几何综合(二)满分冲刺-初三数学上册讲义教学知识
- 格式:docx
- 大小:38.58 KB
- 文档页数:3
初三上数学几何知识点归纳总结在初三数学学科中,几何是一个非常重要且需要重点掌握的部分。
几何不仅涉及到图形的性质和构造,还涉及到空间的理解和分析等。
为了帮助同学们更好地掌握初三上数学中的几何知识,下面对初三上数学几何知识点进行归纳和总结。
一、平面几何基本概念1. 点:几何中最基本的图形元素,没有大小和形状。
2. 线段:由两个端点确定的线段,具有长度和方向。
3. 直线:由无数个点组成的连续直的线,延伸无限远,没有端点。
4. 射线:一个端点开始,延伸无限远的线。
5. 角:由两条射线共享一个端点形成的图形。
6. 三角形:由三条线段组成的图形。
7. 四边形:由四条线段组成的图形。
二、三角形的性质和分类1. 三角形的内角和等于180度。
2. 三角形根据边的关系可以分为等边三角形、等腰三角形和一般三角形。
3. 根据角的关系可以分为直角三角形、锐角三角形和钝角三角形。
4. 根据边长的关系可以分为斜边三角形、等腰锐角三角形等。
三、圆相关的知识点1. 圆的定义:平面上到一个点的距离相等的点的集合。
2. 圆的性质:圆的直径是圆上任意两点之间的最大距离,圆的半径是圆心到圆上的任意一点的距离。
3. 圆周率的计算:π是一个无理数,通常取3.14作为近似值来计算。
四、平行线与相交线1. 平行线的定义:在同一个平面内,不相交且两两平行的线。
2. 平行线的判定:平行线的判定条件包括同位角相等、内错角相等、同旁内角或同旁外角互补等。
3. 相交线的性质:相交线的同位角相等、内错角互补、邻补角相等等。
五、相似三角形1. 相似三角形的定义:两个三角形对应角相等并且对应边成比例,则称这两个三角形相似。
2. 相似三角形的性质:相似三角形的对应角相等、对应边成比例。
六、三角形的面积计算1. 面积计算公式:- 直角三角形的面积 = 底边长 ×高 ÷ 2- 一般三角形的面积 = 1/2 ×底边长 ×高- 等边三角形的面积 = 边长平方 ×根号3 ÷ 4- 任意三角形的面积 = 1/2 ×两条边的乘积 ×正弦夹角的正弦七、几何的证明方法1. 直接证明法:通过已知条件和几何定理,直接推导出结论。
2022年中考几何模型一、角平分线模型知识精讲1. 过角平分线上一点向角的两边作垂线段,利用角平分线上的点到角两边的距离相等的性质来解决问题2. 若题目中已经有了角平分线和角平分线上一点到一边的垂线段(距离),则作另一边的垂线段,例:已知:AD是的平分线,,过点D于点E,则.3. 在角的两边上取相等的线段,结合角平分线构造全等三角形(角边等,造全等),已知:点D是平分线上的一点,在OA、OB上分别取点E、F,且,连接DE、DF4. 过角平分线上一点作角的一边的平行线,构造等腰三角形,例:已知:点D是平分线上的一点,过点D作三角形,即.5. 有角平分线时,过角一边上的点作角平分线的平行线,交角的另一边所在直线于一点,也可构造等腰三角形,例:已知:OC平分,点D是OA上一点,过点D作交OB的反向延长线于点E,则.6. 从角的一边上的一点作角平分线的垂线,使之与角的另一边相交,则可得到一个等腰三角形,例:已知:OE平分∠AOB,点D在OA上,DE⊥OE,则可延长DE交OB于点F,则DE=EF,OD=OF,∠ODF=∠OFD.7. 有角平分线时,可将等角放到直角三角形中,构造相似三角形,也可以另加一对相等的角构造相似三角形,例:4321DA4231EFCB(1)已知:OC 平分,点E 、F 分别在OA 、OB 上,过点E M ,过点F N(2)已知:OC 平分,点E 、F 在OC 上,于点M ,于点N ,则(3)已知:OC 平分,点E 、F 在OC ,8. 利用“在同圆或等圆中,相等的圆周角(圆心角)所对的弦相等”可得相等线段,例:已知:∠BAC 是圆O 的圆周角,∠DOE 是圆O 的圆心角,AF 平分∠BAC ,OG 平分∠DOE ,连接BF 、CF 、DG 、EG ,则BF =CF ,DG =EG .9. 【内内模型】如图,两个内角平分线交于点D ,则.10. 【内外模型】如图,的一个内角平分线和一个外角平分线交于点D ,则.11. 【外外模型】如图,交于点D ,则.二、中点模型知识精讲1. 在等腰三角形中有底边中点或证明底边中点时,可以作底边的中线,利用等腰三角形的“三线合一”性质来解决问题.例:已知:在△ABC中,AB=AC,取BC的中点D,连接AD,则AD平分∠BAC,AD是边BC上的高,AD是BC边上的中线.【说明】应用等腰三角形“三线合一”的性质是证明两条直线垂直的重要方法.2. 在直角三角形中,有斜边中点或有斜边的倍分关系线段时,可以作斜边的中线解决问题,例:(1)如图,在Rt△ABC中,D为斜边AB的中点,连接CD,则CD=AD=BD.(2)如图,在Rt△ABC中,AB=2BC,作斜边AB上的中线CD,则AD=BD=CD=BC,△BCD是等边三角形.【总结】在直角三角形中,若遇到斜边的中点,则连接直角顶点与斜边的中点是解决问题的基本方法,作这条辅助线的目的是得到三条相等的线段及两对相等的角. 3. 将三角形的中线延长一倍,构造全等三角形或平行四边形(倍长中线),例:(1)如图,在△ABC中,AD为△ABC的中线,延长AD至点E,使得DE=AD,连接BE,则△ADC≌△EDB.(2)如图,在△ABC中,AD为△ABC的中线,延长AD至点E,使得DE=AD,连接BE,则四边形ABEC是平行四边形.4. 将三角形中线上的一部分延长一倍,构造全等三角形或平行四边形,例:如图,已知点E是△AD上的一点,延长AD至点F,使得DE=DF,连接BF、CF,则四边形BFCE为平行四边形或△BDF≌△CDE或△BED≌△CFD.【总结】证明两条线段相等常用的方法:①当要证明的两条线段是两个三角形的边时,一般通过证明这两条线段所在的两个三角形全等,通过三角形全等的对应边相等来证明两条线段相等;②当两条线段是同一个三角形的两条边时,一般证明这两条边所对的角相等,利用等角对等边证明两条线段相等.5. 有以线段中点为端点的线段时,可以倍长此线段,构造全等三角形或平行四边形,例:如图,已知点C边AE上一点,O为AB的中点,延长CO至点D,使得,连接AD、BD,四边形ADBC为平行四边形.6. 有三角形中线时,可过中点所在的边的两端点向中线作垂线,构造全等三角形,例:如图,AF为△ABC的中线,作BD⊥AF交AF延长线于点D,作CE⊥AF于点E,则△BDN≌△CEN.7. 在三角形中,有一边的中点时,过中点作三角形一边的平行线或把某条线段构造成中位线,利用已知的条件可求线段长,例:如图,D为AB的中点,过点D作DE∥BC,则DE为△ABC的中位线;过点B作BF∥DC 交AC的延长线于点F,则DC为△ABF的中位线.8. 有两个(或两个以上)中点时,连接任意两个中点可得三角形的中位线,例:如图,D、E、F分别为△ABC三边中点,连接DE、DF、EF,则.9. 有一边中点,并且在已知或求证中涉及线段的倍分关系时,可以取另一边的中点,构造三角形的中位线,例:如图,点E是△ABC边BC的中点,取AC的中点F,连接EF,则EF∥AB,10. 当圆心与弧(或弦)的中点,可以利用垂径定理解决问题,例:(1)如图,,连接AC、OB,则OB⊥AC,OB平分AC.(2)如图,点C为弦AB的中点,连接OC,则OC⊥AB.三、平行模型知识精讲在一些有平行线却没有截线的问题中,通常需要添加辅助线构造“三线八角”,再运用平行线的有关知识解题,常见的辅助线添加方式如下:如果遇到两条平行线之间夹折线,一般应过折点作出与已知平行线平行的直线.1. 如图,已知AB∥CD,点E为AB、CD间的一点,过点E作EF∥AB,则∠A+∠C=∠AEC.2. 如图,已知AB∥CD,则∠A+∠AEC+∠C=360°.3. 如图,AB∥CD,则∠B=∠D+∠E.4. 如图,AB∥CD,则∠BEG+∠D+∠F=180°.5. 如图,AB∥CD,则∠ABE=∠D+∠E.四、垂直模型1. 在三角形中,若题目中已经有一边的高了,常作另一边上的高,然后用同角的余角相等证明角相等.例:如图,在△ABC中,AD⊥BC于点D,过点B作BE⊥AC交AC于点E,交AD于点F,则∠CBE=∠CAD,∠AFE=∠C=∠BFD.除了能得到角度间的关系外,还可以通过构造相似三角形来证明线段成比例或者用于求线段的长度.2. 在四边形中,如果有高线,可以再作垂线,构造特殊的四边形或者直角三角形.例:如图,在四边形ABCD中,AB⊥BC,DC⊥BC,过点D作DE⊥BC,垂足为点E,则四边形BCDE为矩形,△ADE为直角三角形.3. 在直角三角形中,常作斜边上的高,利用同角(等角)的余角相等,可得到相似三角形.例:如图,在Rt△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,则∠A=∠DCB,∠B=∠ACD,△ABC∽△CBD∽△ACD.4. 若题中已有直线的垂线时,可再作已知直线的垂线,得到两条平行线.例:如图,在△ABC中,AF⊥BC于点F,过AB上一点D作DE⊥BC于点E,则DE∥AF,∠BDE=∠BAF,∠ADE+∠BAF=180°,△BDE∽△BAF.5. 若存在过一条直线上两点同时向另一条直线作垂线,可以再作一条垂线,构造一组平行线,利用平行线等分线段定理解决问题.6. 当两条互相垂直的弦的交点恰好在圆上,构成90°的圆周角,可构造直径.例:如图,点A在圆O上,∠BAC=90°,连接BC,则BC就是圆O的直径.7. 当圆中有互相垂直的弦时,经常作直径所对的圆周角,可以得到垂直于同一条直线的两条直线,利用平行弦所夹的弧相等来解决问题.例:在圆O中,弦AB⊥CD于点E,连接CO并延长交圆O于点F,连接DF,则FD⊥CD,FD∥AB,.8. 当圆中有和弦垂直的线段时,作直径所对的圆周角,可以得到直角三角形,通过相似三角形来解决问题.例:如图,△ABC内接于圆O,CD⊥AB于点D,连接CO并延长交圆O于点E,连接AE,则△ACE∽△DCB.五、对角互补模型知识精讲1. 全等型—90º如图,已知∠AOB=∠DCE=90º,OC平分∠AOB.则可以得到如下几个结论:①CD=CE,②OD+OE=OC,③2. 如图,已知∠DCE的一边与AO的延长线交于点D,∠AOB=∠DCE=90º,OC 平分∠AOB.则可得到如下几个结论:①CD=CE,②OE-OD=OC,③.3. 全等型—60º和120º如图,已知∠AOB=2∠DCE=120º,OC平分∠AOB.则可得到如下几个结论:①CD=CE,②OD+OE=OC,③.4. 全等型—和如图,已知∠AOB=,∠DCE=,OC平分∠AOB.则可以得到以下结论:①CD=CE,②OD+OE=2OC·cos,③.5. 相似型—90º如图,已知∠AOB=∠DCE=90º,∠BOC=.结论:CE=CD·.六、半角模型知识精讲1. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则BE+DF=EF.2. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则AE平分∠BEF,AF平分∠DFE.3. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则4. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,过点A作AH⊥EF交EF于点H,则AH=AB.简证:由上述结论可知AE平分∠BEF,又∵AB⊥BC,∴AH=AB.5. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,. 简证:由结论1可得EF=BE+DF,CE+CF+EF=CE+CF+BE+DF=2AB.6. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:如图,将△AND绕点A顺时针旋90º得到△AGB,连接GM.通过证明△AMG≌△AMN得MN=MG,DN=BG,∠GBE=90º,即可证.7. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则△BME△DFN△AMN△BAN△DMA△AFE.简证:通过证明角相等得到三角形相似,要善于使用上述结论.8. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则简证:连接AC,∵∠DAF=∠EAC,∠ADB=∠ACB,∴△ECA△NDA,又∵△AMN△AFE,∴.【补充】通过面积比是相似比的平方比亦可得到9. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:由结论7可得△DAM△BNA,∴,即.10. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:设,在Rt△CEF中,,化简得,.11. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则当BE=DF时,EF.证明:如图,作△AEF的外接圆,点P为EF的中点,连接OA、OE、OF、PC,过点A作AH⊥EF.∵∠EAF=45º,∴∠EOF=90º,设,则,∴当点A、O、P、C四点共线时,即BE=DF,、EF大值.12. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N简证:由结论8可得△△ECA△NDA,同理可得补充:等腰直角三角形与“半角模型”如图所示,在等腰直角三角形ABC中,若∠DCE=45º,则.证明:如图,将△ACD绕着点C顺时针旋转90º得到△,连接.∵旋转,∴△ACD≌△,∴AD=,在△DCE与△中,ED=,∵∠BE=∠BC+∠EBC=∠DAC+∠EBC=90º,∴,.七、倍半角模型知识精讲一、二倍角模型处理方法1. 作二倍角的平分线,构成等腰三角形.例:如图,在△ABC中,∠ABC=2∠C,作∠ABC的平分线交AC于点D,则∠DBC=∠C,DB=DC,即△DBC是等腰三角形.2. 延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形.例:如图,在△ABC中,∠B=2∠C,延长CB到点D,使得BD=AB,连接AD,则△ABD、△ADC都是等腰三角形.二、倍半角综合1. 由“倍”造“半”已知倍角求半角,将倍角所在的直角三角形相应的直角边顺势延长即可.如图,若,则()2. 由“半”造“倍”已知半角求倍角,将半角所在的直角三角形相应的直角边截取线段即可.如图,在Rt△ABC(∠A<45º)的直角边AC上取点D,当BD=AD时,则∠BDC=2∠A,设,则,在Rt△BCD中,由勾股定理可得,解得,故有.三、一些特殊的角度1. 由特殊角30º求tan15º的值如图,先构造一个含有30º角的直角三角形,设BC=1,,AB=2,再延长CA至D,使得AD=AB=2,连接BD,构造等腰△ABD,则∠D=∠BAC=15º,.2. 由特殊角45º求tan22.5º的值由图可得,.3. “345”三角形(1)如图1,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,;(2)如图2,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,;(3)如图3,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,.八、全等模型知识精讲一、几何变换中的全等模型1. 平移全等模型,如下图:2. 对称(翻折)全等模型,如下图:3. 旋转全等模型,如下图:二、一线三等角全等模型4. 三垂直全等模型,如图:5. 一线三直角全等模型,如图:6. 一线三等角与一组对应边相等全等模型,如图:三、手拉手全等模型7. 等腰三角形中的手拉手全等模型如图,△ABC与△ADE均为等腰三角形,且∠BAC=∠DAE,连接BD、CE,则△ABD ≌△ACE.8. 等边三角形中的手拉手全等模型如图,△ABC与△CDE均为等边三角形,点B、C、E三点共线,连接AE、BD,则△BCD≌△ACE.9. 一般三角形中的手拉手全等模型如图,在任意△ABC中,以AB为边作等边△ADB,以AC为边作等边△ACE,连接DC、BE,则△ADC≌△ACE.10. 正方形中的手拉手全等模型如图,在任意△ABC中,以AB为边作正方形ABDE,以AC为边作正方形ACFG,连接EC、BG,则△AEC≌△ABG.九、相似模型知识精讲1. A字型与反A字型相似2. 8字型与反8字型相似3. 蝴蝶型相似4. 共角共边相似模型5. 一线三等角6. 旋转相似模型拓展讲解:1. 射影定理(1)双垂直,如图:结论①△ABD∽△ACB,AB2=AD·AC;②△ADC∽△ACB,AC2=AD·AB;③△CDB∽△ACB,CB2=BD·BA.(2)斜射影相似结论:△ABD∽△ACB,AB2=AD·AC.2. 对角互补相似如图,在Rt△ABC中,∠C=90º,点O是AB的中点,若∠EOF=90º,则.证明:过点O作OD⊥AC于点D,OH⊥BC于点H,如图所示:通过△ODE∽△OHF即可得到3. 三平行相似如图,AB∥EF∥CD,若,则.证明:∵EF∥AB,∴△DEF∽△DAB,∴,即①同理△BEF∽△BCD,∴,即②①+②,得,.4. 内接矩形相似如图,四边形DEFG是△ABC的内接矩形,EF在BC边上,D、G分别在AB、AC边上,则△ADG∽△ABC,△ADN∽△ABM,△AGN∽△ACM,.十、倍长中线模型知识精讲1. 如图,在矩形ABCD中,若BD=BE,DF=EF,则AF⊥CF.2. 如图,四边形ABCD是平行四边形,BC=2AB,M为AD的中点,CE⊥AB于点E,则∠DME=3∠AEM.3. 如图,△ADE与△ABC均为等腰直角三角形,且EF=CF,求证(1)DF=BF;(2)DF⊥BF.4. 如图,△OAB∽△ODC,∠OAB=∠ODC=90º,BE=EC,求证:(1)AE=DE;(2)∠AED=2∠ABO.十一、弦图模型知识精讲1. 证法一以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于2. 证法二以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于3. 证法三以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于4. 证法四如图所示,分别以a、b为直角边,以c为斜边的四个直角三角形全等,图中3个正方形的边长分别为a、b、c,整个图形的面积为S5. 证法五分别以a、b为直角边,以c为斜边的四个直角三角形全等,将它们按如图所示拼成一个多边形,并延长AC交DF于点P.。
九年级几何综合知识点汇总在九年级的几何学学习中,我们需要掌握一系列的几何综合知识点。
本文将对这些知识点进行汇总和总结,以帮助同学们更好地理解和应用几何学知识。
一、图形的性质和判定1. 点、线、面的基本概念和性质:点是没有大小和形状的,线是由无数个点组成的,而面是由无数个线组成的。
这些基本概念是我们研究图形性质和判定的基础。
2. 角的性质和判定:角是由两条边和一个顶点组成的图形元素。
角可以根据其度数进行分类,如锐角、直角、钝角和平角等。
我们可以通过测量角的大小来判断其性质,还可以利用三角形的性质来判定角的关系和性质。
3. 三角形的性质和分类:三角形是由三条线段组成的图形。
根据三个内角的大小关系,我们可以将三角形分为锐角三角形、直角三角形和钝角三角形。
此外,根据边长和角度的关系,三角形还可以分类为等边三角形、等腰三角形和普通三角形等。
4. 四边形的性质和分类:四边形是由四条线段和四个顶点组成的图形。
根据四个内角的大小关系,我们可以将四边形分为矩形、正方形、平行四边形、菱形等。
四边形还有一些重要的性质,如对角线互相平分等。
5. 圆的性质和判定:圆是由一条曲线和其中心组成的图形。
圆的性质包括半径、直径、弧长、扇形面积等。
我们可以通过测量圆的半径或直径来判定圆的性质。
二、图形的相似和全等1. 相似图形的判定和性质:相似图形是指形状相似且对应边成比例的图形。
我们可以通过比较两个图形的边长比例来判断它们是否相似。
相似图形的一些性质包括对应角相等、对应边成比例等。
2. 全等图形的判定和性质:全等图形是指形状和大小完全相同的图形。
我们可以通过比较两个图形的各边边长和各内角大小来判断它们是否全等。
全等图形的一些性质包括对应边相等、对应角相等等。
三、面积和体积的计算1. 二维图形的面积计算:常见的二维图形包括矩形、三角形、圆等。
我们可以通过不同的公式来计算它们的面积,如矩形的面积公式为长乘以宽,三角形的面积公式为底乘以高的一半,圆的面积公式为半径的平方乘以π等。
九年级几何数学知识点归纳在九年级的几何数学学习中,我们学习了许多重要的知识点,包括平面几何、立体几何、相似与全等、三角形、多边形等等。
下面将对这些知识点进行归纳介绍。
一、平面几何1. 点、直线和平面的定义及性质2. 直线的判定方法(包括重合、平行、垂直等)3. 平行线与垂直线的性质与判定4. 角的概念及基本性质5. 一次还原法及运用6. 根据图形的性质进行证明二、立体几何1. 空间几何体(包括长方体、正方体、圆柱、圆锥、棱柱、棱锥等)的名称及性质2. 空间几何体的表面积和体积计算方法3. 空间几何体的展开图4. 空间几何体的相互关系(包括切割、交叠、平行等)三、相似与全等1. 相似与全等的概念及条件2. 相似三角形的性质与判定3. 相似三角形的比例关系4. 全等三角形的性质与判定5. 利用相似和全等进行问题求解四、三角形1. 三角形的分类(包括等腰三角形、等边三角形、直角三角形等)2. 三角形内角和定理及外角和定理3. 三角形的中线、高线、角平分线的性质4. 三角形的外接圆和内切圆5. 利用三角形的性质进行问题求解五、多边形1. 多边形的定义及分类2. 正多边形的性质(包括内角和、外角和、对角线数目等)3. 正多边形的面积和周长计算4. 不规则多边形的性质(包括对称性、对顶角等)5. 利用多边形的性质进行问题求解在九年级的几何学习中,我们通过学习这些知识点,掌握了平面几何和立体几何的基本概念和性质,熟练了判断直线的关系、求解图形的面积和体积,并能够通过相似与全等、三角形和多边形的性质解决实际问题。
这些知识点为我们打下了坚实的几何基础,为进一步学习高中数学奠定了重要的基础。
通过九年级几何数学知识点的归纳,我们可以清晰地了解到各个知识点的内容和要点。
在学习过程中,我们要多做相关的练习题,巩固知识,提高解题能力。
同时,要善于发现数学与实际生活的联系,将几何知识应用于实际问题,培养数学思维和解决问题的能力。
备战2021年九年级中考复习数学高分冲刺训练——几何综合:《四边形综合》(二)1.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?2.共顶点的正方形ABCD与正方形AEFG中,AB=13,AE=5.(1)如图1,求证:DG=BE;(2)如图2,连结BF,以BF、BC为一组邻边作平行四边形BCHF.①连结BH,BG,求的值;②当四边形BCHF为菱形时,直接写出BH的长.3.如果将(1)中的条件“▱ABCD”改为“四边形ABCD的对角线AC⊥BD”(如图②).试探索:S1:S2与S4:S3之间的关系;(3)如果将(2)中的对角线AC⊥BD的条件去掉(如图③),试探索S1,S2,S3,S4之间的关系.4.如图1,在等腰直角△ABC和△DCE中,AC=BC,DC=EC,∠ACB=∠DCE=90°.(1)求证:△ACD≌△BCE;(2)如图2,将△DCE绕点C顺时针旋转n°(0<n<45),使点A、D、E在同一直线上,AF平分∠BAE交CE延长线与F,探究AB、DE、EF之间的数量关系;(3)如图3,在正方形ABCD中,CD=.若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.5.如图,△ABC是一块铁皮余料.已知底边BC=160cm,高AD=120cm.在铁皮余料上截取一个矩形EFGH,使点H在AB上,点G在AC上,点E,F在BC上,AD交HG 于点M.(1)设HG=ycm,HE=xcm,试确定用x表示y的函数表达式.(2)当x为何值时,矩形EFGH的面积S最大?(3)以面积最大时的矩形EFGH为侧面,围成一个无底圆桶,怎样围,圆桶的体积较大?请说明理由,(接缝处忽略不计,结果可保留π)6.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,请利用上述有关思想,解答下列问题.如图1,在▱ABCD中,E是BC的中点,AE与BD相交于点F.若△BEF的面积为2,求四边形CDFE的面积.【类比延伸】如图2,在▱ABCD中,E是BC的一点,且BE:BC=m:n(n>m>0),AE与BD相交于点F.求△ABF的面积与四边形CDFE的面积的比.(用含m、n的代数式表示)【拓展迁移】如图3,在▱ABCD中,E是BC的一点,且BE:BC=,点G是线段CD的中点,AE 与BD相交于点F.则△ABF的面积与四边形CGFE的面积的比等于.(直接写出答案)7.,四边形OBCD是矩形,O,B,D三点的坐标分别是(0,0),(b,0),(0,d),求点C 的坐标.(2)如图(2),四边形ABCD是菱形,C,D两点的坐标分别是(c,0),(0,d),点A,B在坐标轴上,求A,B两点的坐标.(3)如图(3),四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,d),求B,C两点的坐标.8.如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE、CE、DE、BF、CF、EF.(1)若∠EDC=∠FBC,ED=FB,试判断△ECF的形状,并说明理由.(2)在(1)的条件下,当BE:CE=1:2,∠BEC=135°时,求BE:BF的值.(3)在(2)的条件下,若正方形ABCD的边长为(3+)cm,∠EDC=30°,求△BCF的面积.9.如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足方程x2﹣(2+2)x+4=0的两根.(1)求B、C两点的坐标.(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BB′的解析式.(3)在直线BB′上是否存在点P,使△ADP为直角三角形?若存在,请直接写出P点坐标;若不存在,请说明理由.10.四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)(1)如图1,若点G在BC边上时(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,求证:△ABF≌△DAE;(2)直接写出(1)中,线段EF与AF、BF的等量关系是;(3)①如图2,若点G在CD边上时(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,则图中全等三角形是,线段EF与AF、BF的等量关系是;②如图3,若点G在CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,线段EF与AF、BF的等量关系是;(4)若点G是BC延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,请画图、探究线段EF与AF、BF的等量关系.参考答案1.解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=(6﹣t)×8=﹣4t+24.当6<t≤7时,S=(t﹣6)(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤7时,S=(t﹣6)(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,t=7时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为9.2.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AD=AB=CB,AG=AE,∠DAB=∠GCE=90°,∴∠DAB﹣∠GAF=∠GCE﹣∠GAF,即∠DAG=∠BAE,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS),∴DG=BE;(2)解:①连接GH,延长HF交AB于N,设AB与EF的交点为M,如图2所示:∵四边形BCHF是平行四边形,∴HF∥BC,HF=BC=AB,∵BC⊥AB,∴HF⊥AB,∴∠HFG=∠FMB,又AG∥EF,∴∠GAB=∠FMB∴∠HFG=∠GAB,在△GAB和△GFH中,,∴△GAB≌△GFH(SAS),∴GH=GB,∠HGF=∠BGA,∴∠HGF﹣∠BGF=∠BGA﹣∠BGF,∴∠HGB=∠AGF=90°,∴△GHB为等腰直角三角形,∴BH=BG,∴=;②分两种情况:a、如图3所示:连接AF、EG交于点O,连接BE,∵四边形BCHF为菱形,∴CB=FB,∵AB=CB,∴AB=FB=13,∴点B在AF的垂直平分线上,∵四边形AEFG是正方形,∴AF=EG,OA=OF=OG=OE,AF⊥EG,AE=FE=AG=FG,∴点G、点E都在AF的垂直平分线上,∴点B、E、G在一条直线上,∴BG⊥AF,∵AE=5,∴AF=EG=AE=10,∴OA=OG=OE=5,∴OB===12,∴BG=OB+OG=12+5=17,由①得:BH=BG=17;b、如图4所示:连接AF、EG交于点O,连接BE,同上得:点B、E、G在一条直线上,OB=12,BG=OG+OB﹣OG=12﹣5=7,由①得:BH=BG=7;综上所述,BH的长为17或7.3.解:(1)∵四边形ABCD是平行四边形,∴OA=OC,∵△AOB,△BOC的边OA,OC上的高相同,∴S1=S2,同理S2=S3,S3=S4,S4=S1,∴S1=S2=S3=S4;(2)∵AC⊥BD,垂足为O,∴S1=OAOB,S2=OBOC,S3=OCOD,S4=ODOA,∴S1S3=S2S4,∴;(3)设点B到线段AC所在直线的距离为h1,点D到线段AC所在直线的距离为h2,∴S1=OAh1,S2=OCh1,S3=OCh2,S4=OAh2,∴S1S3=S2S4;4.(1)证明:如图1中,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE.(2)结论:AB﹣DE=EF,理由:如图2中,∵CD=CE,∠DCE=90°,∴∠CED=45°,DE=CE,∵CA=CB,∠ACB=90°,∴∠CAB=45°,AB=CA,∵∠CED=∠F+∠EAF,∴∠F=45°﹣∠EAF,∵∠CAF=∠CAB﹣∠F AB=45°﹣∠F AB,∵∠EAF=∠F AB,∴∠CAF=∠F,∴CA=CF,∵EF=CF﹣CE=CA﹣CE,∴EF=CA﹣CE=AB﹣DE.∴AB﹣DE=EF.(3)如图3中,以D为圆心1为半径作⊙D,过点B作⊙D的切线BP、BP′,连接BD,作AE⊥BP′于E,AF⊥BP于F.∵四边形ABCD是正方形,CD=BC=AB=AD=,∴BD=DC=2,∠ABC=90°,在Rt△PBD中,∵∠BPD=90°,BD=2,DP=1,∴∠PBD=30°,同理∠P′BD=30°,∴∠ABE=∠CBP=15°,在△ABE和△BAF中,,∴△ABE≌△BAF,∴∠ABE=∠OAB=15°,∴∠AOE=∠FOB=30°,∴AO=OB=2AE,设AE=a,则AO=OB=2a,EO=a,∴EB=AF=2a+a,∵AB2=AE2+BE2,∴2=a2+(2a+a)2,∴a=(负根已经舍弃),∴AE=,AF=BE=2a+a=.故答案为或.5.解:(1)∵四边形GHEF为矩形,∴GH∥FE,∴△AHG∽△ABC,∵AM和AD分别是△AHG和△ABC的高,∴,∴,∴y =﹣x +160;(2)∵S =xy , ∴S =﹣+160x =﹣(x 2﹣120x )=﹣(x 2﹣120x +3600﹣3600)=﹣(x ﹣60)2+4800.∴当x =60cm 时,Smax =4800cm 2;(3)围圆柱形铁桶有两种情况:当x =60cm 时,y =﹣×60+160=80cm .第一种情况:以矩形EFGH 的宽HE =60cm 作铁桶的高,长HG =80cm 作铁桶的底面周长.则底面半径R =cm ,铁桶体积V 1=π()260=(cm 3),第二种情况:以矩形EFGH 的长HG =80cm 作铁桶的高,宽HE =60cm 作铁桶的底面周长,则底面半径r =cm ,铁桶体积V 2=π()280=(cm 3).因为V 1>V 2.所以矩形EFGH 的宽HE =60cm 作铁桶的高,长HG =80cm 作铁桶的底面周长围成的圆柱形铁桶的体积较大.6.解:(1)∵点E 是平行四边形ABCD 中BC 边的中点, ∴AD =BC =2BE ,BE ∥AD , ∴△BEF ∽△DAF , ∴=,∴=()2=,∵△BEF 的面积为2,∴S △ABF =2S △BEF =4,S △ADF =4S △BEF =8, ∴S △ABD =S △ABF +S △ADF =12,∴S 四边形DCEF =S △BCD ﹣S △BEF =S △ABD ﹣S △BEF =12﹣2=10;(2)【类比延伸】∵在▱ABCD 中,E 是BC 的一点,且BE :BC =m :n , ∴AD =BC ,BE ∥AD , ∴△BEF ∽△DAF , ∴=, ∴=()2=,设△BEF 的面积为a , ∴S △ABF =S △BEF =,S △ADF =S △BEF =,∴S △ABD =S △ABF +S △ADF ==a ,∴S 四边形DCEF =S △BCD ﹣S △BEF =S △ABD ﹣S △BEF =a ﹣a =a ,;△ABF 的面积与四边形CGFE 的面积的比=:(a )=;(3)【拓展迁移】设△BEF 的面积为a , ∵由(2)得:m =2.n =3,∴△ABF 的面积=a ,四边形CDFE 的面积=a ,连接CF ,如图所示:∵△ABF 的面积+△CDF 的面积=△ABD 的面积, ∴△CDF 的面积=△ADF 的面积=a , ∵G 是CD 的中点,∴△DGF 的面积=△CDF 的面积=a , ∴四边形CGFE 的面积=a ﹣a =a ,∴△ABF 的面积与四边形CGFE 的面积的比=a : a =,故答案为:.7.解:(1)如图1中,∵B(b,0),D(0,d),∴OB=b,OD=d,∵四边形OBCD是矩形,∴∠CDO=∠CBO=90°,CD=OB=b,BC=OD=d,∴C(b,d).(2)如图2中,∵四边形ABCD是菱形,∴OA=OC,OB=OD,∵C(c.0),D(0,d),∴OA=OC=c.OB=OD=d,∴A(﹣c,0),B(0,﹣d).(3)如图3中,∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵D(0,d),∴OD=d,∴OB=BC=CD=d,∴B(d,0),C(d,d).8.(1)证明:在正方形ABCD中,CD=CB,∠DCE+∠BE=∠BCD=90°,∵EC⊥CF,∴∠BCF+∠BCE=90°,∴∠BCF=∠DCE,在△BCF和△DCE中,∴△BCF≌△DCE(ASA),∴EC=FC,∴∠ECD=∠BCF,∵∠DCE+∠BCE=90°,∴∠ECF=90°,∴△ECF是等腰直角三角形;(2)解:∵BE:CE=1:2,∴设BE=a,CE=2a,∵△ECF是等腰直角三角形,∴EF=2a,∵∠BEC=135°,∠CEF=45°,∴∠BEF=90°,∴BF==3a,∴BE:BF=1:3;(3)解:如图所示:作FM⊥BC垂足为M,设BF=3b,FC=2b,∵∠EDC=30°,∴∠CBF=30°,在Rt△BFM中,∴MB=×3b=b,MF=b,∴MC==b,∴b+b=3,∴b=2,则FM=×2=3,∴△BCF的面积是:×BC×FM=×(3+)×3=+.9.解:(1)∵x2﹣(2+2)x+4=0,∴(x﹣2)(x﹣2)=0,解得:x1=2,x2=2,∴OA=2,OC=2∴B点坐标为:(2,2),C点坐标为(2,0).(2)∵△ABC≌△AB′C.∴AB=AB′=2,CB′=CB=2,∵A(0,2),C(2,0)∴设B′的坐标为(x,y),则,解得:B′的坐标为(,﹣1),由两点式解出BB′的解析式为y=x﹣4.(3)假如存在设P(a,a﹣4),D(,0),又A(0,2),∴AD2=()2+22=,PD2=(a﹣)2+(a﹣4)2,AP2=a2+(a﹣4﹣2)2=4a2﹣12a+36,①当∠ADP为直角时,AD2+PD2=AP2,解得a=,则P(,1);②当∠APD为直角时,AP2+PD2=AD2,此时无解;③当∠P AD为直角时,AD2+P A2=PD2,解得a=3,则P(3,5);综上可得,P为(3,5)或(,1).10.证明:(1)∵DE⊥AG,BF⊥AG,∴∠BF A=∠DEA=90°.∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,∴∠EAD=∠FBA.在△ABF和△DAE中,,∴△ABF≌△DAE.(2)EF+BF=AF.理由:∵△ABF≌△DAE,∴AE=BF.∵AE+EF=AF,∴BF+EF=AF.(3)①由(1)可知:△ABF≌△DAE,∴AE=BF.∵AF+EF=AE,∴AF+EF=BF.②∵BF⊥AG,DE⊥AG,∴∠BF A=∠DEA=90°.∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,∴∠EAD=∠FBA.在△ABF和△DAE中,,∴△ABF≌△DAE.∴FB=AE.∵EF=AE+AF,∴AF+BF=EF.(4)如图所示:∵BF⊥AG,DE⊥AG,∴∠BF A=∠DEA=90°.∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,∴∠EAD=∠FBA.在△ABF和△DAE中,,∴△ABF≌△DAE.∴FB=AE.∵AE=EF+AF,∴AF+EF=BF.。
几何综合(二)(讲义)知识点睛几何问题无图或图形不完整时,往往需要作图.作图常考虑以下几点:1.从确定的点、线、角出发,依据特征作图.2.实际操作过程中,有时也会先画出大致图形,边分析特征,边精确图形.3.当研究的问题有多种情况,需要分类讨论时,往往先画出一种符合题意的图形,分析研究后,再考虑其他情形的画图.注:动态变化过程中的几何图形往往要根据变化过程中的不变特征或线段间数量关系来进行分析验证.常见作图特征:(1)与作圆相关①一定点一动点,两点间距离确定,则动点在圆上;②两定点一动点,满足以动点为顶点的角为90°,则动点在圆上;③直角三角形中,直角顶点固定,斜边运动但长度不变,则斜边中点在圆上.(2)与折叠相关①折痕运动但过定点,则折叠后的对应点在圆上;②对应点确定,折痕为对应点连线的垂直平分线.(3)与旋转相关①注意旋转中心、旋转方向、旋转角度;②常将整个图形旋转转化为点、线段的旋转进行操作(有时只需保留研究目标即可).(4)与距离(高)相关动点到确定直线的距离为固定值,则该动点在确定直线的平行线上.10 PP精讲精练1.在矩形 ABCD 中,对角线 AC ,BD 相交于点 O ,AC +BD =40,AB =12,点 E 是 BC 边上一点,直线 OE 交 CD 边所在的直线 于点 F ,若 OE = 2 ,则 DF =.2.如图,在矩形 ABCD 中,AD =4,点 P 是直线 AD 上一动点,若满足△PBC 是等腰三角形的点 P 有且只有 3 个,则 AB 的长为 .ADBC3.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4.P 是直线 AB右侧任意一点,且满足∠PAB =∠PBC .当点 P 落在线段 AC 上时,线段 AP 的长度为 .ABC 4.如图,在 Rt △ABC 中,∠C =90°,AC =6,BC =8,点 F 在边 AC 上,且 AF =2,点 E 为边 BC 上的动点,将△CEF 沿直线 EF 翻折,点 C 落在点 P 处,则当点 P 落在线段 AB 上时,线段 PB 的长度为 .AFCEB5.如图,在△ABC 中,AB =AC ,BC =24,tan C =2,如果将△ABC沿直线 l 翻折后,点 B 落在边 AC 的中点 E 处,直线 l 与边 BC 交于点 D ,那么 BD 的长为( )A .13B . 152AC . 27 2AD .12B C B C6.如图 1,在四边形 ABCD 中,AD ∥BC ,∠A =∠C ,点 P 在边 AB 上.(1)判断四边形 ABCD 的形状并加以证明.(2)若 AB =AD ,以过点 P 的直线为对称轴,将四边形 ABCD 折叠,使点 B ,C 分别落在点 B′,C′处,且线段 B′C′经过点 D , 折痕与四边形的另一交点为 Q .①在图 2 中作出四边形 PB′C′Q (保留作图痕迹,不必说明作法和理由).②如果∠C =60°,那么 AP为何值时,B′P ⊥AB .PB45°30°C7.如图,在平面直角坐标系中,坐标原点 O 是正方形 OABC 的一个顶点,已知点 B 的坐标为(1,7),过点 P (a ,0)(a >0) 作 PE ⊥x 轴,与边 OA 交于点 E (异于点 O ,A ),将四边形 ABCE 沿 CE 翻折,点 A′,B′分别是点 A ,B 的对应点.若点 A′恰好落在直线 PE 上,则 a 的值为 .8.把两个直角三角形纸板按如图所示的方式放置,其中∠ABC =∠DEB =90°,∠A =45°,∠D =30°,斜边 AC =BD =10,若将三角形 DE B 绕点 B 逆时针旋转 45°得到△D ′E ′B ,则点 A 到 D ′E ′的距离为 ;整个旋转过程中,线段 DE 扫过的面积为 . AAEDB BC 9.如图,⊙P 的半径为 5,AB 是圆上任意两点,且 AB =6,以 AB 为边作正方形 ABC D (点 D ,P 在直线 AB 的两侧),若 AB 边绕点 P 旋转一周,则 CD 扫过的面积为 .CD PCQ2 2 10. 如图,已知 Rt △ABC ≌Rt △DEF ,∠C =∠F =90°,AC =DF =3,BC =EF =4.△DEF 绕着斜边 AB 的中点 D 旋转,DE ,DF 分别交 AC ,BC 所在的直线于点 P ,Q .当 QD =QB 时,AP 的长为 .AEF11. 如图,矩形 ABCD 中,AB =4,BC =2,E 是 AB 的中点,直线l 平行于直线 EC ,且直线 l 与直线 EC 之间的距离为 2,点 F 在矩形 ABCD 边上,将矩形 ABCD 沿直线 EF 折叠,使点 A 恰好落在直线 l 上,则 DF 的长为 .DCDAB第 11 题图第 12 题图12. 如图,四边形 ABCD 中,∠BAD =∠ADC =90°,AB =AD = 3 , CD = 2 ,点 P 是四边形 ABCD 四条边上的一个动点,若 P到 BD 的距离为 5,则满足条件的点 P 有 个.213. 如图,在矩形 ABCD 中,AD =5,AB =7,点 E 为 DC 上一个动点,把△ADE 沿 AE 折叠,当点 D 的对应点 D′落在∠ABC 的平分线上时,DE 的长为 .DEC D CD'ABAB【参考答案】1. 18 或 302. 4 或23.18 13 134. 44 - 4 55. A6. (1)四边形 ABCD 是平行四边形.证明略.(2)①图略;②当 AP=PB 3 -1 时, B'P ⊥AB . 27. 28. 0; 75π89. 9π10.25 6 11. 2 2 或 4 - 2 12. 2 13. 5 或5 3 23 21 2。
几何部分第二章:三角形知识点:一、关于三角形的一些概念由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫三角形的边;相邻两边的公共端点叫三角形的顶点;相邻两边所组成的角叫三角形的内角,简称三角形的角。
1、三角形的角平分线。
三角形的角平分线是一条线段(顶点与内角平分线和对边交线间的距离)2、三角形的中线三角形的中线也是一条线段(顶点到对边中点间的距离)3.三角形的高三角形的高线也是一条线段(顶点到对边的距离)注意:三角形的中线和角平分线都在三角形内。
如图 2-l, AD、 BE、 CF都是么ABC的角平分线,它们都在△ABC内如图2-2,AD、BE、CF都是△ABC的中线,它们都在△ABC内而图2-3,说明高线不一定在△ABC内,图2—3—(1)图2—3—(2)图2-3一(3)图2-3—(1),中三条高线都在△ ABC内,图2-3-(2),中高线CD在△ABC内,而高线AC与BC是三角形的边;图2-3一(3),中高线BE在△ABC内,而高线AD、CF在△ABC外。
三、三角形三条边的关系三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形。
等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角。
三角形接边相等关系来分类:三角形⎪⎩⎪⎨⎧⎩⎨⎧等边三角形三角形底边和腰不相等的等腰等腰三角形不等边三角形三角形 用集合表示,见图2-4推论三角形两边的差小于第三边。
不符合定理的三条线段,不能组成三角形的三边。
例如三条线段长分别为5,6,1人因为5+6<12,所以这三条线段,不能作为三角形的三边。
三、三角形的内角和定理三角形三个内角的和等于180°由定理可知,三角形的二个角已知,那么第三角可以由定理求得。
如已知△ABC 的两个角为∠A =90°,∠B =40°,则∠C =180°–90°–40°=50° 由定理可以知道,三角形的三个内角中,只可能有一个内角是直角或钝角。
九上几何知识点总结九上的几何知识点是学生们在几何学习中的一个重要阶段,也是他们准备进入高中阶段学习的基础。
在这个阶段,学生们将学习到一些基本的几何概念和理论知识,如线段、角、多边形、圆等,同时也将学习一些具体的几何运算和应用知识,如几何图形的面积、体积计算等。
以下是九上几何知识点的总结:1. 线段与角线段是几何中的基本概念之一,它是由两个端点和连接这两个端点的所有点组成。
学生们在九上将学习如何计算线段的长度,如何作线段的平分线等。
另外,学生们也将学习到有关角的知识,如角的概念、角的度量、角的种类等。
2. 多边形多边形是由若干条线段组成的封闭图形,是几何学中的一个重要概念。
在九上,学生们将学习到如何计算多边形的内角和外角和、多边形的面积等知识。
3. 圆圆是几何中的一种特殊几何图形,其上所有点到圆心的距离都相等。
在九上,学生们将学习到如何计算圆的周长、面积等知识,同时也将学习如何应用圆的性质解决相关的几何问题。
4. 直线与平面直线和平面是几何学中的基本概念,学生们在九上将学习到有关直线和平面的性质和运算规则,以及如何利用直线和平面的性质解决相关的几何问题。
5. 立体几何立体几何是几何学中的一个重要分支,学生们在九上将学习到如何计算立体几何图形的体积、表面积等知识,以及如何应用这些知识解决相关的立体几何问题。
九上几何知识点总结完毕。
以上就是九上的几何知识点的一个概要总结,希望对学生们的几何学习有所帮助。
在学习几何知识的过程中,学生们要注重理论和实践相结合,通过练习掌握基本的几何运算和应用技巧,从而提高几何解题的能力。
同时,学生们还要注重几何知识与其他学科知识的联系,将几何知识应用到实际生活及其他学科中,以提高数学学习的整体水平。
祝学生们学习愉快,取得优异的成绩!。
中考数学——几何综合(讲义)➢ 知识点睛1. 几何综合问题的处理思路①标注条件,合理转化 ②组合特征,分析结构 ③由因导果,执果索因 2. 常见的思考角度304560 1 ↔⎧⎪↔⎪⎪↔⎨⎪↔⎪⎪︒︒︒↔⎩,,同位角、内错角、同旁内角平行内角、外角、对顶角、余角、补角转化计算角圆心角、圆周角在圆中,由弧找角,由角看弧直角互余、勾股定理、高、距离、直径特殊角等在直角三角形中,找边角关系() 2 ↔⎧⎪⎧⎪↔⎨⎪⎩⎪⎪⎧⎨⎪⎪⎪↔⎨⎪⎪⎪⎪⎪⎩⎪↔⎩、角平分线、垂直平分线轴对称性质勾股定理放在直角三角形中边角关系遇弦,作垂线边、线段连半径转移边放在圆中遇直径找直角遇切线连半径结合全等相似线段间比(例关系) 3 n ⎧⎧⎪⎪⎪⎪→⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪→⎨⎪⎩⎩倍长中线中位线中点三线合一特殊点斜边中线等于斜边的一半相似等分点面积转化() 4 ⎧⎧⎪⎪⎧⎪⎪→⎨⎪⎪⎨⎪⎪⎨⎪⎪⎩⎩⎪⎪⎧⎪→⎨⎪⎩⎩公式法相似规则图形转化法同底面积共高分割求和不规则图形割补法)补形作差(3. 常见结构、常用模型⎧→⎧⎪⎪→⎪⎪⎨⎪→⎪⎪⎪→⎪⎩⎪⎧⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩中点结构中点的思考角度直角结构斜转直常见结构旋转结构全等变换折叠结构轴对称的思考层次角平分线模型弦图模型常用模型相似基本模型三等角模型半角模型 ➢ 课前预习1. 如图,在△ABC 中,D 是BC 边的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F .若∠AEF =55°,则∠EAF=________.F EDCBA提示:倍长中线,构造全等三角形转移条件.具体操作:D 为中点,延长AD 到G 使DG =AD ,连接BG .得到△ADC ≌△GDB .2. 如图,在直角梯形ABCD 中,AB ∥CD ,∠ADC =90°,∠C =70°,点E 是BC的中点,CD =CE ,则∠EAD 的度数为( ) A .35°B .45°C .55°D .65°提示:平行夹中点,构造全等三角形补全图形.AD CE B具体操作:AB ∥CD ,E 为BC 的中点,延长AE 交直线CD 于点F .得到△ABE ≌△FCE .3. 如图,在四边形ABCD 中,AD =BC ,E ,F ,G 分别是AB ,CD ,AC 的中点,若∠ACB =66°,∠CAD =20°,则∠EFG =____.AB CD FEG提示:多个中点考虑中位线,利用中位线性质转移角、转移边.具体操作:GF ,GE 分别为△CDA ,△ABC 的中位线.4. 如图,在△ABC 中,AB =AC ,BD =DC =3,sin C =45,则△ABC 的周长为______.提示:等腰三角形底边上的的中点——通过等腰三角形三线合一,构造直角三角形.具体操作:连接AD ,得到Rt △ADC .5. 如图,在锐角三角形ABC 中,∠BAC =60°,BN ,CM 为高,P 是BC 的中点,连接MN ,MP ,NP .则以下结论:①NP =MP ;②当∠ABC =60°时,MN ∥BC ;③BN =2AN ;④当∠ABC =45°时,BNPC .其中正确的有( )具体操作:在Rt △BMC 中,MP 为斜边中线;在Rt △BNC 中,NP 为斜边中线.6. 如图,正方形ABCD 边长为9,点E 是线段CD 上一点,且CE 长为3,连接BE ,作线段BE 的垂直平分线分别交线段AD ,BC 于点F ,H ,垂足为G ,则AF 的长为______.H G F EDCBA方法1:提示:从边的角度考虑直角,往往先表达,然后用勾股定理建等式. 具体操作:连接BF ,EF ,则BF =EF ,设AF 为x ,分别在Rt △BAF 和Rt △EDF 中表达BF 2,EF 2,再利用BF 2=EF 2求解. 方法2:提示:从角度转移考虑直角,往往先找角相等,然后证相似或全等. 具体操作:过点F 作FM ⊥BC 于点M ,则可证△FMH ≌△BCE ,则MH =CE =3,连接EH ,利用勾股定理求解EH (BH ),则AF =BH -MH . 7. 如图,在△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC 于D .则AD 的长为_______________.DCBA提示:①特殊角+直角;②直角两边可看做是面积中的底或高.具体操作:①过点C 作CE ⊥AB ,交BA 延长线于点E ,在Rt △CAE 中利用特殊角60°求解;②将AD 看成高,求出BC 后,利用CE AB AD BC ⋅=⋅求解.8. 如图,在△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5cm ,则BD =________.ABECD提示:直角+角平分线,逆用三线合一构造出等腰三角形.具体操作:BE 既是角平分线、又是高.延长BA ,CE 交于点F ,可证△CAF ≌△BAD .9. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,BD =2,AD =8,则CD =_________.DC提示:多个直角(直角三角形斜边上的高),考虑母子型相似.具体操作:由∠ACB =∠ADC =90°,考虑△BDC ∽△CDA ∽ △BCA .10. 如图,在梯形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若∠AED =90°,则CE =_____.ABCDE提示:多个直角(一线三等角),考虑三等角模型.具体操作:∠ABE =∠ECD =∠AED =90°,考虑△ABE ∽△ECD .11. 如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知AC =5,OC=BC 的长为________.CB OAED提示:多个直角(斜放置的正方形、等腰直角三角形),考虑弦图.具体操作:过点D 作DF ⊥CB ,交CB 延长线于点F ,连接OF .由弦图可知,△OCF 是等腰直角三角形.12. 如图,将三角板放在矩形ABCD 上,使三角板的一边恰好经过点B ,三角板的直角顶点E 落在矩形对角线AC 上,另一边交CD 于点F .若AB =3,BC =4,则EF EG=________. FEDCG (B )A提示:斜直角要放平(关键是与其他直角配合),利用互余转移角后,寻找三角形相似或全等.具体操作:过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N ,则△EMF ∽△ENG .13. 已知直线l 1:y =112x b -+与直线l 2垂直,且直线l 2经过定点A (3,0),则直线l 2表达式为________________.提示:坐标系下的垂直,优先考虑121k k ⋅=-. 具体操作:由121k k ⋅=-求得k 2,再利用A (3,0)求b 2.14. 如图,在⊙O 中,弦AB,弦ADACB =45°,则弦AD 所对的圆心角为_______.CA提示:圆背景下,要构造直角,考虑:①直径所对的圆周角是直角;②垂径定理.具体操作:连接AO 并延长交⊙O 于点E ,连接DE ,BE .在Rt △ABE 中,求解直径AE ;在Rt △ADE 中,利用边角关系,求解∠AED 进而得到∠AOD . 15. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边上的点B ′处.若AE =2,DE =6,∠EFB =60°,则矩形ABCD 的面积是__________.B'A'F EDCBA提示:折叠,考虑:①利用对应边、对应角相等,考虑转移边、转移角;②矩形中的折叠常出现等腰三角形.具体操作:由折叠∠EFB =∠EFB′=60°,AE =A′E =2,∠B =∠A′B′F =90°,结合内错角∠B′EF =∠BFE =60°,可在Rt △A′B′E 中求解A′B′,即AB 的长.16. 如图,将长为4cm ,宽为2cm 的矩形纸片ABCD 折叠,使点B 落在CD 边的中点E 处,压平后得到折痕MN ,则线段AM 的长为__________.BCFAEMD提示:折叠,考虑折痕是对应点连线的垂直平分线.具体操作:连接BE ,BM ,ME ,则BM =ME ,在Rt △BAM 和Rt △MDE 中表达BM 2,ME 2,利用相等建等式求解.17. 如图,已知直线l :y =122x -+与x 轴交于点A ,与y 轴交于点B ,将△AOB沿直线l 折叠,点O 落在点C 处,则点C 的坐标为_________.提示:折叠,可考虑折痕垂直平分对应点连线.函数背景下的折叠可以考虑121k k ⋅=-和中点坐标公式的组合应用.具体操作:连接OC ,先利用原点坐标和121k k ⋅=-求得OC 解析式;联立OC 和AB 解析式求出OC 的中点坐标后,进而求出点C 坐标.18. 如图,Rt △ABC 的边BC 位于直线l 上,ACACB =90°,∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,则当点A 第3次落在直线l 上时,点A 所经过的路线长为__________.(结果保留π)19.的位置,使得CC′∥AB ,则∠BAB′的度数为( ) A .30°B .35°C .40°D .50°C'B'ABC提示:旋转是全等变换,对应边相等,对应角相等;会出现等腰三角形. 具体操作:由旋转可知AC =AC′(对应边相等),∠BAB′=∠CAC′(旋转角相等).20. 如图,P 是等边三角形ABC 内的一点,连接P A ,PB ,PC ,以BP 为边作∠PBQ =60°,且BQ =BP ,连接PQ ,CQ .若P A :PB :PC =3:4:5,则∠PQC =________.QBCPA提示:利用旋转可以重新组合条件.当看到等腰结构时往往会考虑利用旋转思想构造全等.具体操作:由等腰结构AB =BC ,PB =BQ ,先考虑△APB 和△BQC 的旋转关系,证明△APB ≌△CQB 后验证,重新组合条件后利用勾股定理进行证明.➢ 精讲精练1. 如图,在△ABC 中,∠BAC =30°,AB =AC ,AD 是BC 边上的中线,∠ACE =12∠BAC ,CE 交AB 于点E ,交AD 于点F .若BC =2,则EF 的长为________. FEDBA2. 如图,矩形ABCD 中,AB =8,点E 是AD 上一点,且AE =4,BE 的垂直平分线交BC 的延长线于点F ,交AB 于点H ,连接EF 交CD 于点G .若G 是CD 的中点,则BC 的长是_______.HGOB A DEC F3. 如图,在□ABCD 中,AB :BC =3:2,∠DAB =60°,点E 在AB 边上,且AE :EB =1:2,F 是BC 的中点,过点D 分别作DP ⊥AF 于点P ,DQ ⊥CE 于点Q ,则DP :DQ 等于( ) A .3:4BCD.QDCFBPEACBGFEDA第3题图 第4题图4. 如图,在△ABC 中,∠ABC =90°,BD 为AC 边上的中线,过点C 作CE ⊥BD于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG ,DF .若AG =13,CF =6,则四边形BDFG 的周长为________.5. 如图,已知四边形ABCD 为等腰梯形,AD ∥BC ,AB =CD,AD =CD 中点,连接AE,且AE =BF =________.BCEADF6. 如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,BC =5,将腰DC 绕点D 逆时针方向旋转90°并缩小,恰好使DE =23CD ,连接AE ,则△ADE 的面积是________.7. 如图,在平面直角坐标系中,已知直线y=x 上一点P (1,1),C 为y 轴上一点,连接PC .线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y =x 交于点A ,且BD =2AD .若直线CD 与直线y =x 交于点Q ,则点Q 的坐标为__________.8. 如图,把矩形ABCD 沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC =3:5,则ADAB的值为_________. ED C B AEDCBA9. 如图1,将正方形纸片ABCD 对折,使AB 与CD 重合,折痕为EF ;如图2,展开再折叠一次,使点C 落在线段EF 上,折痕为BM ,BM 交EF 于O ,且△NMO的周长为3,展开再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为P ,EP 交AB 于Q ,则△AQE 的周长为_______.图1BAD FC EMN图2OBAD F CE PHG 图3Q BA D F CE10.如图,在边长为的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE =DG ,连接EG ,CF ⊥EG 于点H ,交AD 于点F ,连接CE ,BH .若BH =8,则FG =_______.GHBA D F CE11.顺时针旋转得到△A B′C′,连接CC ′并延长,交AB 于点O ,交BB ′于点F .若CC ′=CA ,则BF =_____.C'O B AFC B'12. 如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE ,过点A 作AE 的垂线交DE 于点P ,连接BP .若AE =AP =1,PB =APD ≌△AEB ;②BE ⊥DE ;③点B 到直线AE;④1△△APD APB S S +=⑤4ABCD S =正方形 ) A .③④⑤B .①②⑤C .①③⑤D .①②④⑤PDA B CE【参考答案】 ➢ 课前预习1. 55°2. A3. 23°4. 165. B6. 27.7 8. 10 cm 9. 410. 1或6 11. 712. 4313. 26y x =-14.120°15.16.138cm17.816 () 55,18.(4π19.C20.90°➢精讲精练1.12.73.D4.205.4-6.27.99 () 44,8.1 29.1210.11.5 212.B。
九年级上册几何知识点总结自古以来,几何是数学的一门重要分支,它关于点、线、面及其之间的关系,有着深远的应用和研究价值。
九年级上册的几何学习,涵盖了一系列基本的几何知识点。
本文将对这些知识进行总结,以帮助同学们更好地理解和掌握。
1. 形状与等价在几何学中,形状是指物体的外形或轮廓,而等价则是指具有相同形状但大小可以不同的物体。
学习形状与等价可以帮助我们观察并分析物体的特征。
在九年级上册的几何学习中,我们学习了平面图形的分类与性质,如三角形、四边形、圆等。
我们通过对它们的边数、角度性质等进行分析,可以判断它们是什么形状,并且可以通过形状的等价关系来解决一些几何问题。
2. 直线与角直线是几何学中的基本要素,它没有厚度和宽度,只有无限延伸的长度。
我们常见的直线有水平线、垂直线等。
角是两条射线公共端点的形成的一种图形,它包括角的顶点、两条射线和夹角。
在九年级上册的几何学习中,我们学习了几何图形中的直线和角的性质,如平行线与平行线之间的关系、垂直线与垂直角的性质等。
我们可以通过这些性质判断线与线、角与角之间的关系,并应用于实际问题的解决。
3. 三角形与四边形三角形是几何学中最基本的图形之一,它由三条边和三个顶点所组成。
我们可以通过三角形的边长、角的大小等特征来分类和区别不同类型的三角形,如等边三角形、等腰三角形等。
四边形是几何学中具有四个边和四个角的图形,我们也可以通过四边形的边长、对边、对角线等特征来进行分类和研究。
学习了三角形和四边形的性质,我们可以判断图形的类型,并应用到实际问题中,如计算面积、判断图形是否相似等。
4. 圆与圆的性质圆是几何学中最具有有趣性和重要性的图形之一,它由一条尺寸相等的曲线所围成。
圆具有独特的性质,如半径、直径和圆心等。
在九年级上册的几何学习中,我们学习了圆的周长和面积的计算,以及圆与直线的关系。
通过对圆的性质的研究,我们可以解决一些与圆相关的几何问题,如圆的切线、弦长等。
通过对九年级上册几何学习的知识点总结,我们可以看到几何学是一门具有广泛应用和研究价值的学科。
几何综合(二)
【例1】⑴(浙江温州)如图,已知正方形纸片ABCD的边长为8, Q O的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使曲,恰好与。
相切于点A'(A EE4'与。
O除切点外无重叠部分),延长EA,交CD边于点G,则A'G的长是。
A E D ⑵将弧BC沿弦BC折叠交直径AB于点D,若AD=4, DB= 5,则BC的长是_________ 。
【例2】
(海淀教研资料)已知:如图,在△ABC中,D是BC的中点,
若N A = 60°,N B=100°,^EDC= 80°且S『ABC十 2S△CDE=2心,求AC的长。
V, 板块三旋转变换(加强旋转中全等及相似的应用)
【例3】(北京)在平行四边形ABCD中,过点C作CE丄CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线EE(如图1)。
⑴在图1中画图探究:
1
①当P i为射线CD上任意一点(P i不与C点重合)时,连结EP1,将线段EP i绕点E逆时针旋转90°得到线段E G。
判断直线F G 与直线CD的位置关系并加以证明;
②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90°得到线EG2。
判断直线G1G2 与直线CD 的位置关系,画出图形并直接写出你的结论。
⑵若AD=6, tan B=:,AE=1,在①的条件下,设CP i=x, S“四=丁,求J与x之间的函数关系式,并写出自变量x的取值范围。
⑴四边形的形状是,当a=90°时,W
的值是
(浙江宁波)如图1,在平面直角坐标系中,O为坐标原点,点A 的坐标为(-8,
0),直线BC经过点B(-8, 6),C(0, 6),将四边形OABC绕点O按顺时针方向旋
转a度得到四边形OA'B'C,此时直线OA\直线B'C分别与直线BC相交于P、
Q。
【例4】
2
3
⑵①如图2,当四边形OA'B'C'的顶点落在j 轴正半轴上时, 求B 的值;
②如图3,当四边形OA'B'C'的顶点B 落在直线BC 上时,求 △OPB'的面积。
⑶在四边形OABC 旋转过程中,当0<虹180。
时,是否存在这 样的点P 和点Q ,使BP= ^BQ ?若存在,请直接写出点P 的坐标;若不存在,请说明理由。