九上期末测试大题复习
- 格式:doc
- 大小:141.50 KB
- 文档页数:2
(第4题)九年级数学上册期末复习综合测试题(含答案)一、选择题(本大题共6小题,每小题2分,共12分.) 1.一元二次方程 x 2=x 的根是( )A .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=x 2=0D .x 1=x 2=12.一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为( )A .12B .23C .15D .253.若一组数据 2,3,4,5,x 的方差比另一组数据 5,6,7,8,9 的方差大,则 x 的值可能是( ) A .1B .4C .6D .84.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则 ∠AOB 的度数是( )A .70°B .72°C .74°D .76°5.若关于x 的一元二次方程ax 2+k =0的一个根为2,则二次函数y =a (x +1)2+k 与x 轴的交点坐标为( ) A .(-3,0)、(1,0) B .(-2,0)、(2,0) C .(-1,0)、(1,0)D .(-1,0)、(3,0)6.如图,在Rt △ABC ,∠ACB =90°,AC =4,BC =3,点D ,E 分别在AB ,AC 上,连接DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分∠EFB ,则AD 的长为( ) A . 157B .207C .258D .259二、填空题(本大题共10小题,每小题2分,共20分.) 7(第12题)l 1 l 2l 3A BCEFD (第11题)8.若a b =43,则a -b b= .9.设x 1、x 2是方程x 2+mx -m +3=0的两个根,则x 1+x 2-x 1x 2= .10.把抛物线y =-x 2向左平移2个单位,然后向上平移3个单位,则平移后该抛物线相应的函数表达式为 .11.如图,l 1∥l 2∥l 3,若AD =1,BE =3,CF =6,则ABBC的值为 .12.如图,点A 、B 、C 在⊙O 上,⊙O 的半径为3,∠AOC =的长为 . 13.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是 .14.如图,弦AB 是⊙O 的内接正六边形的一边,弦AC 是⊙O 的内接正方形的一边,若 BC =2+23,则⊙O 的半径为 .15.如图,正方形ABCD 的边长是4,点E 在DC 上,点F 在AC 上,∠BFE =90°,若 CE =116.如图,在矩形ABCD 中,AB =2,AD =4,点E 、F 分别为AD 、CD 边上的点,且EF 的长为2,点G 为EF 的中点,点P 为BC 上一动点,则P A +PG 的最小值为 . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2-4x -5=0; (2)x 2-4=2x (x -2).18.(8分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩(单位:环)如下(1)甲射击成绩的中位数为 环,乙射击成绩的众数为 环;(2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(8分)某校开展秋季运动会,需运动员代表进行发言,从甲、乙、丙、丁四名运动员中随机抽取.(1)若随机抽取1名,甲被抽中的概率为 ; (2)若随机抽取2名,求甲在其中的概率.20.(7分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且∠BCE +∠BDE =180°. (1)求证:△ADE ∽△ACB ;(2)连接BE 、CD ,求证:△AEB ∽△ADC .21.(8分)如图是二次函数y =-x 2+bx +c 的图像. (1)求该二次函数的关系式及顶点坐标; (2)当y >0时 x 的取值范围是 ;(3)当m <x <m +4时,-5<y ≤4,则m 的值为 .22.(7分)在Rt △ABC ,∠BAC =90°,AB =AC ,D 、E、F 分别为BC 、AB 、AC 边上的点,且∠EDF =45°.(1)求证:△EBD ∽△DCF ;(2)当D 是BC 的中点时,连接EF ,若CF =5,DF =4,则EF 的长为 .23.(8分)某超市销售一种商品,成本为每千克50元.当每千克售价60元时,每天的销售量为60千克,经市场调查,当每千克售价增加1元,每天的销售量减少2千克. (1)为保证某天获得750元的销售利润,则该天的销售单价应定为多少? (2)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?24.(8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点P ,连接BC ,过点D 作DE ⊥CD ,交⊙O 于点E ,连接AE ,F 是DE 延长线上一点,且∠BCD =∠F AE . (1)求证:AF 是⊙O 的切线;(2)若AF =2,EF =1,求⊙O 的半径.25.(8分)已知二次函数y =(x -2)(x -m )(m 为常数). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点;(2)若M (-1,0), N (3,0),该函数图像与线段MN 只有1个公共点,直接写出 m 的取值范围;(3)若点A (-1,a ),B (1,b ),C (3,c )在该函数的图像上,当abc <0时,结合函数图像,直接写出m 的取值范围.26.(8分)如图,四边形ABCD 内接于⊙O ,AB =AC ,BD ⊥AC ,垂足为E . (1)求证:∠BAC =2∠DAC ; (2)若AB =10,CD =5,求BC 的长.27.(10分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1) 如图①,在△ABC 中,∠C =90°,AB =5,AC =3,则BC 边上的伴随圆的半径为 . (2)如图②,△ABC 中,AB =AC =5,BC =6,直接写出它的所有伴随圆的半径. (3)如图③,△ABC 中,∠ACB =90°,点E 在边AB 上,AE =2BE ,D 为AC 的中点,且∠CED =90°.①求证:△CED 的外接圆是△ABC 的AC 边上的伴随圆; ②DE的值为 .参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.9 8.13 9.-3 10.y =-(x +2)2+3 11.2312.2π 13.m ≥-1 14. 2 2 15.322 16.4 2 -1三、解答题(本大题共11小题,共88分) 17.(8分)(1)解:x 2-4x -5=0 x 2-4x +4=5+4(x -2)2=9 ········································································································ 1分x -2=±3 ········································································································ 2分 ∴ x 1=5,x 2=-1. ··························································································· 4分 (2)解:x 2-4=2x (x -2) x 2-4=2x 2-4xx 2-4x +4=0 ··································································································· 5分 (x -2)2=0 ········································································································ 6分 ∴ x 1=x 2=2. ··································································································· 8分 18.(8分)(1)7;8 ········································································································ 2分 (2)s 2甲=(7-8)2+(7-8) 2+(10-8)2+(9-8)2+(7-8)25=1.6环2. ······························ 4分s 2乙=(8-8)2+(8-8) 2+ (7-8)2+(8-8)2+(9-8)25=0.4环2. ······································ 6分(3)选择乙.因为甲乙两人平均数相同均为8,说明两人实力相当,但s 2乙<s 2甲,乙的成绩更加稳定,所以选乙. ······················································································· 8分19.(8分)(1)14. ·········································································································· 2分(2)解:随机抽取两名运动员,共有6种等可能性结果:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁).其中满足“有甲运动员”(记为事件A )的结果只有3种,所以P (A )=12. ·································································································· 8分20.(7分)(1)证明:∵ ∠BCE +∠BDE =180°, ∠EDA +∠BDE =180°,∴ ∠EDA =∠BCE . ·························································································· 1分 又 ∠A =∠A , ································································································· 2分 ∴ △ADE ∽△ACB . ·························································································· 3分 (2)∵ △ADE ∽△ACB , ∴ AD AC =AE AB, ·········································· 4分 ∴AD AE =ACAB, ······································· 5分 又 ∠A =∠A , ········································ 6分 ∴ △AEB ∽△ADC . ································· 7分21.(8分)(1)将(0,3)、 (3,0)代入,得⎩⎨⎧3=c ,0=-9+3b +c································································································· 1分解得⎩⎨⎧c =3,b =2····································································································· 2分∴ y =-x 2+2x +3 ····························································································· 3分 ∴ 顶点坐标为(1,4) ························································································ 4分 (2)-1<x <3. ······························································································ 6分 (3)-2或0 ···································································································· 8分 22.(7分)(1)解:∵∠BAC =90°,AB =AC ,∴ ∠B =∠C =45°. ··························································································· 1分 ∴ 在△BDE 中,∠BED +∠BDE =180°-∠B =135°, ∵ ∠EDF =45°,∴ ∠BDE +∠CDF =135°,∴ ∠BED =∠CDF . ·························································································· 3分 ∵ ∠B =∠C ,∴ △EBD ∽△DCF . ·························································································· 5分 (2 ········································································································ 7分23.(8分)(1)解:设每千克的销售价增加x 元,根据题意,得(60+x -50) (60-2x )=750 ··················································································· 2分 ∴ x 1=5,x 2=15. ····························································································· 3分 60+5=65或60+15=75 ···················································································· 4分 答:销售单价为65或75元时获得利润750元. (2)解:每千克的销售价增加x 元,利润为w 元.w =(60+x -50) (60-2x ) ···················································································· 6分 =-2(x -10)2+800 ···························································································· 7分 ∵ a =-2<0,∴ 当x =10时,w 有最大值800. ········································································ 8分 60+10=70答:当销售单价为70元时获得最大利润,为800元. 24.(8分) (1)连接BD .∵ AB 为⊙O 的直径,CD ⊥AB ,∴ ⌒BC = ⌒BD , ························································· 1分 ∴ ∠BDC =∠BCD .∵ 四边形ABDE 为⊙O 的内接四边形,∴ ∠BDE +∠BAE =180°,即∠BDC +∠CDF +∠BAE ····· 2分∵ DE ⊥CD , ∴ ∠CDF =90°, ∴ ∠BDC +∠BAE =90°.∵ ∠BCD =∠F AE , ·························································································· 3分 ∴ ∠BAE +∠F AE =90°,即∠F AB =90°, ∴ AF ⊥AB . 又 点A 在⊙O 上,∴ AF 与⊙O 相切. ·························································································· 4分 (2)过点O 作OG ⊥DF 垂足为G . ∵ ∠F AB =∠D =∠APD =90°, ∴ 四边形APDF 是矩形, ∴ ∠F =90°.∵ ∠F AB =∠F =∠OGF =90°, ∴ 四边形AOGF 是矩形,∴ AF =OG ,AO =GF . ···················································· 5分 设OE =OA =r ,则GE =r -1.在Rt △OGE 中,由勾股定理得OG 2+GE 2=OE 2, ···················································· 6分 即4+(r -1)2=r 2, ···························································································· 7分 解得r =5 2 . ····································································································· 8分25.(8分)(1)令y =0,即(x -2)(x -m )=0 ········································································· 1分 ∴ x 1=2,x 2=m . ····························································································· 2分 当m =2时,x 1=x 2,方程有两个相等的实数根; 当m ≠2时,x 1≠x 2,方程有两个不等的实数根. ∴ 不论m 为何值,方程总有实数根;∴ 不论m 为何值,该函数的图像与x 轴总有公共点. ·············································· 3分 (2)m =2或m >3或m <-1. ··········································································· 6分 (3)-1<m <1或m >3. ·················································································· 8分 26.(8分)。
九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
九上期末复习试题一选择题(每题2分,共50分)1.关于功和功率,下列说法正确的是( )A.机器做功少,功率一定小B.功率小的机器做功不一定慢C.功率大的机器做功一定快D.功率大的机器一定比功率小的机器做功多2.校运动会上,小利参加完长跑比赛,感到大腿肌肉酸胀,产生这种现象的原因是()A.有氧呼吸产生二氧化碳和水B.无氧呼吸产生乳酸C.无氧呼吸产生酒精D.有氧化锡产生乳酸3.在人体的消化道中存在着大量微生物,如大肠杆菌、双歧杆菌等,它们对维持人体正常的生理功能具有重要的作用,滥服抗生素往往会破坏这些正常的菌群。
这些微生物的代谢类型是 ( )A.异养需氧型 B.异养厌氧型 C.自养需氧型 D.自养厌氧型4.在天气寒冷的冬天,同学们将教室门窗紧闭,时间一长就会出现头晕、注意力不集中、记忆力下降等现象。
同学们对这些现象的原因有以下各种分析,你认为错误的是 ( )A.脑部缺氧 B.脑细胞能量供应不足C.脑细胞兴奋性下降 D.脑细胞血糖供应不足5.“控制变量法”是科学探究中常用的方法。
在①探究电压、电流与电阻的关系;②探究影响酶催化作用的因素;③探究固体熔化时温度的变化规律;④探究种子萌发需要的条件等四个实验中,利用此方法的有 ( )A.①③ B.②③④ C.①②④ D.①②③④6.如图所示,李晶同学将放在桌边的文具盒水平推至桌中央,她针对此过程提出了如下的猜想。
你认为合理的是( )A.文具盒所受重力对它做了功B.文具盒所受支持力对它做了功C.文具盒所受的推力F对它做了功D.在此过程中没有力对文具盒做功7.如图所示,已知物体A和B质量相等,A在粗糙的水平地面,B在光滑斜面上。
现它们分别在同样大小力的作用下沿F的方向移动了S,则F对物体做的功( )A.对A做的功多B.对A和B.做功一样多C.对B做的功多D.条件不足,无法确定8.一颗重为0.2牛的子弹从枪膛中水平射出,子弹在枪膛内受火药爆炸后产生的气体的平均作用力是600牛,枪膛长60厘米,射出后子弹在空中飞行1200米,则气体对子弹做的功为( )A.120焦B.360焦C.240焦D.0.12焦9.汽车爬坡时,若坡越陡,爬坡所需的牵引力就越大。
2023-2024年道德与法治九年级上册期末复习试题的是()①国庆期间,人们排队乘坐无人驾驶的光谷空轨旅游观光②9月30日,党和国家领导人出席向人民英雄敬献花篮仪式③10月20日,公安部交管局开展冬季突出违法行为专项整治行动④杭州亚运会期间,观众通过VR、多赛同看等科技手段可随时沉浸在比赛现场A.①②B.①④C.②③D.③④6.下列选项不属于我国全过程人民民主实践的是()A.2022年全国县先两级人大换届选举,有超过10亿选民参与B.歙县发改委通过互联网就《歙县“十四五”服务业发展规划》向市民公开征集意见C.某领导根据自身经验进行判断,对所在单位进行大刀阔斧的改革D.黄山市确定基层立法联系点,在群众家门口搭建反映立法工作意见建议的“直通车”7.小马同学整理了保障人民当家作主的政治制度,其中认识正确的是()A.基层群众自治制度是人民直接行使民主权利,直接掌握国家政权的根本途径B.中国共产党领导的多党合作和政治协商制度是发展基层民主,建设社会主义民主政治的基础C.民族区域自治制度是一项独具中国特色的实现民族平等、保障少数民族合法权利的基本政治制度D.全国人民代表大会制度是我国的一项根本政治制度,通过协商求同存异,找到最大公约数,画出最大同心圆8.从管理垃圾分类到杜绝噪音扰民,从社区监控全覆盖到缓解社区停车难……各地在社区治理方面的举措正让居民获得更好的社区服务。
居民的以下做法正确的是()①提升社会责任感,爱护社区绿化环境②培养主人翁意识,积极参与社区建设③提高监督意识,经常向社区投诉抱怨④增强民主意识,主动为社区建言献策A.②③④B.①②③C.②③④D.①②④9.厉行法治是对全体社会成员的共同要求。
下列做法不符合厉行法治要求的是()①某企业先提价后打折,搞虚假促销②刘某未经他人同意,私自拆开他人信件③某市交警使用执法记录仪上岗执勤④某市司法局召开立法听证会,公开征求意见A.①②B.①③C.②④D.③④10.毛某通过某网络平台,发布了一条时长1分钟左右的作品,使用侮辱性语言对马某及其家人进行辱骂。
山东省东营市东营实验中学2022-2023学年九年级(上)期末复习数学试卷(五四学制)题号 一 二 三 总分 得分一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1. 一机器零件如图,其主视图为( ) A.B.C.D.2. 已知关于x 的一元二次方程x 2−(2m −1)x +m 2=0有实数根,则m 的取值范围是( )A. m ≤14且m ≠0B. m ≤14C. m <14D. m >143. 肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将累计会有225人感染,若设1人平均感染x 人,依题意可列方程( )A. 1+x =225B. 1+x 2=225C. 1+x +x 2=225D. (1+x)2=2254. 若抛物线M :y =x 2−(3m −3)x −3与抛物线M′:y =x 2+10x +2n +5关于直线x =−1对称,则m ,n 的值为( )A. m =1,n =1B. m =1,n =−1C. m =3,n =4D. m =3,n =−45. 如果将抛物线y =x 2+2向上平移1个单位,那么所得新抛物线的表达式是( ) A. y =(x −1)2+2 B. y =(x +1)2+2 C. y =x 2+1 D. y =x 2+36. 在同一直角坐标系中,正比例函数y =k 1x 的图象与反比例函数y =k2x 的图象没有交点,则下列不等式一定成立的是( )A. k 1+k 2>0B. k 1−k 2≤0C. k 1k 2>0D. k 1k 2<07. 已知某条传送带和地面所成斜坡的坡度为1:2,如果它把一物体从地面送到离地面9米高的地方,那么该物体所经过的路程是( )A. 18米B. 4.5米C. 9√3米D. 9√5米.8. 如图1是手机放在手机支架上,其侧面示意图如图2所示,AB,CD是长度不变的活动片,一端A固定在OA上,另一端B可在OC上变动位置,若将AB变到AB′的位置,则OC旋转一定角度到达OC′的位置.已知OA=8cm,AB⊥OC,∠BOA=60°,sin∠B′AO=910,则点B′到OA的距离为( )A. 9√310cm B. 18√310cm C. 9√35cm D. 18√35cm9. 根据表中二次函数y=ax2+bx+c(a≠0)的自变量x与函数y的对应值,可判断该二次函数的图象与x轴的交点情况是( )x…−1012…y…−1−74−2−74…A. 只有一个交点B. 有两个交点,且它们均在y轴同侧C. 无交点D. 有两个交点,且它们分别在y轴两侧10. 不透明的袋中装有2个红球和3个黑球,它们除颜色外没有任何其他区别,小红搅匀后从中一次摸出2个球,则摸出的2个球都是红球的概率是( )A. B. C. D.二、填空题(本大题共8小题,共24分)11. 函数y=√2−x中,自变量x的取值范围是______.12. 如图,要把水渠中的水引到某村C处,过点C作渠岸AB的垂线CD,垂足为D,沿CD开挖渠道距离最短,这其中的依据是______.13. 在反比例函数y=kx中,当x=2时,y=3,则当y=12时,x=______.14. 抛物线y=−12x2+3x的开口方向是______.(选填“向上”或“向下”)15. 已知a9=b11=c14,且a+b=40,则c=______.16. 木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C.记角尺的直角顶点为B,量得AB=2cm,BC=4cm,则⊙O的半径等于______cm.17. 图1是一款优雅且稳定的抛物线型落地灯.防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.86米,灯柱AB及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为米.18. 如图,边长为√3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么AH的长是______.三、解答题(本大题共7小题,共66分。
九年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.2cos45°的值等于()A.1 B.2 C.3D.22.下列函数中,一定是反比例函数的是()A.y=-2x-1B.y=kx-1C.y=4x D.y=1x-13.已知二次函数y=-3(x-2)2-3,下列说法正确的是()A.图象的对称轴为直线x=-2B.图象的顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-34.如图,在△ABC中,点D是AB边上一点,下列条件中,能使△ABC与△BDC 相似的是()A.∠B=∠ACD B.∠ACB=∠ADCC.AC2=AD·AB D.BC2=BD·AB(第4题)5.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1 C.x1<x3<x2D.x2<x1<x3 6.如图,△ABC∽△ADE,且BC=2DE,则S四边形BEDC:S△ABC的值为() A.1:4B.3:4C.2:3D.1:2(第6题)(第7题)7.如图,在△ABC中,∠C=45°,tan B=3,AD⊥BC于点D,AC=2 6.若E,F分别为AC,BC的中点,则EF的长为()A.233B.2C.3D.238.已知二次函数y=ax2+bx-2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a-b-2,则t的取值范围是()A.-2<t<0B.-3<t<0C.-4<t<-2D.-4<t<0 9.如图,在x轴的正半轴上依次截取OP1=P1P2=P2P3=…=P n-1P n=1,过点P1,P2,P3,…,P n分别作x轴的垂线,与反比例函数y=2x(x>0)的图象交于点Q1,Q2,Q3,…,Q n,连接Q1Q2,Q2Q3,…,Q n-1Q n,过点Q2,Q3,…,Q n分别向P1Q1,P2Q2,…,P n-1Q n-1作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于()(第9题)A.2n+1B.2n C.n-1n D.n+22n10.如图,正方形ABCD的边长为2cm,点O为正方形的中心,点P从点A出发沿A-O-D运动,同时点Q从点B出发沿BC运动,连接BP,PQ,在移动的过程中始终保持PQ⊥BC.已知点P的运动速度为2cm/s,设点P的运动时间为t(s),△BPQ的面积为S(cm2),下列图象能正确反映出S与t的函数关系的是()(第10题)二、填空题(本大题共4小题,每小题5分,满分20分)11.如果α是锐角,sin α=cos 30°,那么α=________°.12.已知3a =4b ,则3a +2b a -b=________.13.已知点C 是线段AB 的黄金分割点,且AB =5+1,则AC 的长是________.14.如图,抛物线y =-x 2+2x +c 交x 轴于A (-1,0),B 两点,交y 轴于点C ,D 为抛物线的顶点.(第14题)(1)点D 的坐标为________;(2)若点C 关于抛物线对称轴的对称点为点E ,M 是抛物线对称轴上一点,且△DMB和△BCE 相似,则点M 的坐标为________.三、(本大题共2小题,每小题8分,满分16分)15.计算:27+-122-3tan 60°+(π-2)0.16.已知:如图,△ABD ∽△ACE .求证:(1)∠DAE =∠BAC ;(2)△DAE ∽△BAC .(第16题)四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,△CAB的顶点坐标分别为点C(1,1),A(2,3),B(4,2).(1)以点C(1,1)为位似中心,按21在位似中心的同侧将△CAB放大为△CA′B′,放大后点A,B的对应点分别为A′,B′,画出△CA′B′,并写出点A′,B′的坐标;(2)在(1)中,若P(a,b)为线段AB上任意一点,请直接写出变化后点P的对应点P′的坐标.(第17题)18.《九章算术》中有一道这样的题,原文如下:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”大意为:今有一座长方形小城(如图),东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问:走出南门多少步恰好能望见这棵树?(注:1里=300步)(第18题)五、(本大题共2小题,每小题10分,满分20分)19.已知二次函数y=ax2+bx+c与x的一些对应值如下表:x…-101234…y=ax2+bx+c…3-13…(1)根据表格中的数据,该二次函数的表达式为__________;(2)填写表格中空白处的对应值,并利用五点作图法在下面的网格图中画出该二次函数y=ax2+bx+c的图象(不必重新列表);(3)根据图象回答:①当1≤x≤4时,y的取值范围是________________;②当x取什么值时,y>0?(第19题)(m≠0,x>0)的图象20.如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=mx交于点A(2,n),与y轴交于点B,与x轴交于点C(-4,0).(1)直接写出k,m的值;(2)若P(a,0)为x轴上的一动点,当△APB的面积为72时,求a的值.(第20题)六、(本题满分12分)21.“山地自行车速降赛”是一种新兴的极限运动,这项运动的赛道需全部是下坡骑行路段.如图是某一下坡赛道,由AB,BC,CD三段组成,在同一平面内,其中AB段的俯角是30°,长为2m,BC段与AB段,CD段都垂直,长为1m,CD段长为3m,求此下坡赛道的垂直高度.(结果保留根号)(第21题)七、(本题满分12分)22.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数表达式y=a(x-h)2+k.二次函数y=a(x-h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A,B,C的横坐标分别为4,10,12,点A,B的纵坐标分别为-16,20.(1)该二次函数的表达式y=a(x-h)2+k为__________;(2)分别求出前9个月公司累计获得的利润以及10月一个月内所获得的利润;(3)在1~12月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?(第22题)八、(本题满分14分)23.【项目化学习】背景:小明是学校的一名升旗手,他在考虑如何能让国旗在国歌结束时,刚好升至旗杆顶端?要解决此问题就要知道学校旗杆的高度,为此他与同学们进行了专题项目研究.主题:测量学校旗杆的高度.分析探究:旗杆的高度不能直接测量,需要借助一些工具,比如小镜子、标杆、皮尺、小木棒、自制的直角三角形硬纸板……确定方案后,画出测量示意图,并进行实地测量,得到具体数据,从而计算出旗杆的高度.成果展示:下面是部分测量方案及测量数据.方案一方案二工具皮尺标杆,皮尺测量方案选一名同学直立于旗杆影子的顶端处,测量该同学的身高和影长及同一时刻旗杆的影长.选一名同学作为观测者,在观测者与旗杆之间的地面上直立一根高度适当的标杆,使旗杆的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上,这时测出观测者的脚到旗杆底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段AB表示旗杆,这名同学的身高CD=1.8m,这名同学的影长DE=1.44m,同一时刻旗杆的影长BD=10.32m.线段AB表示旗杆,标杆EF=2.6m,观测者的眼睛到地面的距离CD=1.7m,观测者的脚到旗杆底端的距离DB=16.8m,观测者的脚到标杆底端的距离DF=1.35m.……请你继续完善上述成果展示.任务一:写出“方案一”中求旗杆高度时所利用的知识:____________________________;(写出一个即可)任务二:根据“方案二”的测量数据,求学校旗杆AB的高度;任务三:写出一条你在活动中的收获、反思或困惑.答案一、1.B 2.C3.C4.D5.B6.B7.B8.D 9.C10.D 点拨:如图①,当点P 在OA 上时,0≤t ≤1,延长QP 交AD 于点E ,则PE ⊥AD ,由题意得BQ =t cm ,AP =2t cm ,易得AE =PE =t cm ,QE =AB =2cm ,∴PQ =(2-t )cm ,∴S =12BQ ·PQ =12t (2-t )=-12t 2+t ;(第10题)如图②,当点P 在OD 上时,1<t ≤2,由题意得PQ =BQ =t cm ,∴S =12t 2.二、11.6012.-1713.2或5-114.(1)(1,4)(2)(1,-2)三、15.解:原式=33+4-33+1=5.16.证明:(1)∵△ABD ∽△ACE ,∴∠BAD =∠CAE ,∴∠BAD +∠BAE =∠CAE +∠BAE ,∴∠DAE =∠BAC .(2)∵△ABD ∽△ACE ,∴AD AE =AB AC ,∴AD AB =AE AC,而∠DAE =∠BAC ,∴△DAE ∽△BAC .四、17.解:(1)如图,△CA ′B ′即为所求.其中A ′(3,5),B ′(7,3).(第17题)(2)P ′(2a -1,2b -1).18.解:如图,由题意,得AB =15里,AC =4.5里,CD =3.5里.(第18题)∵DE ⊥CD ,AC ⊥CD ,∴AC ∥DE ,∴△ACB ∽△DEC ,∴DE AC =DC AB ,即DE 4.5=3.515,解得DE =1.05里=315步.答:走出南门315步恰好能望见这棵树.五、19.解:(1)y =x 2-4x +3(2)x …-101234…y =ax 2+bx +c…83-13…函数图象如图所示.(第19题)(3)①-1≤y ≤3②当x <1或x >3时,y >0.20.解:(1)k 的值为12,m 的值为6.(2)易知B (0,2).∵P (a ,0)为x 轴上的一动点,∴PC =|a +4|,∴S △CBP =12PC ·OB =12×|a +4|×2=|a +4|,S △CAP =12PC ·y A =12×|a +4|×3=32|a +4|.∵S △CP A =S △ABP +S △CBP ,∴32|a +4|=72+|a +4|,解得a =3或-11.六、21.解:如图,延长AB 与直线l 2交于点E ,过点D 作DF ⊥BE 于点F ,过点A 作AG ⊥l 2于点G ,易得DF =BC =1m ,BF =CD =3m ,∠FED =30°.在Rt △DEF 中,tan 30°=DF EF,∴EF =3m ,∴AE =AB +BF +EF =2+3+3=(5+3)m.在Rt △AGE 中,AG =12AE =5+32m.答:此下坡赛道的垂直高度为5+32m.(第21题)七、22.解:(1)y =(x -4)2-16(2)当x =9时,y =(9-4)2-16=9,答:前9个月公司累计获得的利润为9万元;当x =10时,y =20.20-9=11(万元).答:10月一个月内所获得的利润为11万元.(3)设在1~12月中,第n 个月该公司一个月内所获得的利润为s 万元,则有s =(n -4)2-16-[(n -1-4)2-16]=2n -9.∵2>0,∴s 随n 的增大而增大.又∵n 的最大值为12,∴当n =12时,s 取最大值,为15.答:12月该公司一个月内所获得的利润最多,最多利润是15万元.八、23.解:任务一:相似三角形的判定与性质(答案不唯一)任务二:如图,过点C 作CG ⊥AB 于点G ,交EF 于点H ,则易得四边形CDBG 与四边形CDFH 是矩形,(第23题)∴CH =DF =1.35m ,CG =BD =16.8m ,CD =HF =GB =1.7m ,∴EH =EF -HF =2.6-1.7=0.9(m).由题意得EF ∥AB ,∴△CEH ∽△CAG ,∴CH CG =EH AG ,∴1.3516.8=0.9AG,∴AG =11.2m.∴AB =AG +BG =11.2+1.7=12.9(m).答:学校旗杆AB 的高度为12.9m.任务三:在利用阳光下的影子测量时,如果没有太阳光,会影响测量;测量数据不准确,在测量过程中为了避免误差太大,可以多次测量,取平均值作为最后的测量结果;在项目研究中感受到了数学与生活的联系等.(答案不唯一,表述合理即可)。
(沪科版)九年级数学上册期末复习测试试题及答案一、单选题(共36分)1.下列函数中,是二次函数的是() A .21y x =-B .22y x=C .21y x =+D .22(1)y x x =--2.已知35a b =,则a a b+的值为() A .38B .85C .35D .833.在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosB 的值是( ) A .B .C .D .4.下列各点不在反比例函数2y x=的图象上的是()A .()1,2B .()2,1--C .(2)1-,D .(5.如图,已知∠C=∠E ,则不一定能使△ABC ∽△ADE 的条件是A .∠BAD=∠CAEB .∠B=∠DC .D .6.将二次函数y=(x ﹣1)2﹣2的图象先向右平移1个单位,再向上平移1个单位后顶点为( ) A .(1,3)B .(2,﹣1)C .(0,﹣1)D .(0,1)7.如图,在△ABC 中,若点D 、E 分别是AB 、AC 的中点,S △ABC =4,则S △ADE =( ) A .1B .2C .3D .48.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为() A .1000sin α米B .1000tan α米C .1000tan α米 D .1000sin α米9.小兰画了一个函数y =x 2+ax +b 的图象如图,则关于x 的方程x 2+ax +b =0的解是( ) A .无解B .x =1C .x =-4D .x =-1或x =410.如图,OE F ''与OEF 关于原点O 位似,相似比为1:2,已知(4,2)E -,(1,1)F --,则点E 的对应点E '的坐标为()A .(2,1)B .11,22⎛⎫⎪⎝⎭C .(2,1)-D .12,2⎛⎫-⎪⎝⎭11.某水坝的坡度i=1坡长AB=20米,则坝的高度为( ) A .10米B .20米C .40米D .2012.抛物线()20y ax bx c a =++≠的图象如图所示,抛物线过点()1,0-,则下列结论:①0abc >;②20a b -=;③30a c +>;④2a b am bm +>+(m 为一切实数);⑤24b ac >;正确的个数有( ). A .1个B .2个C .3个D .4个二、填空题(共18分)13.在Rt △ABC 中,∠C=90º,如果14.如图,在△BDE 和△BCA 中,∠BDE =∠BCA .若BD BC =23,DE =4,则AC 的长为_____. 15.抛物线22y x =向右平移2个单位,得到新的抛物线的解析式是__________. 16.在正方形网格中,△ABC 的位置如图所示,则sinB 的值为______________17.如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽AB =1.6m 时,涵洞顶点与水面的距离是2.4m .这时,离开水面1.5m 处,涵洞的宽DE 为_____.18.如图,在ABCD 中,E 为边AD 上一点,且:3:2AE DE =,连接,CE BD 交于点F ,连接BE ,若4DEFS=,则BCES=____.三、解答题(共66分)19.(本题6分)3-2cos60°2sin45°.20.(本题6分)如图,在68⨯的网格图中,每个小正方形边长均为1,原点O 和ABC 的顶点均为格点.()1以O 为位似中心,在网格图中作A'B'C',使A'B'C'与ABC 位似,且位似比为1:2;(保留作图痕迹,不要求写作法和证明)()2若点C 和坐标为()2,4,则点A'的坐标为(______ ,______ ),点C'的坐标为(______ ,______ ),A'B'C'S:ABCS=______ .21.(本题6分)如图,直线y =﹣x+2与反比例函数y =Kx的图象在第二象限内交于点A ,过点A 作AB ⊥x 轴于点B ,OB =2.(1)求该反比例函数的表达式;(2)若点P 是该反比例函数图象上一点,且△PAB 的面积为4,求点P 的坐标.22.(本题8分)如图,若ADE ABC ∽,DE 和AB 相交于点D ,和AC 相交于点E ,2DE =,5BC =,20ABCS=,求ADES.23.(本题8分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.24.(本题10分)某商店购进一批单价为16元的日用品,销售一段时间后,为了获取更多利润, 商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件; 若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y(件)是价格x( 元/件)的一次函数. (1)试求y 与x 之间的函数关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本).25.(本题10分)如图,等边三角形ACB 的边长为3,点P 为BC 上的一点,点D 为AC 上的一点, 连结AP 、PD ,60APD ∠=.()1求证:①ABP PCD ∽;②2AP AD AC =⋅;()2若2PC =,求CD 和AP 的长.26.(本题12分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.参考答案一、单选题(共36分)1.C,2.A,3.A,4.C .,5.D,6.B,7.A,8.C,9.D,10.C,11.A,12.A 二、填空题(共18分)13.60º..14.6, 15.()222y x =-,16.2,17.5,18.答案不唯一,如2y x =- 三、解答题(共66分)19.原式×3-2×12×2=1-1-1=-1.20.解:()1如图所示:'''A B C 即为所求;()()2'1,0A -, ()'1,2C ,'''A B C S :1ABCS=:4.21.解:(1)∵OB =2, ∴A 点的横坐标是﹣2, 当x =﹣2时,y =2+2=4, ∴A 点坐标是(﹣2,4), 把A (﹣2,4)代入y =xk中,k =﹣8 ∴该反比例函数的表达式为:y =﹣8x; (2)∵A 点坐标是(﹣2,4),∵S △PAB =4,∴P 到AB 的距离为2,∴点P 一定在AB 的左侧,横坐标为-4, 当x =﹣4时,y =﹣84-=2, ∴P 点坐标是(﹣4,2). 22.解:∵ADE ABC ∽, ∴2:()ABC ADEBC SSDE=, ∴2520:4ADES=, 解得165ADES=. 23.解:有触礁危险.理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD =90°-45°=45°. ∴BD =PD =x . 在Rt △P AD 中, ∵∠P AD =90°-60°=30°∴AD =30xtan ︒=12+x∴x)∵6)<18∴渔船不改变航线继续向东航行,有触礁危险. 24.解:(1)设y=kx+b ,∵当x=20时,y=360;x=25时,y=210∴36020{21025k b k b =+=+,解得30{960k b =-= ∴y=-30x+960(16≤x≤32); (2)设每月所得总利润为w 元,则 w=(x-16)y=(x-16)(-30x+960)=-30(x-24)2+ 1920. ∵-30<0∴当x=24时,w 有最大值.即销售价格定为24元/件时,才能使每月所获利润最大, 每月的最大利润为1920元. 25.解:()1证明:①在等边三角形ACB 中,60B C ∠=∠=, ∵60APD ∠=,APC PAB B ∠=∠+∠, ∴DPC PAB ∠=∠, ∴ABP PCD ∽;②∵PAC DAP ∠=∠,60C APD ∠=∠=, ∴ADP APC ∽, ∴AP AD AC AP=, ∴2AP AD AC =⋅;()2解:∵ABP PCD ∽,3AB AC ==,∴AB BPPC CD=, ∴21233CD ⨯==, ∴27333AD =-=,∵等边三角形ACB 的边长为3,2PC =,2AP AD AC =⋅, ∴3AC =,1BP =,∴AP =26.解:(1)由于抛物线y=ax 2+bx+c 经过A (﹣3,0),B (1,0), 可设抛物线的解析式为:y=a (x +3)(x ﹣1),将C 点坐标(0,﹣3)代入,得:a (0+3)(0﹣1)=-3,解得a =1. ∴抛物线的解析式为:y =(x +3)(x ﹣1),即y=x 2+2x ﹣3 (2)如图1,过点P 作x 轴的垂线,交AC 于点N . 设直线AC 的解析式为y =kx+m ,由题意,得-30{3k m m +==-,解得1{3k m =-=-. ∴直线AC 的解析式为:y=﹣x ﹣3. 设P 点坐标为(x ,x 2+2x ﹣3), 则点N 的坐标为(x ,﹣x ﹣3),∴PN=PE ﹣NE =-(x 2+2x ﹣3)+(﹣x ﹣3)=﹣x 2﹣3x . ∵S △P AC =S △P AN +S △PCN ,∴()22113327•3322228S PN OA x x x ⎛⎫==⨯--=-++⎪⎝⎭. ∴当32x =-时,S 有最大值278. (3)在y 轴上存在点M ,能够使得△ADE 是直角三角形.理由如下: ∵y=x 2+2x ﹣3=(x +1)2﹣4,∴顶点D 的坐标为(﹣1,﹣4). ∵A (﹣3,0), ∴AD 2=(﹣1+3)2+(﹣4﹣0)2=20. 设点M 的坐标为(0,t ),分三种情况进行讨论: ①当A 为直角顶点时,如图2, 由勾股定理,得AM 2+AD 2=DM 2,即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得32 t=.∴点M的坐标为3 0,2⎛⎫ ⎪⎝⎭②当D为直角顶点时,如图3,由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得72 t=-∴点M的坐标为7 0,2⎛⎫-⎪⎝⎭③当M为直角顶点时,如图4,由勾股定理,得AM2+DM2=AD2,即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3∴点M的坐标为(0,﹣1)或(0,﹣3).综上所述,在y轴上存在点M,能够使得△ADE是直角三角形,此时点M的坐标为30,2⎛⎫⎪⎝⎭或70,2⎛⎫-⎪⎝⎭或()0-1,或() 0-3,。
九上化学综合一.选择题(共18小题)1.实验室有两瓶失去标签的无色溶液,分别是稀盐酸和稀硫酸。
下列物质能区分两瓶溶液的是( )A.紫色石蕊试液B.生锈的铁钉C.氢氧化钠溶液D.氯化钡溶液2.推理论证是一种重要的科学思维能力,如图曲线能正确反映下列化学变化中y与x变化关系的是( )A.黄铜(铜锌合金)中滴入稀硫酸:y代表氢气的质量B.氢氧化钠和氢氧化钙的混合溶液中通入CO2气体:y代表沉淀的质量C.稀盐酸中滴入氢氧化钠溶液:y代表混合溶液的pHD.硫酸铜和稀硫酸的混合溶液中加入氢氧化钠溶液:y代表沉淀的质量3.小宁分别将不同质量的锌粉加入一定量的Cu(NO3)2和AgNO3混合溶液中,充分反应后过滤,以下是在不同情况下对滤渣或滤液成分的说法,错误的是( )A.若滤液中只含一种溶质,滤渣一定含有Ag、Cu,可能含有ZnB.当滤液含两种溶质时,滤渣一定含有Ag,可能含有Cu,一定不含ZnC.若滤渣中有红色固体,滤液一定含有Zn(NO3)2,一定不含Cu(NO3)2D.若向所得滤液中滴加稀盐酸有白色沉淀生成,滤渣一定只含有Ag4.在硫酸铜和硫酸亚铁的混合溶液中,缓慢连续加入锌粉直至过量。
下列图像描述正确的是( )A.B.C.D.5.向氯化铜溶液加入一定量的锌粉充分反应,下列情况中可能出现的是( )①溶液中有Zn2+、Cu2+,不溶物为Cu②溶液中有Zn2+、Cu2+,不溶物为Zn③溶液只有Zn2+,不溶物为Zn④溶液只有Zn2+,不溶物为Zn、Cu。
A.①③B.②③C.①④D.③④6.下列各组物质检验与鉴别方案的描述,错误的是( )A.FeCl3、NaOH、H2SO4、KNO3四种稀溶液,只利用组内物质无法鉴别B.Ca(OH)2、HCl、NaCl、Na2CO3四种溶液,只利用组内物质即可鉴别C.NaCl、NaOH、CaO、CuSO4四种固体,只用适量水即可鉴别D.用稀硝酸和AgNO3溶液,可以检验溶液中的Cl﹣7.向一定质量FeSO4和CuSO4的混合溶液中逐渐加入足量的锌粒,下列图像能正确反映对应关系的是( )A.B.C.D.8.有四种澄清透明的溶液:①MgCl2溶液,②Cu(NO3)2溶液,③Na2SO4溶液,④NaOH溶液。
人教版九年级数学上册期末综合复习测试题(含答案)时间:100分钟 总分:120分一、 选择题(每题3分,共24分)1.已知关于x 的方程()222310---=m m x x +是一元二次方程,则m 的值为( ) A .2m =B .4m =C .2m =±D .2m =-2.如图,将AOB ∆绕点O 按逆时针方向旋转40°后得到A OB ''△,若15AOB ∠=︒,则AOB '∠的度数是 ( )A .25°B .30°C .35°D .40°3.顶点(2,1),且开口方向、形状与函数22y x =的图像相同的抛物线是 ( ) A .221y x =+ B .22(2)1y x =-+ C .22(2)1y x =++D .22(2)1y x =+-4.把方程2630x x +-=化成2)x m n (的形式,则m n += ( ) A .15-B .9C .15D .65.如图,ABC ∆内接于O ,直径8cm AD =,=60B ∠︒,则AC 的长度为 ( )A .5cmB .42C .43D .6cm6.在一个不透明的口袋中有红色、黄色和绿色球共60个,它们除颜色外,其余完全相同.在不倒出球的情况下,要估计袋中各种颜色球的个数.同学们通过大量的摸球试验后,发现摸到红球、黄球和绿球的频率分别稳定在20%,40%和40%.由此,推测口袋中黄色球的个数有( ) A .15个B .20个C .21个D .24个7.在同一坐标系中,一次函数y ax k =+与二次函数2y kx a =+的图象可能是 ( )A .B .C .D .8.二次函数2y ax bx c =++的图像如图所示,对称轴是直线1x =.下列结论:①0abc >;②30a c +>;③a c b +<-;④520a b c -+<.其中结论正确的个数为 ( )A .1个B .2个C .3个D .4个二、填空题(每题3分,共24分)9.若n 是方程2210x x --=的一个根,则代数式232n n -+-的值是________. 10.如图,AB 是半圆的直径,C 、D 是半圆上的两点,且20BAC =︒∠,点D 是AC 的中点,则BAD ∠=______.11.点()()1122,,,A x y B x y 在二次函数232y x x =-++的图像上,若122x x <<-,则1y 与2y 的大小关系是1y _______________2y .(用“>”、“<”、“=”填空)12.已知关于x 的一元二次方程2()0(,,a x h k a h k -+=都是常数,且0)a ≠的解为1213x x =-=,,则方程2(1)0(,,a x h k a h k --+=都是常数,且0)a ≠的解为___________.13.如图,正方形ABCD 的边长为3,点E 为AB 的中点,以E 为圆心,3为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点.则图中阴影部分的面积是______.14.如图,正方形OABC 的顶点B 在抛物线2y x 的第一象限的图象上,若点B 的纵坐标是横坐标的2倍,则对角线AC 的长为_________.15.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n ++<的解集是__________.16.如图,以(0,3)G 为圆心,半径为6的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,CF AE ⊥于F ,点E 在G 的运动过程中,线段FG 的长度的最小值为______.三、解答题(每题8分,共72分) 17.解方程: (1)(2)(3)12x x --= (2)23410x x -+=18.已知关于x 的一元二次方程24250x x m --+=有两个实数根. (1)求m 的取值范围;(2)若该方程的两个根都是符号相同的整数,直接写出它的根.19.已知二次函数图像与x 轴两个交点之间的距离是4个单位,且顶点M 为()14-,,求二次函数的解析式.20.如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(-10)A ,,(4)B m ,两点,且抛物线经过点(50)C ,(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A .点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.当PE =2ED 时,求P 点坐标;(3)点P 是直线上方的抛物线上的一个动点,求ABP ∆的面积最大时的P 点坐标.21.一个不透明的口袋中有四个完全相同的小球.把它们分别标记为1,2,3,4.(1)随机摸取一个小球的标号是偶数,该事件的概率为______;(2)小雨和小佳玩摸球游戏,两人各摸一个球,谁摸到的数字大谁获胜.小雨先从口袋中摸出一个小球,不放回,小佳再从口袋中摸出一个小球.用画树状图(或列表)的方法,分别求出小雨和小佳获胜的概率.22.如图,已知女排球场的长度OD 为20米,位于球场中线处的球网AB 的高度2.24米,一队员站在点O 处发球,排球从点O 的正上方2米的C 点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O 的水平距离OE 为6米时,到达最高点G ,以O 为原点建立如图所示的平面直角坐标系.(1)写出C 点坐标___________;B 点坐标___________.(2)若排球运行的最大高度为3米,求排球飞行的高度p (单位:米)与水平距离x (单位:米)之间的函数关系式(不要求写自变量x 的取值范围);(3)在(2)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.23.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线.(2)若9OC =,4AC =,8AE =,则BC =______,BE =______.24.如图,已知等边ABC ,直线AM BC ⊥,点M 为垂足,点D 是直线AM 上的一个动点,线段CD 绕点D 顺时针方向旋转60°得线段DE ,联结BE 、CE .(1)如图1,当点D 在线段AM 上时,说明BE AB ⊥的理由;(2)如图2,当点D 在线段MA 的延长线上时,设直线BE 与直线AM 交于点F ,求BFM ∠的度数;(3)定义:有一个内角是36︒的等腰三角形称作黄金三角形,联结DB ,当DBE 是黄金三角形吋,直接写出BEC ∠为______度.25.抛物线2y ax 2x c =++与x 轴交于(1,0)A -、B 两点.与y 轴交于点(0,3)C 、点(,3)D m 在抛物线上.(1)求抛物线的解析式.(2)如图1,连接BC 、BD ,点P 在对称轴左侧的抛物线上,若PBC DBC ∠=∠,求点P 的坐标.(3)如图2,过点A 的直线∥m BC ,点Q 是直线BC 上方抛物线上一动点,过点Q 作QE m ⊥,垂足为点E ,连接BE ,CE ,CQ ,QB .当四边形BECQ 的面积最大时,求点Q 的坐标及四边形BDCQ 面积的最大值。
九上期末测试大题复习
2.(2010 嵊州市)(10分)已知:在四边形ABCD中,A D∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD,试探究AE与EF之间的数量关系。
(1)如图1,若AB=BC=AC,则AE与EF之间的数量关系是什么;
(2)如图2,若AB=BC,你在(1)中得到的结论是否发生变化?写出猜想,并加以证明;
(3)如图3,若AB=kBC,你在(1
)中得到的结论是否发生变化?写出猜想不用证明。
40.(2010福建南平)如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以
PA、PC为邻边作□APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).
(1)求证:∠EAP=∠EPA;
(2)□APCD是否为矩形?请说明理由;
(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到
∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN
之间的数量关系,并证明你的结论.
41.(2010山东济宁)数学课上,李老师出示了这样一道题目:如图1,正方形ABCD
的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC
于M,交边AB的延长线于N.当6
CP=时,EM与EN的比值是多少?
经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分
别于F,G,如图2,则可得:
DF DE
FC EP
=,因为DE EP
=,所以DF FC
=.可求出EF
和EG的值,进而可求得EM与EN的比值.
(1) 请按照小明的思路写出求解过程.
(2) 小东又对此题作了进一步探究,得出了DP MN
=的结论.你认为小东的这个结论
正确吗?如果正确,请给予证明;如果不正确,请说明理由.
43.(2010 山东莱芜)在平行四边形ABCD中,AC、BD交于点O,
过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H
四点,连结EG、GF、FH、HE.
(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明
理由.
图1
B
H
G
F
E
O
D
C
B
A
图①
H
G
F
E
O
D
C
B
A
图②
A
B C
D
O
E
F
G
H
图③
A
B C
D
O
E
F
G H
图④
D
A C
B
44.(2010天门、潜江、仙桃)正方形ABCD 中,点O 是对角线DB 的中点,点P 是DB 所在直线上的一个动点,PE ⊥BC 于E ,PF ⊥DC 于F .
(1)当点P 与点O 重合时(如图①),猜测AP 与EF 的数量及位置关系,并证明你的结论;
(2)当点P 在线段DB 上 (不与点D 、O 、B 重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由; (3)当点P 在
DB 的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.
45.(2010 山东淄博)将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =23,P 是AC 上的一个动点.
(1)当点P 运动到∠ABC 的平分线上时,连接DP ,求DP 的长; (2)当点P 在运动过程中出现PD =BC 时,求此时∠PDA 的度数;
(3)当点P 运动到什么位置时,以D ,P ,B ,Q 为顶点的平行四边形的顶点Q 恰好在边BC 上?求出此时□DPBQ 的面积.
46.(2010福建宁德)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM.
⑴ 求证:△AMB≌△ENB;
⑵ ①当M 点在何处时,AM +CM 的值最小;
②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13+时,求正方形的边长.
9.如图,直线22y x =+与y 轴交于A 点,与反比例函数k
y x
=(x >0)的图象交于点M ,过M 作MH ⊥x 轴于点H ,且tan ∠AHO =2.
(1)求k 的值;
(2)点N (a ,1)是反比例函数k
y x
=(x >0)图像上的点,
在x 轴上是否存在点P ,使得PM +PN 最小,若存 在,求出点P 的坐标;若不存在,请说明理由.
A D
B
C。