左侧)时,如果∠CAB或∠CBA这两角中有一个角是钝角,那么m的取值范围是;(3)在(2)的条件下,P是抛物线的顶点,当△P AO的面积与△ABC的面积相等时,求该抛物线的解析式.25.已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为;(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.图①图②北京市朝阳区九年级综合练习(一) 数学试卷评分标准及参考答案2011.5一、选择题(本题共32分,每小题4分)1.A 2.B 3.C 4.B 5.D 6.B 7.A 8.D 二、填空题(本题共16分,每小题4分)9.2-≠x 10.))((3y x y x a -+ 11.50°12.a 3231,a n n 212-, ah n n 12212+- (注:前两空每空1分,第三空2分) 三、解答题(本题共30分,每小题5分) 13.解:原式=3213332++⨯- ………………………………………………… 4分 =33+. ………………………………………………………………… 5分 14.解:原式= 4334422-++-++a a a a ………………………………………… 3分 = 322++a a . …………………………………………………………… 4分 ∵0122=-+a a ,∴122=+a a .∴原式=1+3=4 . ………………………………………………………………… 5分15.(1)证明:∵AD ∥BC ,∴∠1 =∠F . …………………………… 1分 ∵点E 是AB 的中点,∴BE=AE. ……………………………… 2分 在△BCE 和△AFE 中,1=∠F ,∠3=∠2, BE=AE ,∴△BCE ≌△AFE. ……………………………………………………… 3分 (2)相等, ……………………………………………………………………………… 4分 平行. ……………………………………………………………………………… 5分 16. 解:(1)把A (2,3)代入xmy =,∴m=6. ∴xy 6=. ……………………………………………………………… 1分把A (2,3)代入y=kx+2, ∴322=+k . ∴21=k . ∴.221+=x y ………………………………………………………… 2分 (2)令0221=+x ,解得x=-4,即B (-4,0). ∵AC ⊥x 轴,∴C (2,0).∴ BC=6. ………………………………………………………………… 3分设P(x,y), ∵S △PBC=y BC ⋅⋅21=18, ∴y 1=6或y 2=-6. 分别代入xy 6=中, 得x 1=1或x 2=-1.∴P 1(1,6)或P 2(-1,-6). …………………………………………… 5分17.解:设原来报名参加的学生有x 人, ……………………………………………… 1分 依题意,得42480320=-xx . ……………………………………………… 2分 解这个方程,得 x=20. ……………………………………………… 3分 经检验,x=20是原方程的解且符合题意. …………………………………… 4分答:原来报名参加的学生有20人.…………………………………………… 5分18. 解:由题意,得AE=AB=5,AD=BC=4,EF=BF. …………………………………… 1分在Rt △ADE 中,由勾股定理,得DE=3. …………………………………… 2分 在矩形ABCD 中,DC=AB=5.∴CE=DC-DE=2. ………………………………………………………………… 3分 设FC=x ,则EF=4-x.在Rt △CEF 中,()22242x x -=+. .…………………………………………… 4分 解得23=x . ……………………………………………………………………… 5分 即FC=23.四、解答题(本题共20分,第19、20题每小题5分,第21题6分,第22题4分) 19. 解:(1)∵方程 (m-1) x 2 - 2x + 1=0有两个不相等的实数根,∴()()01422>---=∆m . ……………………………………………… 1分解得m<2. …………………………………………………………………… 2分∴m 的取值范围是m <2且m≠1. …………………………………………… 3分(2)由(1)且m 为非负整数,∴m=0. ………………………………………………………………………… 4分∴抛物线为y= -x 2 - 2x + 1= -(x+1)2+2.∴顶点(-1,2). ………………………………………………………………… 5分20.解:(1)50, ………………………… 1分 如图; ……………………… 2分(2)52%;…………………………3分 (3)100124912309506108.4⨯+⨯+⨯+⨯+⨯=7.5 (万元). ……………… 5分故被调查的消费者平均每人年收入为7.5万元.21.(1)证明:∵OC ⊥AB ,CD ∥BA ,∴∠DCF=∠AHF=90°.∴CD 为⊙O 的切线. ……………… 2分(2)解:∵OC ⊥AB ,AB =8,∴AH=BH=2AB =4.在Rt △BCH 中,∵BH=4,BC=5,∴CH=3. ……………………………… 3分 ∵AE ∥BC ,∴∠B=∠HAF. ∴△HAF ≌△HBC.∴FH=CH=3,CF=6. ………………………………………………………… 4分 连接BO ,设BO=x ,则OC=x ,OH=x-3.在Rt △BHO 中,由()22234x x =-+,解得625=x . …………………… 5分 ∴611=-=OC CF OF . .…………………………………………………… 6分22. 解:(1) (2)(注:每图2分)五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23.解:(1)∵AD ∥BC ,∠B=90°, ∴∠ACB=∠CAD.∴tan ∠ACB =tan ∠CAD=34. ∴34=BC AB .∵AB=8, ∴BC=6.则AC=10. ……………………………………………………1分 过点C 作CH ⊥AD 于点H ,∴CH=AB=8,则AH=6. ∵CA=CD,∴AD=2AH=12. .………………………………………………………………………2分 (2)∵CA=CD, ∴∠CAD=∠D.∵∠FEC=∠ACB ,∠ACB=∠CAD , ∴∠FEC=∠D.∵∠AEC=∠1+∠FEC=∠2+∠D , ∴∠1=∠2.∴△AEF ∽△DCE. ……………………………………………………………………3分∴AECDAF DE =,即x -1210y -10x =. ∴1056101y 2+-=x x . .……………………………………………………………4分 (3)若△EFC 为等腰三角形.①当EC=EF 时,此时△AEF ≌△DCE ,∴AE=CD.由12-x=10,得x=2. .…………………………………………………………………5分 ②当FC=FE 时,有∠FCE=∠FEC=∠CAE , ∴CE=AE=12-x.在Rt △CHE 中,由()()2228612+-=-x x ,解得311=x . …………………… 6分 ③当CE=CF 时,有∠CFE=∠CEF=∠CAE ,此时点F 与点A 重合,故点E 与点D 也重合,不合题意,舍去. …………………7分 综上,当△EFC 为等腰三角形时,x=2或311=x . 24. (1)证明:∵()()()131422+⨯-⨯--=∆m m …………………………………………1分()042≥+=m …………………………………………………………… 2分∴无论m 为任何实数,抛物线与x 轴总有交点.(2)m <-1且m≠-4. ……………………………………………………………………… 3分 (3)解:令()013)2(2=++-+-=m x m x y ,解得x 1=m+1,x 2=-3. …………………………………………………………………………4分可求得顶点()⎪⎪⎭⎫⎝⎛+-44,222m m P .①当A(m+1,0)、B(-3,0)时, ∵ABC PAO S S ∆∆=,∴()()()()13421441212+⨯--=+⨯+m m m m .……………………………………………5分 解得16-=m .∴45182---=x x y .…………………………………………………………………………6分 ②当A(-3,0)、B(m+1,0)时,同理得()()()[]13421443212+-⨯+=+⨯⨯m m m .…………………………………………7分 解得58-=m . ∴595182---=x x y .…………………………………………………………………………8分 25. (1)BD=2BM. ……………………………………………………………………………2分 (2)结论成立.证明:连接DM ,过点C 作CF ∥ED ,与DM 的延长线交于点F ,连接BF , 可证得△MDE ≌△MFC.………………………………… 3分 ∴DM=FM, DE=FC.∴AD=ED=FC. 作AN ⊥EC 于点N.由已知∠ADE=90°,∠ABC=90°,可证得∠1=∠2, ∠3=∠4.……………………………4分 ∵CF ∥ED ,∴∠1=∠FCM.∴∠BCF=∠4+∠FCM =∠3+∠1=∠3+∠2=∠BAD.∴△BCF ≌△BAD. …………………………………………………………………………5分 ∴BF=BD ,∠5=∠6.∴∠DBF=∠5+∠ABF=∠6+∠ABF=∠ABC=90°.∴△DBF 是等腰直角三角形. ………………………………………………………………6分 ∵点M 是DF 的中点, 则△BMD 是等腰直角三角形.∴BD=2BM. ……………………………………………………………………………… 7分 (说明:以上答案仅供参考,若有不同解法,只要过程和解法都正确,可相应给分.)感谢你的欣赏感谢你的欣赏。
新世纪教育网精选资料 版权全部 @新世纪教育网九年级综合水平质量调研数学试卷2013.3学校 ___________________ 班级 _______________姓名 ________________ 学号 _____________考1. 本试卷共 8 页,共五道大题, 25 道小题,满分 120 分,考试时间 120 分钟 .生 2. 在试卷和答题卡上正确填写学校.班级.姓名.学号.须3. 试题答案一律填涂或书写在 答题卡 上,在试卷上作答无效 .知4. 考试结束,请将本试卷和答题卡一并交回.注 意 1 . 考生要按规定的要求在机读答题卡上作答,题号要对应,填涂要规范.事项 2 . 考试结束后,试卷和机读答题卡由监考人一并回收.第一卷(机读卷 32 分)一 1.4 的算术平方根是选 A . 2B .± 2C . 16D .± 16择2. 如图,已知 △ ABC 为直角三角形, ∠ C=90°,若 C题 沿图中虚线剪去∠ C , 则∠ 1+∠ 2 等于D本 A.90°B. 135 °E12题C. 150 °D. 270 °BA32第 2分题图,3.布袋中装有 1 个红球, 2 个白球, 3 个黑球,它们除颜色外完好同样,从袋中任每 小 意摸出一个球,摸出的球是白球..的概率是题 A .1B .1C . 1D .543626分4.某班的 9 名同学的体重分别是(单位:千克): 61,59, 70,59, 65,67,59,63,57,这组数据的众数和中位数分别是A . 59,61B .59,63C . 59, 65D . 57,61 5.全世界可被人类利用的淡水总量仅占地球上总水量的 0.00003 ,所以珍惜水、保护 水,是我们每一位公民当仁不让的责任.此中数字 0.00003 用科学记数法表示为A .3 10 4B .3 10 5C .0.310 4D .0.3 10 56.如图,模块①-⑤均由 4 个棱长为 1 的小正方体构成,模块⑥由 15 个棱长为 1的小正方体构成 .现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为 3 的大正方体 . 则以下选择方案中,能够达成任务的为新世纪教育网精选资料版权全部@新世纪教育网一选择题本题32分,每小题4分A.模块②,④,⑤B.模块①,③,⑤C.模块①,②,⑤D.模块③,④,⑤7.如图,两个齐心圆,大圆的弦 AB与小圆相切于点 P,大圆的弦CD经过点 P,且 CD=13, PC=4,则两圆构成的圆环的面积是A.16πB.36πC.52πD.81π第 7题图8. 矩形 ABCD 中,AD8cm, AB 6cm .动点E从点C开始沿边 CB 向点B以 2cm/s 的速度运动至点 B 停止,动点 F从点 C 同时出发沿边CD 向点 D 以 1cm/s 的速度运动至点D停止.如图可获得矩形CFHE ,设运动时间为 x(单位: s),此时矩形 ABCD 去掉矩形 CFHE 后节余部分的面积为y(单位: cm2) ,则 y 与 x 之间的函数关系用图象表示大概是以下图第 8题图中的注 1.第Ⅱ卷包含 4 道填空和 13 道解答,共 8 . 答前要真,看清目意要求,按要求真作答.事2.答笔迹要工整,画要清楚,卷面要整.3.考生除画能够用笔外,答必用色或黑色笔、珠笔.二填空本共16分,每小4分三解答本第二卷(非机读卷88 分)9.若分式 x 24的 0, x 的.x210.如,点 A、 B 、C是半径6的⊙O上的点,BB 30,AC 的_____________.AOC第 10如,在△ ABC 中, D、 E 分 AB、 AC 上的点, DE∥A 11.BC.若 AD =3, DB= 5,DE = 1.2, BC=.D EB C第 1112. 如,在ABC 中,A,ABC 的平分与ACD 的均分交于点A,得 A,11A1=. A1 BC 的均分与A1CD 的均分交于点A2,得A2,⋯⋯,A2009 BC 的均分与A2009CD的均分第 12交于点 A2010,得 A2010,A2010=.13.(本小 5 分)( 3 1)04sin6027题14. (本小题 5 分)共3x1430解不等式组x,并把它的解集表示在数轴上.2x2分,每小题5分15. (本小题 5 分)A D如图, E、F 是平行四边形ABCD 对角线 AC E上两点, BE ∥ DF ,求证:AF CE 。
2013朝阳中考数学二模试题及答案北京市朝阳区九年级综合练习(二)数学试卷2013.6学校班级姓名考生须知1.本试卷共6页,共五道大题,25道小题,满分120分. 考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其它试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.-2的绝对值是A.-2 B.12-C.12D.2是.长方形的是7. 某校篮球课外活动小组21名同学的身高如下表 则该篮球课外活动小组21名同学身高的众数和中位数分别是A .176,176 B.176,177C .176,178D .184,1788.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第 3格、第4格、第5格,此时这个正方体朝上..一面的字是A .我B .的C .梦D .中身高(c m ) 170 176 178 182 184人数46542二、填空题(本题共16分,每小题4分) 9.在函数23yx 中,自变量x 的取值范围是 .10.分解因式:32242xx x= .11.如图,在⊙O 中,直径CD AB 于点E ,点F 在弧AC 上,若∠BCD =32°,则∠AFD 的度数为 . 12.如图,在平面直角坐标系xOy 中,直线AB与x 、y 轴分别交于点A 、B ,且A (-2,0),B (0,1),在直线 AB 上截取BB 1=AB ,过点B 1分别作x 、y 轴的垂线,垂足分别为点A 1 、C 1,得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别作x 、y 轴的垂线,垂足分别为点A 2 、C 2,得到矩形OA 2B 2C 2;在直线 AB 上截取B 2B 3= B 1B 2,过点B 3分别作x 、y 轴的垂线,垂足分别为点A 3 、C 3,得到矩形OA 3B 3C 3;……则第3个矩形yxA 2A 3C 3C 2A 1C 1O B3B 2B 1BAOA 3B 3C 3的面积是 ;第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共30分,每小题5分) 13.计算:()219342452-⎛⎫︒ ⎪⎝⎭.14.计算:2312()111x x x -÷-+- .15.如图,为了测量楼AB 的高度,小明在点C 处测得楼AB 的顶端A 的仰角为30º,又向前走了20米后到达点D ,点B 、D 、C 在同一条直线上,并在点D 测得楼AB 的顶端A 的仰角为60º,求楼AB 的高.16.已知:如图,E 、F 为BC 上的点,BF=CE ,点A 、D 分别在BC的两侧,且AE ∥DF ,AE =DF . 求证:AB ∥CD .17.如图,在平面直角坐标系xOy 中,一次函数y kx=-2的图象与x 、y 轴分别交于点A 、B ,与反比例函数32y x =-(x <0)的图象交于点y xMAO FDBE3()2M n -,.(1)求A 、B 两点的坐标;(2)设点P 是一次函数y kx =-2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.18.某新建小区要铺设一条全长为2200米的污水排放管道,为了尽量减少施工对周边居民所造成的影响,实际施工时,每天铺设的管道比原计划增加10%,结果提前5天完成这一任务,原计划每天铺设多少米管道?四、解答题(本题共20分,每小题5分) 19.如图,在平行四边形ABCD 中,AD = 4,∠DFAB =105º,E 是BC 边的中点,∠BAE =30º,将△ABE 沿AE 翻折,点B 落在点F 处,连接FC ,求四边形ABCF 的周长.20.如图,在△ABC 中,AC=BC ,D 是BC 上的一点,且满足∠BAD =12∠C ,以AD 为直径的⊙O 与AB 、AC 分别相交于点E 、F .(1)求证:直线BC 是⊙O 的切线;(2)连接EF ,若tan ∠AEF =43,AD =4,求BD 的长.21.今年“五一”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况.调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.F EOB(注:每组数据含最小值,不含最大值)根据以上提供的信息,解答下列问题:(1)频数分布表中的a = ,b = ;(2)补全频数分布直方图;(3)请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?分组频数 频率1100~13002 0.050 1300~15006 0.150 1500~170018 0.450 1700~19009 0.225 1900~2100a b 2100~23002 0.050合计401.0004 8 12 16 20 (户(元)教育支出频教育支出频数22.阅读下列材料:小华遇到这样一个问题,如图1, △ABC 中,∠ACB =30º,BC =6,AC =5,在△ABC 内部有一点P ,连接PA 、PB 、PC ,求PA +PB +PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,DABP图2AB图3ACB P图1就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC 绕点C顺时针旋转60º,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,PA+PB+PC的最小值为;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60º,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA+PB+PC值最小时PB的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的一元二次方程x2 (4 m)x 1 m = 0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是 3,在平面直角坐标系xOy中,将抛物线y x2 (4 m)x 1 m向右平移3个单位,得到一个新的抛物线,当直线y x b与这个新抛物线有且只有一个公共点时,求b的值.24.如图,在平面直角坐标系xOy中,抛物线y ax 2 bx 4与x 轴交于点A ( 2,0)、B (6,0),与y 轴交于点C ,直线CD ∥x轴,且与抛物线交于点D ,P 是抛物线上一动点.(1)求抛物线的解析式;(2)过点P 作PQ ⊥CD 于点Q ,将△CPQ绕点C 顺时针旋转,旋转角为α(0º﹤α﹤90º),当cos α=35,且旋转后点P 的对应点'P 恰好落在x 轴上时,求点P 的坐标.y xBAD C O备用图yxBA D CO25. 在□ABCD 中,E 是AD 上一点,AE =AB ,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG .(1)如图1,当EF 与AB 相交时,若∠EAB =60°,求证:EG =AG +BG ;(2)如图2,当EF 与AB 相交时,若∠EAB =α(0º﹤α﹤90º),请你直接写出线段EG 、AG 、BG 之间的数量关系(用含α的式子表示);(3)如图3,当EF 与CD 相交时,且∠EAB =90°,请你写出线段EG 、AG 、BG 之间的数量关系,并证明你的结论.图DG图DG F图DA GF北京市朝阳区九年级综合练习(二)数学试卷参考答案2013.6一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案 DBCDBBCA二、填空题(本题共16分,每小题4分) 9. x ≥23 10. 22(1)x x 11. 32° 12.24,2n 2+2n三、解答题(本题共30分,每小题5分) 13. 解:)219342452-⎛⎫︒⎪⎝⎭24312……………………………………………………4分1. ………………………………………………………………………5分14. 解:2312111x x x()()3(1)11(1)1(1)x x x x x x ⎡⎤++=-⎢⎥+-+-⎣⎦221x ………………………………2分()()2242111x x x x +=÷+--…………………………………………………………………3分()()()()1124112x x x x x +-+=⋅+-…………………………………………………………4分2x =+.……………………………………………………………………………………5分15. 解: 由题意可知∠ACB =30°,∠ADB =60°,CD =20,在Rt △ABC 中,()3tan 30=20AB BC BD =⋅︒+.………………………………1分在Rt △ABD 中,tan 60=3AB BD BD =⋅︒………………………………………2分∴()3BD BD +,……………………………………203……………………3分∴BD=.………………………………………………10…………………………4分∴AB=.……………………………………………103………………………5分16. 证明:∵AE∥DF,∴∠AEB=∠DFC. ………………………………………………………………1分∵BF=CE,∴BF+EF=CE+EF.即BE=CF. ………………………………………………………………………2分在△ABE和△DCF中,AE DFAEB DFCBE CF∴△ABE≌△DCF. ………………………………………………………………3分 ∴∠B =∠C . ………………………………………………………………………4分∴AB ∥CD . … ……………………………………………………………………5分17. 解:(1)∵点3()2M n -,在反比例函数32y x =-(x <0)的图象上,∴1n .…………………………………………………………………………1分∴3()2M -,1. ∵一次函数y kx =-2的图象经过点3()2M -,1,∴3122k . ∴2k .∴一次函数的解析式为22y x =--. ∴A (-1,0),B (0,-2) . ………………………………………………………3分(2)P 1(-3,4),P 2(1,-4) . ………………………………………………………5分18. 解:设原计划每天铺设x 米管道.…………………………………………………1分由题意,得220022005(110%)x x=++ ……………………………………………3分解得40x =. ……………………………………………………………4分经检验40x =是原方程的根. …………………………………………………5分答:原计划每天铺设40米管道.四、解答题(本题共20分,每小题5分) 19.解:作BG ⊥AE ,垂足为点G , ∴∠BGA =∠BGE =90º.在平行四边形ABCD 中,AD = 4,∵E 是BC 边的中点, ∴11 2.22BE EC BC AD ====……………………………………………………1分∵∠BAE =30º,∠ABC =105º, ∴∠BEG =45º.由已知得△ABE ≌△AFE .∴AB =AF ,BE =FE ,∠BEF =90º. 在Rt △BGE 中, BG =GE 2.……… ………………………………………………………………2分在Rt △ABG 中, ∴AB =AF =2 2.………………………………………………………………………3分在Rt △ECF 中,222 2.FC EF EC =+= ………………………………………………… ……4分∴四边形ABCF 的周长4 2.+……………………………………………………5分20. (1)证明:在△ABC 中,∵AC=BC ,∴∠ CAB = ∠B .∵∠ CAB +∠B +∠C =180º,GFC B∴2∠B+∠C=180º.∴1B C=290º. ……………………………………………………1分∵∠BAD=1∠C,2∴B BAD=90º.∴∠ADB=90º.∴AD⊥BC.∵AD为⊙O直径的,∴直线BC是⊙O的切线.…………………………………………………2分(2)解:如图,连接DF,∵AD是⊙O的直径,∴∠AFD = 90º. ……………………………………………………………………3分∵∠ADC=90º,∴∠ADF+∠FDC=∠CD+∠FDC=90º.∴∠ADF=∠C. …………………………………………………………………4分∵∠ADF =∠AEF ,tan ∠AEF =43, ∴tan ∠C =tan ∠ADF =43在Rt △ACD 中,设AD =4x ,则CD =3x .∴225.AC AD DC x +=∴BC =5x ,BD =2x . ∵AD =4, ∴x =1. ∴BD =2. …………………………………………………………………………5分 21.解:(1)a =3,FE OBb=0.075;……………………………………………………………2分(2)………………………3分(3)500(0.050.15)100⨯+=.所以该小区家庭中,教育支出不足1500元的家庭大约有100户.…………5分21.解:(1)61………………………………………………………………………………1分A(2)①如图,…………………………………………2分BD;……………………………………………………………………………3分(343. …………………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. (1)证明:∵△=()()2---.………………………………………441m m………1分=2412-+m m=()228m-+…………………………………………………………2分∴△>0.…………………………………………………………………3分∴无论m 取何值,方程总有两个不相等的实数根.(2)把x =-3代入原方程,解得m =1. …………………………………………………4分∴23y x x=+.即23924y x ⎛⎫=+-⎪⎝⎭.依题意,可知新的抛物线的解析式为239'24y x ⎛⎫=--⎪⎝⎭. ………………………5分即2'3y xx=+∵抛物线'y 与直线y x b =+只有一个公共点,∴23x x x b-=+..…………………………………………………………………6分即240xx b --=. ∵△=0. ∴()()2440b --⨯-=.解得b =-4. ……………………………………………………………………7分 24. 解:(1)根据题意得424036640a b a b -+=⎧⎨++=⎩,.…………………………………………………………1分 解得1343a b ⎧=-⎪⎪⎨⎪=⎪⎩,.所以抛物线的解析式为214433y x x =-++.………………………………2分(2)如图1,过点Q 的对应点'Q 作EF ⊥CD 于点E ,交x 轴于点F .设P (x ,y ),则CQ = x ,PQ =4- y . 由题意可知'CQ = CQ = x ,''P Q =PQ =4-y ,∠CQP =∠C ''Q P =90°.∴'''''QCQ CQ E P Q F CQ E ∠+∠=∠+∠=90°. ∴'''P Q F QCQ α∠=∠=.……………………………………………………3分又∵cos α=35,∴4'5EQ x = ,3'(4)5FQ y =-.y EQCP∴43(4)455x y +-=. ∵214433y xx =-++, 整理可得2145x=.∴125x =225x=-.∴85-8(25P ,.………………………………………………………………5分 如图2,过点Q 的对应点'Q 作EF ⊥CD 于点E ,交x 轴于点F .设P (x ,y ),则CQ =- x ,PQ =4- y . 可得'''P Q F QCQ α∠=∠=.……………………………………………………6分又∵cos α=35,∴4'5EQ x =- ,3'5FQ =. ∴434(4)55x y -+=-. ∵214433y xx =-++, 整理可得2145x=.∴125x =,225x =-∴yxEF P'Q'BAQ DC OP85+8(25P -,.……………………………………………………………7分∴85-8(25)P ,或85+8(25P -,.25. 解:(1)证明:如图,作∠GAH =∠EAB 交GE 于点H .∴∠GAB =∠HAE . ………………………………………………………………1分∵∠EAB =∠EGB ,∠APE =∠BPG , ∴∠ABG =∠AEH. ∵又AB =AE ,∴△ABG ≌△AEH . ………………2分∴BG =EH ,AG =AH . ∵∠GAH =∠EAB =60°, ∴△AGH 是等边三角形. ∴AG =HG . ∴EG=AG +BG . …………………………………………………………………3分PH D G F(2) 2sin .2EG AG BG α=+…………………………………………………………5分(3)2.EG AG BG -……………………………………………………………6分如图,作∠GAH =∠EAB 交GE于点H .∴∠GAB =∠HAE .∵∠EGB =∠EAB =90°, ∴∠ABG +∠AEG =∠AEG +∠AEH =180°.∴∠ABG =∠AEH .∵又AB =AE ,∴△ABG ≌△AEH . ………………7分∴BG =EH ,AG =AH .∵∠GAH =∠EAB =90°, ∴△AGH 是等腰直角三角形. 2=HG . ∴HEDG-…………………………………………EG AG BG2.………………8分说明:各解答题其它正确解法请参照给分.九年级数学试卷第31页(共6页)。
北京市朝阳区2013年中考数学一模试卷一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.2.(4分)(2013•朝阳区一模)中国航空母舰“辽宁号”的满载排水量为67500吨.将数675003.(4分)(2013•朝阳区一模)把4张形状、质地完全相同的卡片分别写上数字1,2,3,4,再将这些卡片放在一个不透明的盒子里,随机从中抽取1张卡片,则抽取的卡片上的数字为B∴抽取的卡片上的数字为奇数的概率是=4.(4分)(2013•朝阳区一模)北京2013年3月的一周中每天最高气温如下:7,13,15,5.(4分)(2013•朝阳区一模)如图所示,直线l1∥l2,∠1=40°,则∠2为()6.(4分)(2013•朝阳区一模)如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()==47.(4分)(2013•朝阳区一模)二次函数y=(x ﹣1)2+3的顶点在( )y=8.(4分)(2013•朝阳区一模)如图,矩形ABCD 的两条对角线相交于点O ,∠BOC=120°,AB=3,一动点P 以1cm/s 的速度延折线OB ﹣BA 运动,那么点P 的运动时间x (s )与点C 、O 、P 围成的三角形的面积y 之间的函数图象为( )BAB=•=•二.填空题(共5道小题,每小题4分,共20分)9.(4分)(2013•朝阳区一模)如果2是方程x2﹣mx+6=0的一个根,那么m=5.10.(4分)(2013•朝阳区一模)因式分解:2x2﹣18=2(x+3)(x﹣3).11.(4分)(2013•朝阳区一模)侧面展开图是矩形的简单几何体是圆柱,棱柱.12.(4分)(2013•朝阳区一模)如图所示,菱形ABCD的一条对角线BD上一点O到菱形一边AB的距离为3,那么O点到另外一边BC的距离为3.13.(4分)(2013•朝阳区一模)若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是k≤1且k≠0.三.解答题(共9道小题,14题-20题每小题5分,21题6分,22题7分,共48分)14.(5分)(2013•朝阳区一模)计算:(1﹣)0+﹣2sin45°﹣()﹣1.﹣×﹣=﹣15.(5分)(2013•朝阳区一模)求不等式组的整数解.则不等式组16.(5分)(2013•朝阳区一模)如图所示,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,且BF=AC.求证:DF=DC.17.(5分)(2013•朝阳区一模)动物园的门票售价:成人票每张50元,儿童票每张30元.某日动物园售出门票700张,共得29000元.求成人票和儿童票各售出多少张.,解得18.(5分)(2013•朝阳区一模)某学校为了解该校七年级学生的身高情况,抽样调查了部分同学身高,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):(1)请根据所提供的信息补全频数分布直方图;(2)写出该样本中,七年级学生身高的中位数所在组的范围;155~160cm;(3)如果该校七年级共有500名学生,那么估计该校七年级身高在160cm及160cm以上的学生共有160人;(4)若该校所在区的七年级学生平均身高为155cm,请结合以上信息,对该校七年级学生的身高情况提出一个你的见解.19.(5分)(2013•朝阳区一模)已知:一次函数y=x+2与反比例函数y=相交于A、B两点且A点的纵坐标为4.(1)求反比例函数的解析式;(2)求△AOB的面积.y=得,y=组成方程组得,,,×4+20.(5分)(2013•朝阳区一模)如图,AB为⊙O的直径,BC是弦,OE⊥BC,垂足为F,且与⊙O相交于点E,连接CE、AE,延长OE到点D,使∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)若cosD=,BC=8,求AB的长.都对BF=CF=ABC=,=521.(6分)(2013•朝阳区一模)如图,抛物线y=﹣x2+c与x轴分别交于点A、B,直线y=﹣x+过点B,与y轴交于点E,并与抛物线y=﹣x2+c相交于点C.(1)求抛物线y=﹣x2+c的解析式;(2)直接写出点C的坐标;(3)若点M在线段AB上以每秒1个单位长度的速度从点A向点B运动(不与点A、B 重合),同时,点N在射线BC上以每秒2个单位长度的速度从点B向点C运动.设点M 的运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?=x+过点﹣)联立抛物线及直线解析式可得:或,,)BE==EBO=,EBO==(×t=t t=((.﹣t最大面积是22.(7分)(2013•朝阳区一模)在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,则AB=2.=cot60,== HG=AM=2=cot60===AM=2 AB=HG=2.。
北京市朝阳区九年级综合练习(一)语文试卷 2008.5第Ⅰ卷(共60分)一、选择题,完成第1—5题。
下面各题均有四个选项,其中只有一个符合题意,请将该答案的字母序号填在题干后的括号内。
(共10分)1.下面加点字读音有误的是( )(2分)A. 忌讳.(hu ì) 干涸.(h é) 谆.谆教诲(zh ūn )B. 游弋.(y ì) 自诩.(y ǔ) 言简意赅.(g āi )C. 蹒.跚(pán) 修葺.(q ì) 断壁残垣.(yu án )D. 侥.幸(ji ǎo ) 执拗.(ni ù) 载.歌载舞(z ài )2.根据成语解说,在横线处填写的汉字不正确的是( ) (2分)A .完 归赵蔺相如到秦国献美玉时,见秦王无意给赵国城池,便派人把美玉完好无损地送回赵国。
比喻将原物完好无损地归还原主。
横线处应填“璧”字。
B .守 待兔一农夫见一只兔子撞在树桩上死了,便捡回家。
以后他便每天守着树桩,希望再捡到兔子。
比喻心存侥幸,不劳而获。
横线处应填“株”字。
C .闻鸡起东晋时,祖逖和刘琨互相勉励,立志为国效力,半夜听到鸡鸣就起床练剑。
形容有志之士及时发奋,刻苦自励。
横线处应填“武”字。
D.破沉舟项羽跟秦兵打仗,过河后把锅都打破,船都沉弃,营房烧毁,表示不再回来。
现比喻下决心,不顾一切干到底。
横线处应填“釜”字。
3.下面文字是对“微笑北京”主题活动的介绍。
在横线处填入恰当的词语,正确的是()(2分)在开展“微笑北京”主题活动中,北京团市委推出了佩戴奥运志愿五色“微笑圈”的活动。
随着红、黑、绿、黄、蓝五色“微笑圈”越来越为人们所熟知并佩戴,整个活动的知晓率和参与率都在不断上升。
志愿服务奥运也是我们中学生的责任,我们将用微笑迎接八方来客。
A. 首当其冲B.不言而喻C. 义不容辞D.当之无愧4.填入下列文字横线处的语句,与上文衔接最恰当的是()(2分)精读之外,还需要略读。
2013北京市朝阳区初三(一模)数学一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)﹣3的倒数是()A.3 B.C.﹣D.﹣32.(4分)“厉行勤俭节约,反对铺张浪费”势在必行.最新统计数据显示,中国每年浪费食物总量折合为粮食大约是200000000人一年的口粮.将200000000用科学记数法表示为()A.2×108B.2×109C.0.2×109D.20×1073.(4分)若一个正多边形的一个外角是72°,则这个正多边形的边数是()A.10 B.9 C.8 D.54.(4分)如图,AB∥CD,E是AB上一点,EF平分∠BEC交CD于点F,若∠BEF=70°,则∠C的度数是()A.70°B.55°C.45°D.40°5.(4分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率为()A.B.C.D.6.(4分)把方程x2+6x+3=0化成(x+n)2=m的形式,正确的结果为()A.(x+3)2=6 B.(x﹣3)2=6 C.(x+3)2=12 D.(x+6)2=337.(4分)某校春季运动会上,小刚和其他16名同学参加了百米预赛,成绩各不相同,小刚已经知道了自己的成绩,如果只取前8名参加决赛,他想知道自己能否进入决赛,还需要知道所有参加预赛同学成绩的()A.平均数B.众数C.中位数D.方差8.(4分)如图,将一张三角形纸片ABC折叠,使点A落在BC边上,折痕EF∥BC,得到△EFG;再继续将纸片沿△BEG的对称轴EM折叠,依照上述做法,再将△CFG折叠,最终得到矩形EMNF,折叠后的△EMG和△FNG的面积分别为1和2,则△ABC的面积为()二、填空题(本题共16分,每小题4分)新课9.(4分)在函数中,自变量x的取值范围是.10.(4分)分解因式:m3﹣m=.11.(4分)如图,AB为⊙O的弦,半径OC⊥AB于点D,AB=,∠B=30°,则△AOC的周长为.12.(4分)在平面直角坐标系xOy中,动点P从原点O出发,每次向上平移1个单位长度或向右平移2个单位长度,在上一次平移的基础上进行下一次平移.例如第1次平移后可能到达的点是(0,1)、(2,0),第2次平移后可能到达的点是(0,2)、(2,1)、(4,0),第3次平移后可能到达的点是(0,3)、(2,2)、(4,1)、(6,0),依此类推….我们记第1次平移后可能到达的所有点的横、纵坐标之和为l1,l1=3;第2次平移后可能到达的所有点的横、纵坐标之和为l2,l2=9;第3次平移后可能到达的所有点的横、纵坐标之和为l3,l3=18;按照这样的规律,l4=;l n=(用含n的式子表示,n是正整数).三、解答题(本题共30分,每小题5分)13.(5分)计算:.14.(5分)求不等式x+1>3(x﹣1)的非负整数解.15.(5分)已知x2﹣2x﹣7=0,求(x﹣2)2+(x+3)(x﹣3)的值.16.(5分)已知:如图,OP平分∠MON,点A、B分别在OP、ON上,且OA=OB,点C、D分别在OM、OP上,且∠CAP=∠DBN.求证:AC=BD.17.(5分)如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A(﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.18.(5分)北京地铁6号线正式运营后,家住地铁6号线附近的小李将上班方式由自驾车改为了乘坐地铁,这样他从家到达上班地点的时间缩短了0.3小时.已知他从家到达上班地点,自驾车时要走的路程为17.5千米,而改乘地铁后只需走15千米,并且他自驾车平均每小时走的路程是乘坐地铁平均每小时所走路程的.小李自驾车从家到达上班地点所用的时间是多少小时?四、解答题(本题共20分,每小题5分)19.(5分)如图,在四边形ABCD中,∠D=90°,∠B=60°,AD=6,AB=,AB⊥AC,在CD上选取一点E,连接AE,将△ADE沿AE翻折,使点D落在AC上的点F处.求:(1)CD的长;(2)DE的长.20.(5分)如图,⊙O是△ABC是的外接圆,BC为⊙O直径,作∠CAD=∠B,且点D在BC的延长线上.(1)求证:直线AD是⊙O的切线;(2)若sin∠CAD=,⊙O的直径为8,求CD长.21.(5分)“2012年度中国十大科普事件”今年4月份揭晓,“PM2.5被写入‘国标’,大气环境质量广受瞩目”名列榜首.由此可见,公众对于大气环境质量越来越关注,某市对该市市民进行一项调查,以了解PM2.5浓度升高时对人们户外活动是否有影响,并制作了统计图表的一部分如下:对于户外活动公众的态度百分比A.没有影响2%B.影响不大,还可以进行户外活动pC.有影响,减少户外活动42%D.影响很大,尽可能不去户外活动mE.不关心这个问题6%(1)结合上述统计图表可得:p=,m=;(2)根据以上信息,请直接补全条形统计图;(3)若该市约400万人,根据上述信息,请你估计一下持有“影响很大,尽可能不去户外活动”这种态度的约有多少万人.(说明:“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,也称可入肺颗粒物)22.(5分)阅读下面材料:小雨遇到这样一个问题:如图1,直线l1∥l2∥l3,l1与l2之间的距离是1,l2与l3之间的距离是2,试画出一个等腰直角三角形ABC,使三个顶点分别在直线l1、l2、l3上,并求出所画等腰直角三角形ABC 的面积.小雨是这样思考的:要想解决这个问题,首先应想办法利用平行线之间的距离,根据所求图形的性质尝试用旋转的方法构造全等三角形解决问题.具体作法如图2所示:在直线l1任取一点A,作AD⊥l2于点D,作∠DAH=90°,在AH上截取AE=AD,过点E作EB⊥AE交l3于点B,连接AB,作∠BAC=90°,交直线l2于点C,连接BC,即可得到等腰直角三角形ABC.请你回答:图2中等腰直角三角形ABC的面积等于.参考小雨同学的方法,解决下列问题:如图3,直线l1∥l2∥l3,l1与l2之间的距离是2,l2与l3之间的距离是1,试画出一个等边三角形ABC,使三个顶点分别在直线l1、l2、l3上,并直接写出所画等边三角形ABC的面积(保留画图痕迹).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)二次函数的图象与x轴只有一个交点;另一个二次函数的图象与x轴交于两点,这两个交点的横坐标都是整数,且m是小于5的整数.求:(1)n的值;(2)二次函数的图象与x轴交点的坐标.24.(7分)在Rt△ABC中,∠A=90°,D、E分别为AB、AC上的点.(1)如图1,CE=AB,BD=AE,过点C作CF∥EB,且CF=EB,连接DF交EB于点G,连接BF,请你直接写出的值;(2)如图2,CE=kAB,BD=kAE,,求k的值.25.(8分)如图,二次函数y=ax2+2ax+4的图象与x轴交于点A、B,与y轴交于点C,∠CBO的正切值是2.(1)求此二次函数的解析式.(2)动直线l从与直线AC重合的位置出发,绕点A顺时针旋转,与直线AB重合时终止运动,直线l与BC交于点D,P是线段AD的中点.①直接写出点P所经过的路线长.②点D与B、C不重合时,过点D作DE⊥AC于点E、作DF⊥AB于点F,连接PE、PF,在旋转过程中,∠EPF的大小是否发生变化?若不变,求∠EPF 的度数;若变化,请说明理由.③在②的条件下,连接EF,求EF的最小值.数学试题答案一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.【解答】200 000 000=2×108,故选A.3.【解答】这个正多边形的边数:360°÷72°=5.故选:D.4.【解答】∵EF平分∠BEC交CD于点F,∠BEF=70°,∴∠BEC=2∠BEF=2×70°=140°,∵AB∥CD,∴∠C=180°﹣∠BEC=180°﹣40°=40°.故选D.5.【解答】正方体骰子共六个面,点数为1,2,3,4,5,6,奇数为1,3,5,故点数为奇数的概率为=.故选:A6.【解答】∵x2+6x=﹣3,∴x2+6x+9=﹣3+9,∴(x+3)2=6.故选A.7.【解答】共有16名学生参加预赛,取前8名,所以小刚需要知道自己的成绩是否进入前8.我们把所有同学的成绩按大小顺序排列,第8名与第9名的平均成绩是这组数据的中位数,所以小刚知道这组数据的中位数,才能知道自己是否进入决赛.故选:C.8.【解答】根据翻折不变性,可得△EBM≌△EGM,△FCN≌△FGN,△AEF≌△GEF,易得S△EMG+S△FNG=S△EFG,则S△ABC=4S△EGF=4×(1+2)=12.9.【解答】根据题意得:x+2≠0,解可得:x≠﹣2.10.【解答】m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).11.【解答】∵∠B=30°,∴∠AOC=60°,又∵OA=OC,∴△AOC是等边三角形,∵半径OC⊥AB于点D,AB=,∴AD=BD=,∴sin60°=,解得:AO=2,∴△AOC的周长为:2+2+2=6.故答案为:6.12.【解答】由题意可得第四次平移后可能的点的坐标为:(0,4)、(2,3)、(4,2)、(6,1),(2,3)、(4,2)、(6,1)、(8,0),故可得l4=30.由题意得,l1=3,l2=9,l3=18,l4=30,则可推出l n=.故答案为:30、.三、解答题(本题共30分,每小题5分)13.【解答】原式=﹣3+3﹣1=﹣.14.【解答】x+1>3x﹣3,移项、合并得:﹣2x>﹣4,解得:x<2.故原不等式的非负整数解为1,0.15.【解答】原式=x2﹣4x+4+x2﹣9=2x2﹣4x﹣5,∴x2﹣2x=7.∴原式=2(x2﹣2x)﹣5=9.16.【解答】证明:∵OP平分∠MON,∴∠COA=∠DOB,∵∠CAP=∠DBN,∴∠CAO=∠DBO,在△COA和△DOB中,,∴△COA≌△DOB(ASA),∴AC=BD.17.【解答】(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).18.【解答】设小李自驾车从家到达上班地点所用的时间是x小时,由题意,得:=×,解方程,得x=0.7,经检验,x=0.7是原方程的解;答:小李自驾车从家到达上班地点所用的时间是0.7小时.四、解答题(本题共20分,每小题5分)∴AC=AB•tan60°=×=10,∵∠D=90°,∴在Rt△ADC中,AD=6,∴CD===8,(2)设ED=x,则EF=x,在Rt△CFE中,CF2+FE2=CE2,故42+x2=(8﹣x)2,解得x=3.故DE=3.20.【解答】(1)证明:连结OA,如图,∵BC为⊙O直径,∴∠BAC=90°,即∠BAO+∠CAO=90°,∵OA=OB,∴∠B=∠BAO,而∠CAD=∠B,∴∠BAO=∠CAD,∴∠CAD+∠CAO=90°,即∠OAD=90°,∴OA⊥AD,∴直线AD是⊙O的切线;(2)在Rt△ABC中,sinB=sin∠CAD=,而sinB=,BC=8,∴AC=2,∴AB==2,∵∠CAD=∠B,∴△DAC∽△DBA,∴===,即AD=CD,在Rt△OAD中,OA=OC=4,∵OA2+AD2=OD2,∴42+(CD)2=(4+CD)2,∴CD=.21.【解答】(1)根据扇形统计图得:B占30%,即p=30%;由1﹣(2%+6%+30%+42%)=20%,即m=20%.(2)根据题意得:调查的人数为40÷2%=2000(人),则B的人数为2000×30%=600(人),D的人数为2000×20%=400(人),补全统计图,如图所示:(3)根据题意得:“影响很大,尽可能不去户外活动”这种态度的约有400×20%=80(万人).故答案为:30%;20%.22.【解答】解:如图2,过点A作AD⊥l2于D,过点B作BE⊥l1于E,则∠EAB+∠ABE=90°,∵AC⊥BA,∴∠1+∠EAB=90°,∵I1∥I2,∴∠1=∠ACD,∴∠ABE=∠ACD,∵在△ACD和△ABE中,,∴△ACD≌△ABE(AAS),∴AB=AC,∵l1,l2之间的距离为1,l2,l3之间的距离为2,∴AE=1,BE=2+1=3,在Rt△ABE中,AB2=AE2+BE2=12+32=10,∵AC⊥BA,AC=BA,∴△ABC是等腰直角三角形,∴S△ABC=AB×AC=AB2=×10=5.等边三角形ABC的面积S=.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.【解答】(1)∵二次函数的图象与x轴只有一个交点,∴b2﹣4ac=1﹣4(n﹣)=0,解得:n=1;(2)将n=1代入二次函数解析式得:y2=x2﹣2(m﹣1)x+m2﹣4m+6,∵二次函数的图象与x轴交于两点,∴b2﹣4ac=[﹣2(m﹣1)]2﹣4(m2﹣4m+6)>0,解得:m>,∵m是小于5的整数,∴<m<5,∴m=3或4,∵二次函数的图象与x轴交点的横坐标都是整数,∴当m=3时,y2=x2﹣4x+3=(x﹣1)(x﹣3),与x轴交点坐标为;(1,0),(3,0),当m=4时,y2=x2﹣6x+6=(x﹣3)2﹣3,与x轴交点坐标为;(3+,0),(3﹣,0)不合题意舍去,故二次函数的图象与x轴交点的坐标为:(1,0),(3,0).24.【解答】(1)∵CF∥EB,且CF=EB,∴四边形BFCE是平行四边形,∴BF∥CE,BF=CE,∴∠DBF=180°﹣∠A=180°﹣90°=90°,∵∠A=90°,∴∠A=∠DBF,∵CE=AB,∴AB=BF,在△ABE和△BFD中,,∴△ABE≌△BFD(SAS),∴DF=BE,∠ABE=∠BFD,∵CF∥BE,∴∠EBF+∠BFC=180°,∴∠CFD=180°﹣∠BFD﹣∠EBF=180°﹣∠ABE﹣∠EBF=180°﹣∠ABF=180°﹣90°=90°,∴△CDF是等腰直角三角形,∴DC=CF,∵CF=EB,∴=;(2)如图,过点C作CF∥BE且是CF=BE,则四边形BFCE是平行四边形,∴BF∥CE,BF=CE,∴∠DBF=180°﹣∠A=180°﹣90°=90°,∵∠A=90°,∴∠A=∠DBF,∵CE=kAB,BD=kAE,∴==k,∴△ABE∽△BFD,∴==k,∠ABE=∠BFD,∵CF=BE,∴==k,∴DF=kCF,∵CF∥BE,∴∠EBF+∠BFC=180°,∴∠CFD=180°﹣∠BFD﹣∠EBF=180°﹣∠ABE﹣∠EBF=180°﹣∠ABF=180°﹣90°=90°,由勾股定理得,DC===CF,∴=,∵=,EB=CF,∴=,两边平方并整理得,k2=3,解得k=,k=﹣(舍去).25.【解答】(1)令x=0,则y=4,∴OC=4,∵∠CBO的正切值是2,∴==2,解得OB=2,∴点B的坐标为(2,0),代入二次函数y=ax2+2ax+4得,4a+2a•2+4=0,解得a=﹣,∴二次函数解析式为y=﹣x2﹣x+4;(2)①在Rt△OBC中,BC===2,∵P是线段AD的中点,∴点P经过的路线为△ABC的中位线,长度为:BC=×2=;②∵DE⊥AC,DF⊥AB,P是线段AD的中点,∴EP=AP=AD,FP=AP=AD,∴∠CAD=∠AEP,∠BAD=∠AFP,∴∠EPF=∠EPD+∠FPD=∠CAD+∠AEP+∠BAD+∠AFP=2∠CAD+2∠BAD=2∠BAC,令y=0,则﹣x2﹣x+4=0,整理得,x2+2x﹣8=0,解得x1=2,x2=﹣4,∴点A坐标为(﹣4,0),∴OA=OC=4,∴∠BAC=45°,∴∠EPF=2×45°=90°;③∵EP=AP=AD,FP=AP=AD,∴EP=FP,∵∠EPF=90°,∴△EFP是等腰直角三角形,∴AD⊥BC时,EF最短,此时,S△ABC=AB•OC=BC•AD,即×|﹣4﹣2|×4=×2AD,解得AD=,∴EP=AD=,∴EF最小=EP=×=.。
北京市朝阳区九年级综合练习(一)数学试卷参考答案及评分标准 2013.5一、选择题(本题共32分,每小题4分) 1.B 2.A 3.D 4.D 5.B 6.A 7.C 8.C 二、填空题(本题共16分,每小题4分) 9.x ≠-2 10.(1)(1)m m m +- 11.612.30;()312n n +(说明:结果正确,不化简整理不扣分).(每空2分) 三、解答题(本题共30分,每小题5分)13. 解:原式1333314=-+- ……………………………………………………4分 34=-.…………………………………………………………………………5分 14.解:133x x +>- ……………………………………………… ………………………1分 24x ->-2x <.… …………………………………………………………………………3分 ∴原等式的非负整数解为1,0. ……………………………………………………5分 15. 解:原式22449x x x =-++- ………………………………………………………2分2245x x =--.…………………………………………………………………3分∵2270x x --=,∴227x x -=.……………………………………………………………………………4分 ∴原式22(2)5x x =--9=.………………………………………………………………………………5分16.证明:∵OP 平分∠MON ,∴∠COA =∠DOB .…………………………………………………………………1分 ∵∠CAP =∠DBN ,∴CAO DBO ∠=∠.………………………………………………………………2分 ∵OA =OB ,…………………………………………………………………………3分 ∴COA ∆≌DOB ∆. ………………………………………………………………4分 ∴AC =BD . …………………………………………………………………………5分17.(1)解:把()4A m -,代入y = -x ,得m =4.……………………………………………1分 ∴()44A -,. ………………………………………………………………………………2分 把()44A -,代入ky x=,得k = -16.∴反比例函数解析式为16y x=-. ………………………………………………………3分 (2)(-7,0)或(-1,0).………………………………………………………………5分18. 解:设小李自驾车从家到达上班地点所用的时间是x 小时. …………………………1分由题意,得17.51520.33x x =⨯-. ……………………………………………………2分 解方程,得 x =0.7. ………………………………………………………………………3分经检验,x =0.7是原方程的解,且符合题意.……………………………………………4分 答:小李自驾车从家到达上班地点所用的时间是0.7小时. ……………………………5分 四、解答题(本题共20分,题每小题5分) 19.解:(1)∵AB ⊥AC ,∴∠BAC =90°.∵∠B =60°,AB =1033, ∴AC =10. ………………………………………………………………………1分 ∵∠D =90°,AD =6,∴CD =8. ………………………………………………………………………2分 (2)由题意,得∠AFE =∠D=90°,AF=AD =6, EF=DE .∴∠EFC =90°,∴FC =4. … ……………………………………………………………………3分 设DE =x ,则EF=x ,CE=8-x .在Rt △EFC 中,由勾股定理,得 2224(8)x x +=-.………………………4分解得x =3.所以DE =3. ……………………………………………………………………5分20.(1)证明:连接OA .∵BC 为⊙O 的直径, ∴∠BAC =90°. ……………………………………………………………………………1分 ∴∠B +∠ACB =90°.∵OA=OC ,∴∠OAC =∠OCA .∵∠CAD =∠B , ∴∠CAD +∠OAC =90°. 即∠OAD =90°. ∴OA ⊥AD .∴AD 是⊙O 的切线. ……………………………………………………………………2分 (2) 解:过点C 作CE ⊥AD 于点E . ∵∠CAD =∠B ,∴sinB =sin ∠CAD =24.………………………………………………………………3分 ∵⊙O 的半径为8, ∴BC=16.D AB C O∴AC =sin BC B ⋅= 42.∴在Rt △ACE 中,CE=sin AC CAD ⋅∠=2.…………………………………………4分 ∵CE ⊥AD ,∴∠CED =∠OAD =90°.∴CE ∥OA .∴△CED ∽△OAD .∴CD CEOD OA=. 设CD =x ,则OD =x +8. 即288x x =+. 解得x =83.所以CD =83.………………………………………………………………………………5分21.解:(1)30%,20%; ………………………2分(2)如图;………………………………4分(3)400×20%=80(万人). …………5分22. 解: 5;……………………………………………2分 如图; ………………………………………3分 733. ………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)∵2134y x x n =++-的图象与x 轴只有一个交点, ∴令10y =,即2304x x n ++-=.……………………………………………1分∴131404n ⎛⎫∆=--= ⎪⎝⎭. 解得n =1. ………………………………………………………………………2分l 1CBED l 2l 3AH400600801602403204004805606407208008800ABCDE公众的态度人数40840120EDA BC O(2)由(1)知,()2222146y x m x m m =--+-+.∵()2222146y x m x m m =--+-+的图象与x 轴有两个交点,∴[]2222(1)4(46)m m m ∆=----+820m =-.∵20∆>,∴52m >.……………………………………………………………………………3分 又∵5m <且m 是整数,∴m =4或3. …………………………………………………………………………5分 当m =4时,2266y x x =-+的图象与x 轴的交点的横坐标不是整数;当m =3时,2243y x x =-+,令20y =,即2430x x -+=,解得11x =,23x =.综上所述,交点坐标为(1,0),(3,0). ………………………………………7分24. 解:(1)22EB DC =. ………………………………………………………………………2分 (2)过点C 作CF ∥EB 且CF =EB ,连接DF 交EB 于点G , 连接BF .∴四边形EBFC 是平行四边形. …………………………………………………3分 ∴CE ∥BF 且CE =BF . ∴∠ABF =∠A =90°.∵BF =CE =kAB .∴BFk AB=. ∵BD =kAE ,∴BDk AE=.… ……………………………………………………………………4分 ∴BF BDAB AE=. ∴DBF ∆∽EAB ∆. ……………………………………………………………5分 ∴DF k BE=,∠GDB=∠AEB . ∴∠DGB =∠A =90°. ∴∠GFC =∠BGF =90°. ∵12CF EB DC DC ==. ∴3DF DF EB CF==. ∴k =3.…………………………………………………………………………7分25. 解:(1)根据题意,C (0,4).∴OC =4.GFD E CBA∵tan ∠CBO =2,∴OB =2.∴B (2,0).………………………………………………………………………1分∴ 0444a a =++.∴12a =-. ∴二次函数的解析式为2142y x x =--+.……………………………………2分(2) ①点P 所经过的路线长是5.…… ……………………………………………3分 ②∠EPF 的大小不发生改变.………………………………………………………4分 由2142y x x =--+可得,A (-4,0). ∴OA = OC .∴△AOC 是等腰直角三角形. ∴∠CAO =45°.∵DE ⊥AC , DF ⊥AB , ∴∠AED = ∠AFD =90°. ∵点P 是线段AD 的中点, ∴PE = PF =12AD = AP . ∴∠EPD =2∠EAD ,∠FPD =2∠F AD .∴∠EPF =∠EPD +∠FPD =2∠EAD +2∠F AD = 2∠CAO =90°.…………………5分 ③由②知,△EPF 是等腰直角三角形. ∴EF =2PE =22AD .……………………………………………………………6分 ∴当AD ⊥BC 时,AD 最小,此时EF 最小.……………………………………7分 在Rt △ABD 中,∵tan ∠CBO =2,AB =6, ∴AD =1255. ∴EF =6105. 即此时EF 的最小值为6105.……………………………………………………8分说明:各解答题其它正确解法请参照给分.y xP E F BACO D。
北京市朝阳区九年级综合练习(一)
数学试卷参考答案及评分标准 2013.5
一、选择题(本题共32分,每小题4分) 1.B 2.A 3.D 4.D 5.B 6.A 7.C 8.C 二、填空题(本题共16分,每小题4分) 9.x ≠-2 10.(1)(1)m m m +- 11.6
12.30; ()312
n n +(说明:结果正确,不化简整理不扣分).(每空2分)
三、解答题(本题共30分,每小题5分)
13. 解:原式1
14
=- ……………………………………………………4分 3
4
=-
.…………………………………………………………………………5分 14.解:133x x +>- ……………………………………………… ………………………1分
24x ->-
2x <.... (3)
分
∴原等式的非负整数解为1,0. (5)
分
15. 解:原式2
2
449x x x =-++- ………………………………………………………2分
2245x x =-- (3)
分
∵2270x x --=,
∴2
27x x -=.……………………………………………………………………………4分
∴原式2
2(2)5x x =--
9= (5)
分16.证明:∵OP 平分∠MON ,
∴∠COA =∠DOB (1)
分
∵∠CAP =∠DBN ,
∴CAO DBO ∠=∠ (2)
分
∵OA =OB , (3)
分
∴COA ∆≌DOB ∆. (4)
分
∴AC =BD . (5)
分
17.(1)解:把()4A m -,
代入y = -x ,得m =4.……………………………………………1分
∴()44A -,. ………………………………………………………………………………2分 把()44A -,代入k
y x
=
,得k = -16. ∴反比例函数解析式为16
y x
=-. ………………………………………………………3分
(2)(-7,0)或(-1,0).………………………………………………………………5分
18. 解:设小李自驾车从家到达上班地点所用的时间是x 小时. (1)
分由题意,得
17.5152
0.33
x x =⨯-. ……………………………………………………2分
解方程,得 x =0.7. ………………………………………………………………………3分
经检验,x =0.7是原方程的解,且符合题意.……………………………………………4分
答:小李自驾车从家到达上班地点所用的时间是0.7小时. ……………………………5分
四、解答题(本题共20分,题每小题5分) 19.解:(1)∵AB ⊥AC ,
∴∠BAC =90°.
∵∠B =60°,AB , ∴AC =10. (1)
分
∵∠D =90°,AD =6,
∴CD =8. (2)
分
(2)由题意,得∠AFE =∠D=90°,AF=AD =6, EF=DE .
∴∠EFC =90°,
∴FC =4. ... (3)
分
设DE =x ,则EF=x ,CE=8-x .
在Rt △EFC 中,由勾股定理,得 2224(8)x x +=- (4)
分
解得x =3.
所以DE =3. (5)
分
20.(1)证明:连接OA .
∵BC 为⊙O 的直径, ∴∠BAC =90°. ……………………………………………………………………………1分
∴∠B +∠ACB =90°.
∵OA=OC ,
∴∠OAC =∠OCA . ∵∠CAD =∠B , ∴∠CAD +∠OAC =90°. 即∠OAD =90°. ∴OA ⊥AD .
∴AD 是⊙O 的切线. ……………………………………………………………………2分
(2) 解:过点C 作CE ⊥AD 于点E . ∵∠CAD =∠B ,
∴sinB =sin ∠CAD
………………………………………………………………3分 ∵⊙O 的半径为8, ∴BC=16.
∴AC =sin BC B ⋅=
∴在Rt △ACE 中,CE=sin AC CAD ⋅∠=2.…………………………………………4分
∵CE ⊥AD ,
∴∠CED =∠OAD =90°.
B
∴CE∥OA.
∴△CED ∽△OAD.
∴CD CE OD OA
=.
设CD=x,则OD=x+8.
即
2
88 x
x
=
+
.
解得x=8
3
.
所以CD=8
3 (5)
分
21.解:(1)30%,20%;………………………2分
(2)如图;………………………………4分
(3)400×20%=80(万人).…………5分
22.解: 5;……………………………………………2分
如图;………………………………………3分
………………………………………5分
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)
23.解:(1)∵2
13 4
y x x n
=++-的图象与x轴只有一个交点,
∴令
10
y=,即23
0 4
x x n
++-= (1)
分
∴
1
3 140
4
n
⎛⎫
∆=--=
⎪
⎝⎭.
l1
l2
l3
解得n =1. (2)
分
(2)由(1)知,()2222146y x m x m m =--+-+.
∵()2222146y x m x m m =--+-+的图象与x 轴有两个交点,
∴[]2
2
22(1)4(46)m m m ∆=----+
820m =-.
∵20∆>, ∴5
2
m >
.……………………………………………………………………………3分
又∵5m <且m 是整数,
∴m =4或3. (5)
分
当m =4时,2266y x x =-+的图象与x 轴的交点的横坐标不是整数;
当m =3时,2243y x x =-+,令20y =,即2
430x x -+=,解得11x =,
23x =.
综上所述,交点坐标为(1,0),(3,0). (7)
分
24. 解:(1)2
EB DC =
. ………………………………………………………………………2分
(2)过点C 作CF ∥EB 且CF =EB ,连接DF 交EB 于点G , 连接BF .
∴四边形EBFC 是平行四边形. (3)
分
∴CE ∥BF 且CE =BF . ∴∠ABF =∠A =90°. ∵BF =CE =kAB .∴BF
k AB
=. ∵BD =kAE , ∴
BD
k AE
=.… ……………………………………………………………………4分
∴
BF BD
AB AE
=. ∴DBF ∆∽EAB ∆. (5)
分
∴DF
k BE
=,∠GDB=∠AEB . ∴∠DGB =∠A =90°. ∴∠GFC =∠BGF =90°.
∵12CF EB DC DC ==.
∴DF DF EB CF
==∴k
(7)
分
25. 解:(1)根据题意,C (0,4).
∴OC =4.
∵tan ∠CBO =2,∴OB =2.
∴B (2,0). (1)
分
∴ 0444a a =++.∴12a =-
. ∴二次函数的解析式为2
142
y x x =--+. (2)
分
(2) ①点P
……………………………………………3分
②∠EPF 的大小不发生改变. (4)
分
由2
142
y x x =-
-+可得,A (-4,0). ∴OA = OC .
∴△AOC 是等腰直角三角形. ∴∠CAO =45°.
∵DE ⊥AC , DF ⊥AB , ∴∠AED = ∠AFD =90°. ∵点P 是线段AD 的中点,
B
∴PE= PF =1
2
AD= AP.
∴∠EPD=2∠EAD,∠FPD=2∠F AD.
∴∠EPF=∠EPD+∠FPD=2∠EAD+2∠F AD= 2∠CAO=90°. (5)
分
③由②知,△EPF是等腰直角三角形.
∴EF=
2
AD. (6)
分
∴当AD⊥BC时,AD最小,此时EF最小. (7)
分
在Rt△ABD中,
∵tan∠CBO=2,AB=6,
∴AD.
∴EF.
即此时EF的最小值为
5
. (8)
分
说明:各解答题其它正确解法请参照给分.。