2014年天津市高考数学试卷(理科)
- 格式:doc
- 大小:81.00 KB
- 文档页数:6
2014年天津市普通高等学校招生统一考试数学试卷(理科)一、选择题(共8小题,每小题5分)1.(5分)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i2.(5分)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.53.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.9454.(5分)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)5.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=16.(5分)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC 于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④A F•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④7.(5分)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件8.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC 上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.二、填空题(共6小题,每小题5分,共30分)9.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.10.(5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.(5分)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为.12.(5分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为.13.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为.14.(5分)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.16.(13分)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.17.(13分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.18.(13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.19.(14分)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.20.(14分)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.2014年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分)1.(5分)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i【分析】将复数的分子与分母同时乘以分母的共轭复数3﹣4i,即求出值.【解答】解:复数==,故选:A.【点评】本题考查了复数的运算法则和共轭复数的意义,属于基础题.2.(5分)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.5【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.3.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.945【分析】算法的功能是求S=1×3×5×…×(2i+1)的值,根据条件确定跳出循环的i值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=1×3×5×…×(2i+1)的值,∵跳出循环的i值为4,∴输出S=1×3×5×7=105.故选:B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.4.(5分)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)【分析】令t=x2﹣4>0,求得函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),且函数f(x)=g(t)=log t.根据复合函数的单调性,本题即求函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.再利用二次函数的性质可得,函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.【解答】解:令t=x2﹣4>0,可得x>2,或x<﹣2,故函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),当x∈(﹣∞,﹣2)时,t随x的增大而减小,y=log t随t的减小而增大,所以y=log(x2﹣4)随x的增大而增大,即f(x)在(﹣∞,﹣2)上单调递增.故选:D.【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.5.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【分析】先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.6.(5分)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC 于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④【分析】本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.【解答】解:∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵AD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD•FA.即结论②成立.由,得AF•BD=AB•BF.即结论④成立.正确结论有①②④.故选:D.【点评】本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度不大,属于基础题.7.(5分)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件【分析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若a>b,①a>b≥0,不等式a|a|>b|b|等价为a•a>b•b,此时成立.②0>a>b,不等式a|a|>b|b|等价为﹣a•a>﹣b•b,即a2<b2,此时成立.③a≥0>b,不等式a|a|>b|b|等价为a•a>﹣b•b,即a2>﹣b2,此时成立,即充分性成立.若a|a|>b|b|,①当a>0,b>0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)>0,因为a+b >0,所以a﹣b>0,即a>b.②当a>0,b<0时,a>b.③当a<0,b<0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)<0,因为a+b <0,所以a﹣b>0,即a>b.即必要性成立,综上“a>b”是“a|a|>b|b|”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的性质结合分类讨论是解决本题的关键.8.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC 上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.【分析】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由•=1,求得4λ+4μ﹣2λμ=3 ①;再由•=﹣,求得﹣λ﹣μ+λμ=﹣②.结合①②求得λ+μ的值.【解答】解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故选:C.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于中档题.二、填空题(共6小题,每小题5分,共30分)9.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.【分析】先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.【解答】解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.【点评】本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.10.(5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.【分析】几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.【解答】解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.11.(5分)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为﹣.【分析】由条件求得,S n=,再根据S1,S2,S4成等比数列,可得=S1•S4,由此求得a1的值.【解答】解:由题意可得,a n=a1+(n﹣1)(﹣1)=a1+1﹣n,S n==,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1﹣6),解得a1=﹣,故答案为:﹣.【点评】本题主要考查等差数列的前n项和公式,等比数列的定义和性质,属于中档题.12.(5分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为﹣.【分析】由条件利用正弦定理求得a=2c,b=,再由余弦定理求得cosA=的值.【解答】解:在△ABC中,∵b﹣c= a ①,2sinB=3sinC,∴2b=3c ②,∴由①②可得a=2c,b=.再由余弦定理可得cosA===﹣,故答案为:﹣.【点评】本题主要考查正弦定理、余弦定理的应用,属于中档题.13.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为3.【分析】把极坐标方程化为直角坐标方程,求出B的坐标的值,代入x2+(y﹣2)2=4,可得a的值.【解答】解:直线ρsinθ=a即y=a,(a>0),曲线ρ=4sinθ,即ρ2=4ρsinθ,即x2+(y﹣2)2=4,表示以C(0,2)为圆心,以2为半径的圆,∵△AOB是等边三角形,∴B(a,a),代入x2+(y﹣2)2=4,可得(a)2+(a﹣2)2=4,∵a>0,∴a=3.故答案为:3.【点评】本题考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,求出B的坐标是解题的关键,属于基础题.14.(5分)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为(0,1)∪(9,+∞).【分析】由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=a|x ﹣1|的图象利用数形结合即可得到结论.【解答】解:由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=g(x)=a|x﹣1|的图象,当a≤0,两个函数的图象不可能有4个交点,不满足条件,则a>0,此时g(x)=a|x﹣1|=,当﹣3<x<0时,f(x)=﹣x2﹣3x,g(x)=﹣a(x﹣1),当直线和抛物线相切时,有三个零点,此时﹣x2﹣3x=﹣a(x﹣1),即x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a=0,即a2﹣10a+9=0,解得a=1或a=9,当a=9时,g(x)=﹣9(x﹣1),g(0)=9,此时不成立,∴此时a=1,要使两个函数有四个零点,则此时0<a<1,若a>1,此时g(x)=﹣a(x﹣1)与f(x),有两个交点,此时只需要当x>1时,f(x)=g(x)有两个不同的零点即可,即x2+3x=a(x﹣1),整理得x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a>0,即a2﹣10a+9>0,解得a<1(舍去)或a>9,综上a的取值范围是(0,1)∪(9,+∞),方法2:由f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,若x=1,则4=0不成立,故x≠1,则方程等价为a===||=|x﹣1++5|,设g(x)=x﹣1++5,当x>1时,g(x)=x﹣1++5≥,当且仅当x﹣1=,即x=3时取等号,当x<1时,g(x)=x﹣1++5=5﹣4=1,当且仅当﹣(x ﹣1)=﹣,即x=﹣1时取等号,则|g(x)|的图象如图:若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则满足a>9或0<a<1,故答案为:(0,1)∪(9,+∞)【点评】本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.【分析】(Ⅰ)根据两角和差的正弦公式、倍角公式对解析式进行化简,再由复合三角函数的周期公式求出此函数的最小正周期;(Ⅱ)由(Ⅰ)化简的函数解析式和条件中x的范围,求出的范围,再利用正弦函数的性质求出再已知区间上的最大值和最小值.【解答】解:(Ⅰ)由题意得,f(x)=cosx•(sinx cosx)====所以,f(x)的最小正周期=π.(Ⅱ)由(Ⅰ)得f(x)=,由x∈[﹣,]得,2x∈[﹣,],则∈[,],∴当=﹣时,即=﹣1时,函数f(x)取到最小值是:,当=时,即=时,f(x)取到最大值是:,所以,所求的最大值为,最小值为.【点评】本题考查了两角和差的正弦公式、倍角公式,正弦函数的性质,以及复合三角函数的周期公式应用,考查了整体思想和化简计算能力,属于中档题.16.(13分)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.【分析】(Ⅰ)利用排列组合求出所有基本事件个数及选出的3名同学是来自互不相同学院的基本事件个数,代入古典概型概率公式求出值;(Ⅱ)随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)列出随机变量X的分布列求出期望值.【解答】(Ⅰ)解:设“选出的3名同学是来自互不相同学院”为事件A,则,所以选出的3名同学是来自互不相同学院的概率为.(Ⅱ)解:随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)所以随机变量X的分布列是随机变量X的数学期望.【点评】本题考查古典概型及其概率公式,互斥事件,离散型随机变量的分布列与数学期望,考查应用概率解决实际问题的能力.17.(13分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.【分析】(I)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC 的方向向量,根据•=0,可得BE⊥DC;(II)求出平面PBD的一个法向量,代入向量夹角公式,可得直线BE与平面PBD 所成角的正弦值;(Ⅲ)根据BF⊥AC,求出向量的坐标,进而求出平面FAB和平面ABP的法向量,代入向量夹角公式,可得二面角F﹣AB﹣P的余弦值.【解答】证明:(I)∵PA⊥底面ABCD,AD⊥AB,以A为坐标原点,建立如图所示的空间直角坐标系,∵AD=DC=AP=2,AB=1,点E为棱PC的中点.∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)∴=(0,1,1),=(2,0,0)∵•=0,∴BE⊥DC;(Ⅱ)∵=(﹣1,2,0),=(1,0,﹣2),设平面PBD的法向量=(x,y,z),由,得,令y=1,则=(2,1,1),则直线BE与平面PBD所成角θ满足:sinθ===,故直线BE与平面PBD所成角的正弦值为.(Ⅲ)∵=(1,2,0),=(﹣2,﹣2,2),=(2,2,0),由F点在棱PC上,设=λ=(﹣2λ,﹣2λ,2λ)(0≤λ≤1),故=+=(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1),由BF⊥AC,得•=2(1﹣2λ)+2(2﹣2λ)=0,解得λ=,即=(﹣,,),设平面FBA的法向量为=(a,b,c),由,得令c=1,则=(0,﹣3,1),取平面ABP的法向量=(0,1,0),则二面角F﹣AB﹣P的平面角α满足:cosα===,故二面角F﹣AB﹣P的余弦值为:【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.18.(13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.【分析】(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|.可得,再利用b2=a2﹣c2,e=即可得出.(Ⅱ)由(Ⅰ)可得b2=c2.可设椭圆方程为,设P(x0,y0),由F1(﹣c,0),B(0,c),可得,.利用圆的性质可得,于是=0,得到x0+y0+c=0,由于点P在椭圆上,可得.联立可得=0,解得P.设圆心为T(x1,y1),利用中点坐标公式可得T,利用两点间的距离公式可得圆的半径r.设直线l的方程为:y=kx.利用直线与圆相切的性质即可得出.【解答】解:(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|,可得,化为a2+b2=3c2.又b2=a2﹣c2,∴a2=2c2.∴e=.(Ⅱ)由(Ⅰ)可得b2=c2.因此椭圆方程为.设P(x0,y0),由F1(﹣c,0),B(0,c),可得=(x0+c,y0),=(c,c).∵,∴=c(x0+c)+cy0=0,∴x0+y0+c=0,∵点P在椭圆上,∴.联立,化为=0,∵x0≠0,∴,代入x0+y0+c=0,可得.∴P.设圆心为T(x1,y1),则=﹣,=.∴T,∴圆的半径r==.设直线l的斜率为k,则直线l的方程为:y=kx.∵直线l与圆相切,∴,整理得k2﹣8k+1=0,解得.∴直线l的斜率为.【点评】本题中考查了椭圆与圆的标准方程及其性质、点与椭圆的位置关系、直线与圆相切问题、点到直线的距离公式、中点坐标公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.19.(14分)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.【分析】(Ⅰ)当q=2,n=3时,M={0,1},A={x|x=x1+x2•2+x3•22,x i∈M,i=1,2,3}.即可得到集合A.(Ⅱ)由于a i,b i∈M,i=1,2,…,n.a n<b n,可得a n﹣b n≤﹣1.由题意可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…+(a n﹣1﹣b n﹣1)q n﹣2+(a n﹣b n)q n﹣1≤(q﹣1)+(q﹣1)q+…+(q﹣1)q n﹣2﹣q n﹣1再利用等比数列的前n项和公式即可得出.【解答】(Ⅰ)解:当q=2,n=3时,M={0,1},A={x|x=x1+x2•2+x3•22,x i∈M,i=1,2,3}.可得A={0,1,2,3,4,5,6,7}.(Ⅱ)证明:由设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.a n<b n,∴s﹣t=(a1﹣b1)+(a2﹣b2)q+…+(a n﹣1﹣b n﹣1)q n﹣2+(a n﹣b n)q n﹣1≤(q﹣1)+(q﹣1)q+…+(q﹣1)q n﹣2﹣q n﹣1=(q﹣1)(1+q+…+q n﹣2)﹣q n﹣1=﹣q n﹣1=﹣1<0.∴s<t.【点评】本题考查了考查了集合的运算及其性质、等比数列的前n项和公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.20.(14分)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.【分析】(Ⅰ)对f(x)求导,讨论f′(x)的正负以及对应f(x)的单调性,得出函数y=f(x)有两个零点的等价条件,从而求出a的取值范围;(Ⅱ)由f(x)=0,得a=,设g(x)=,判定g(x)的单调性即得证;(Ⅲ)由于x1=a,x2=a,则x2﹣x1=lnx2﹣lnx1=ln,令=t,整理得到x1+x2=,令h(x)=,x∈(1,+∞),得到h(x)在(1,+∞)上是增函数,故得到x1+x2随着t的减小而增大.再由(Ⅱ)知,t随着a的减小而增大,即得证.【解答】解:(Ⅰ)∵f (x )=x ﹣ae x ,∴f′(x )=1﹣ae x ;下面分两种情况讨论:①a ≤0时,f′(x )>0在R 上恒成立,∴f (x )在R 上是增函数,不合题意; ②a >0时,由f′(x )=0,得x=﹣lna ,当x 变化时,f′(x )、f (x )的变化情况如下表:∴f (x )的单调增区间是(﹣∞,﹣lna ),减区间是(﹣lna ,+∞);∴函数y=f (x )有两个零点等价于如下条件同时成立:①f (﹣lna )>0;②存在s 1∈(﹣∞,﹣lna ),满足f (s 1)<0;③存在s 2∈(﹣lna ,+∞),满足f (s 2)<0;由f (﹣lna )>0,即﹣lna ﹣1>0,解得0<a <e ﹣1;取s 1=0,满足s 1∈(﹣∞,﹣lna ),且f (s 1)=﹣a <0,取s 2=+ln ,满足s 2∈(﹣lna ,+∞),且f (s 2)=(﹣)+(ln ﹣)<0;∴a 的取值范围是(0,e ﹣1).(Ⅱ)证明:由f (x )=x ﹣ae x =0,得a=, 设g (x )=,由g′(x )=,得g (x )在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,并且当x ∈(﹣∞,0)时,g (x )≤0,当x ∈(0,+∞)时,g (x )≥0,x1、x2满足a=g(x1),a=g(x2),a∈(0,e﹣1)及g(x)的单调性,可得x1∈(0,1),x2∈(1,+∞);对于任意的a1、a2∈(0,e﹣1),设a1>a2,g(X1)=g(X2)=a1,其中0<X1<1<X2;g(Y1)=g(Y2)=a2,其中0<Y1<1<Y2;∵g(x)在(0,1)上是增函数,∴由a1>a2,得g(X i)>g(Y i),可得X1>Y1;类似可得X2<Y2;又由X、Y>0,得<<;∴随着a的减小而增大;(Ⅲ)证明:∵x1=a,x2=a,∴lnx1=lna+x1,lnx2=lna+x2;∴x2﹣x1=lnx2﹣lnx1=ln,设=t,则t>1,∴,解得x1=,x2=,∴x1+x2=…①;令h(x)=,x∈(1,+∞),则h′(x)=;令u(x)=﹣2lnx+x﹣,得u′(x)=,当x∈(1,+∞)时,u′(x)>0,∴u(x)在(1,+∞)上是增函数,∴对任意的x∈(1,+∞),u(x)>u(1)=0,∴h′(x)>0,∴h(x)在(1,+∞)上是增函数;∴由①得x1+x2随着t的增大而增大.由(Ⅱ)知,t随着a的减小而增大,∴x1+x2随着a的减小而增大.【点评】本题考查了导数的运算以及利用导数研究函数的单调性与极值问题,也考查了函数思想、化归思想、抽象概括能力和分析问题、解决问题的能力,是综合型题目.。
34i,即求出值【解析】作出可行域,如图:【解析】由弦切角定理得FBD EACBAE ,又AF BD AB BF =,排除A 、C. DBC ,排除B 、故选D.本题利用角与弧的关系,得到角相等,,所以||||cos1202AB AD AB AD =︒=-,所以AE AB AD λ=+,AF AB AD μ=+.因为1AE AF =,所以()()1AB AD AB AD λμ++=,即2λ2-②,①+②得5λμ+=,故选C. 【提示】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义求得2120ππ4π2233+=m 【考点】空间立体图形三视图、体积.结合图象可知01a <<或9a >.][),4∞+,所以][)9,∞+.结合图象可得01a <<或9a >.1sin 2x x ⎛+ ⎝3cos 2x x -43π3x 的范围,再利用正弦函数的性质求出再已【考点】三角函数中的恒等变换应用,三角函数的周期性及其求法1203373734960C C C C +=. 3463k k C C -(k =3463k kC C -(k =(0,0,2)P.由E为棱PC的中点,得(1,1,1)E.证明:向量(0,1,1)BE=,(2,0,0)DC=,故0BE DC=.所以,)向量(1,2,0)BD=-,(1,0,PB=设(,,)n x y z=0,0,n BDn PB⎧=⎪⎨=⎪⎩即-⎧,可得(2,1,1)n=为平面的一个法向量,||||6n BEn BEn BE==⨯与平面PBD3)向量(1,2,0)BC=,(2,CP=-,(2,2,0)AC=,(1,0,0)AB=由点F在棱PC上,设CF CPλ=,0≤故()1,2BF BC CF BC CPλλλ=+=+=-.,得0BF AC=,因此,2(1即12BF⎛=-设(1,n x y=为平面FAB的法向量,则110,0,n ABn BF⎧=⎪⎨=⎪⎩即,可得1(0,n=-FAB的一个法向量的法向量1(0,1,0)n=121212,||||10n nn nn n-==31010.【提示】(1)以A 为坐标原点,建立如图所示的空间直角坐标系,求出BE ,DC 的方向向量,根据0BE DC =,可得BE DC ⊥;(2)求出平面PBD 的一个法向量,代入向量夹角公式,可得直线BE 与平面PBD 所成角的正弦值; (3)根据BFAC ,求出向量BF 的坐标,进而求出平面F AB 和平面ABP 的法向量,代入向量夹角公式,可得二面角F ABP 的余弦值2,有10(F P x =+,1(,)F B c c =由已知,有110F P F B =,即1.②由①和②可得234x cx +可得1F P ,1F B .利用圆的性质可得11F B F P ⊥,于是110F B F P =,得到040cx =,解得1n n a q -++1n n b q -++1,2,,n 及n a (1n a -++-()1q ++-q。
2014年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共 8小题,每小题5分)1.( 5分)(2014 ?天津)i 是虚数单位,复数 -------- =( )3+41 A . 1-i B . - 1+iC .丄+」D_ +_i25 2^77考点:复数代数形式的乘除运算. 专题:数系的扩充和复数.分析:将复数的分子与分母同时乘以分母的共轭复数3 -4i ,即求出值.解答:解:复数 7+1. (7+1) (3-41)|25 - 25! “.34-41 (3+蚯)(3-4i)=251故选A .点评:本题考查了复数的运算法则和共轭复数的意义,属于基础题.最小值为( )A . 2B . 3考点:简单线性规划. 专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求 解答:解:作出不等式对应的平面区域,由 z=x+2y ,得 y=-丄-*盂4违的截距最小,此时z 最小. 此时z 的最小值为z=1+2 xi=3, 故选:B .平移直线y=- ,由图象可知当直线 y=- 经过点B (1, 1)时,直线y=2. ( 5分)(2014?天津)设变量 z=x+2y 的z 的最大值. x ,则目标函数ic/Il-1-1■J/\点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.3.(5分)(2014?天津)阅读如图的程序框图,运行相应的程序,输出S的值为()A . 15 B. 105 C. 245 D. 945考点:程序框图.专题:算法和程序框图.分析:算法的功能是求S=1 >3>5X-(2i+1 )的值,根据条件确定跳出循环的i值,计算输出S的值.解答:解:由程序框图知:算法的功能是求S=1 X3>5X->>2i+1 )的值,•/跳出循环的i值为4,•••输出S=1 X3X5XM05 .故选:B.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.4. > 5分)> 2014?天津)函数f >x)=log >x2_4)的单调递增区间为> )~2A . > 0, +7 B. (— a, 0)C. > 2, +呵D. > — a,—2)考点:复合函数的单调性.专题:函数的性质及应用.分析:令t=x2- 4 >0,求得函数f (x)的定义域为(-汽-2) U (2, + 8),且函数f ( x) =g (t) =log ]t.根据复合函数的单调性,本题即求函数t在(-8, - 2) U (2, + ^) 2上的减区间•再利用二次函数的性质可得,函数t在(-8,- 2) U (2, + 8)上的减区间.解答:解:令t=x2- 4 > 0,可得x > 2,或X V- 2,故函数f (x)的定义域为(- 8,- 2) U (2, + 8),当x€(-8,- 2)时,t随x的增大而减小,y=log 11随t的减小而增大,~2所以y=log ] (x2- 4)随x的增大而增大,即f (乂)在(-8,- 2)上单调递增.故选:D.点评:本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.2 2岂-耳=1 (a>0, b>0)的一条渐近线平行于直线a2b23• • 2 2 .2-c =a +b ,2 2--a =5, b =20,5. ( 5分)(2014?天津)已知双曲线y=2x+10,双曲线的一个焦点在直线I上,则双曲线的方程为(=1[Too考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先求出焦点坐标,利用双曲线£-£=1 (a>0, b>0)的一条渐近线平行于直线a21/, 2 2 2y=2x+10,可得=2,结合c =a +b,求出aa, b,即可求出双曲线的方程.解答:解:•••双曲线的一个焦点在直线I 上,令y=0,可得x= - 5,即焦点坐标为(-5, 0), ••• c=5,-=1 (a> 0, b > 0)的一条渐近线平行于直线I: y=2x+10 ,C.=1故选:A .点评:本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.6. (5分)(2014?天津)如图,△ ABC是圆的内接三角形,/ BAC的平分线交圆于点D ,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分/ CBF;②FB2=FD?FA;③AE?CE=BE ?DE;④AF?BD=AB ?BF .所有正确结论的序号是()A .①②B .③④C .①②③D .①②④考点:与圆有关的比例线段;命题的真假判断与应用.专题:直线与圆.分析:本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.解答:解:•••圆周角/ DBC对应劣弧CD,圆周角/ DAC对应劣弧CD,••• / DBC= / DAC .•••弦切角/ FBD对应劣弧BD,圆周角/ BAD对应劣弧BD ,•/ FBD= / BAF .•/ AD是/ BAC的平分线,•/ BAF= / DAC .•/ DBC= / FBD .即BD平分/ CBF .即结论①正确. 又由 / FBD= / FAB , / BFD= /AFB,得△ FBD 〜△ FAB .由,FB2=FD?FA .即结论②成立.r A rb由—-得AF?BD=AB ?BF .即结论④成立.AF _AB正确结论有①②④ .故答案为D点评:本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度 不大,属于基础题.7. ( 5 分)(2014?天津)设 a , b€R ,贝U a >b”是 a|a|>b|b|”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 考点:必要条件、充分条件与充要条件的判断. 专题:简易逻辑.分析:根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 解答:解:若a >b ,① a > b%,不等式a|a|> b|b 等价为a?a > b?b ,此时成立.② 0>a > b ,不等式a|a >b|b|等价为-a?a >- b?b , 即卩a 2< b 2,此时成立.③ a^0 > b ,不等式a|a|> b|b 等价为a?a >- b?b ,即a >- b ,此时成立,即充分性 成立. 若 a|a|> b|b|,① 当 a >0, b > 0 时,a|a |>b|b|去掉绝对值得,(a - b ) (a+b )> 0,因为 a+b >0,所 以 a -b >0,即 a >b .② 当 a > 0, b < 0 时,a > b .③ 当 a < 0, b < 0 时,a|a |>b|b|去掉绝对值得,(a - b ) (a+b )< 0,因为 a+b < 0,所 以a -b >0,即a >b .即必要性成立,综上a >b"是a|a |>b|b|”的充要条件, 故选:C .点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质结合分类讨论是解决本题的关键.& ( 5分)(2014?天津)已知菱形 ABCD 的边长为2, / BAD=120 °点 _ _.=入L-, I =』:’,若(_-?,* =1,-'上?-.1 =考点: 专题: 分析: 平面向量数量积的运算. 平面向量及应用.利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由AL ? AF 1,求得4 A+4卩-2入=:3①;再由JE ?L,F --;,求得-入-入甘-下②.纟口 合①②求得入+卩的值.解答:解:由题意可得若 AE ?AT = ( A5+BE ) ?(应5+DF )=阴存 AD +址■ AD +BI!・ DFE 、F 分别在边BC 、DC 上, 1B. 2C. 5D . 2 36?12A .=4 V4 p- 2 入—2=1 ,4 V+4 p- 2 入=3 ①.西?斎-EC ?(-氏)版呢=(1 -入)厩?(1 - P)瓦=(1- V)而? (1 -2=(1 - V (1-p) »>DOS120 = (1 -入—p+ 入)(-2)=-二,即-V p+ V =,-二②.3由①②求得V+尸二,6点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义, 属于中档题.二、填空题(共6小题,每小题5分,共30分)9. (5分)(2014?天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4: 5: 5: 6,则应从一年级本科生中抽取60 名学生.考点:分层抽样方法. 专题:概率与统计.分析:先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.解答:解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为丄4+5+B+6 5故应从一年级本科生中抽取名学生数为300 >=60,故答案为:60.=2 >2 >Cos120°【-■ i' '■+ 入「,i?「i+ V I?『,'= -2+4 p+4 廿入卩2滋Xdos120°点评:本题主要考查分层抽样的定义和方法, 应各层的样本数之比,属于基础题.利用了总体中各层的个体数之比等于样本中对故答案为:上.10.(5分)(2014?天津)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为侧视图考点:由三视图求面积、体积. 专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的 体积公式计算. 解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,几何体的体积V n点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.11. (5分)(2014?天津)设{a n }是首项为a i ,公差为-1的等差数列,S n 为其前n 项和,若 S i , S 2, S 4成等比数列,则 a 1的值为 -丄.考点:等比数列的性质. 专题:等差数列与等比数列. 分析:n ( 2ai+l - n )由条件求得,S n = -------------- ----------- ,再根据S 1,S 2, S 4成等比数列,可得% Z=S 1?S 4, 由此求得a 1的值.m .正视图 傭观圏兀.故答案为:再根据若S i, S2, S4成等比数列,可得S 2 2=S1?S4,即(施]-1) 2=a i? (4a i -6),解得a i=-—,1故答案为:-一.2点评:本题主要考查等差数列的前n项和公式,等比数列的定义和性质,属于中档题.12. (5分)(2014?天津)在△ ABC中,内角A, B, C所对的边分别是a, b, c,已知b-c4a,2sinB=3sinC,则cosA的值为一丄—考点:余弦定理;正弦定理.专题:解三角形.分析:由条件利用正弦定理求得a=2c, ,再由余弦定理求得cosA= * 的值.2 2bc解答:解:在△ ABC中,故答案为:-一.4点评:本题主要考查正弦定理、余弦定理的应用,属于中档题.13. (5分)(2014?天津)在以0为极点的极坐标系中,圆p=4sin B和直线p in 9=a相交于A、B两点,若△ AOB是等边三角形,则a的值为3 .考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程化为直角坐标方程,求出B的坐标的值,代入x2+ (y- 2) 2=4,可得a 的值.解答:解:直线psin 0=a 即y=a, (a>0),曲线p=4sin 0,2 2 2即p =4 psin0,即x + (y - 2) =4,表示以C (0, 2)为圆心,以2为半径的圆,解答:解:由题意可得, a n=a i+( n —1)( —1 )=a i+1 -■/ b- c」a ①,2sinB=3sinC ,4••• 2b=3c ②,•/ △ AOB 是等边三角形,••• B (二a , a ),3直线和圆的位置关系, 求出B 的坐214. ( 5 分)(2014?天津)已知函数 f ( x ) =|x +3x|, 个互异的实数根,则实数 a 的取值范围为 (0, 1)考点:专题:分析:根的存在性及根的个数判断. 函数的性质及应用. 由 y=f (x )- a|x - 1|=0 得 f (x ) =a|x - 1|,作出函数 y=f (x ), y=a|x - 1|的图象利用 数形结合即可得到结论.解答:解:由 y=f (x ) - a|x — 1|=0 得 f (x ) =a|x - 1|, 作出函数y=f (x ), y=g (x ) =a|x - 1|的图象, 当a 切,不满足条件,f a ts - 1)玄>1则 a > 0,此时 g (x ) =a|x - 1|=, _ ,L _ a (i _ PY 1当—3v x v 0 时,f (x ) = - x 2- 3x , g (x ) = - a (x - 1), 当直线和抛物线相切时,有三个零点, 此时-x 2 - 3x= - a (x - 1),即 x + (3 - a ) x+a=0, 则由△ = (3- a ) 2 - 4a=0,即 a 2- 10a+9=0,解得 a=1 或 a=9, 当a=9 时,g (x ) = - 9 (x - 1), g (0) =9,此时不成立,•此时 a=1,要使两个函数有四个零点,则此时0v a v 1,若a > 1,此时g (x ) = - a (x - 1 )与f (x ),有两个交点, 此时只需要当x > 1时,f (x ) =g (x )有两个不同的零点即可, 即 x +3x=a (x - 1),整理得 x + ( 3 - a ) x+a=0 ,则由△ = (3- a ) 2 - 4a > 0, 即卩 a 2 - 10a+9>0,解得 a v 1 (舍去)或 a > 9, 综上a 的取值范围是(0, 1) U (9, + s),方法 2:由 f (x )- a|x - 1|=0 得 f (x ) =a|x - 1|,x €R ,若方程 f (x )- a|x- 1|=0 恰有 4 U (9, +s).代入 x 2+ ( y - 2)2=4,可得(2+ (a -2) 2 =4,a > 0, - - a=3.点评:本题考查把极坐标方程化为直角坐标方程的方法, 标是解题的关键,属于基础题.若x=1,则4=0不成立, 故x 力,f (J=1x 沖1 =1、丘 - 1 ) 2+5 (K- 1)|K -I || lx-11x-1+5|, 设 g (x ) =x — 1+'!当 x > 1 时,g (x ) =x — 1+,:Z-1+5 ■1—-— - ■■ I ",当且仅当 X _ 1口 号,+5,则方程等价为|=|x - 1+1X-1仁1,即x=3时取等当X V 1时,=5 — 4=1,当且仅当—(x — 1)=—」L ,即卩x= — 1时取等号,Z- 1则|g ( X )I 的图象如图:若方程f (x )— a|x — 1|=0恰有4个互异的实数根, 则满足a > 9或0 V a v 1,故答案为:点评:本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强, 难度较大.三、解答题(共6小题,共80分)I 7115. (13 分)(2014?天津)已知函数 f (x ) =cosx?sin (x+—)(I )求f (x )的最小正周期;jr| jr(n )求f (x )在闭区间[-——,——]上的最大值和最小值.4 4考点:三角函数中的恒等变换应用;三角函数的周期性及其求法. 专题:三角函数的图像与性质. 分析:(i )根据两角和差的正弦公式、倍角公式对解析式进行化简,再由复合三角函数的,x €R .(n )由(i )化简的函数解析式和条件中x 的范围,求出2x- —的范围,再利用3正弦函数的性质求出再已知区间上的最大值和最小值.解答: 解答解:(i )由题意得,1 . . V3 2=-=.i ;■: ' ■ ■q q=*「」「.I-:.」.(2工-中Vs qL ・2Sin所以, 由(I )得 f (x )|一 ,周期公式 求出此函数的最小正周期;cosx )f (x ) =cosx? (—sinx2f (x )的最小正周期=n.16. ( 13分)(2014?天津)某大学志愿者协会有 6名男同学,4名女同学,在这10名同学中, 3名同学来自数学学院,其余 7名同学来自物理、化学等其他互不相同的七个学院,现从这 10名同学中随机选取 3名同学,到希望小学进行支教活动 (每位同学被选到的可能性相同) (I )求选出的3名同学是来自互不相同学院的概率;f n )设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.考点:古典概型及其概率计算公式;离散型随机变量及其分布列. 专题:概率与统计. (I )利用排列组合求出所有基本事件个数及选出的 基本事件个数,代入古典概型概率公式求出值;兀 口],则 2疋一 "€[— 5717T ? -------------2 23 6 6,即吕口(2丈一芈)=- 乂时,_ 1~2f ( x ) 函数f (x )取到最小值是:取到最大值是:丄,最小值为4点评:本题考查了两角和差的正弦公式、倍角公式,正弦函数的性质,以及复合三角函数的应用,考查了整体思想和化简计算能力,属于中档题.分析: 3名同学是来自互不相同学院的(n )随机变量X 的所有可能值为0, 1, 2,3, P (X=k)3-k---- --- (k=0 , 1, 2,解答:3)列出随机变量 X 的分布列求出期望值.f I )解:设 选出的3名同学是来自互不相同学院”为事件A ,点评: _C 扣*弼49c10,=60所以选出的3名同学是来自互不相同学院的概率为(n )解:随机变量X 的所有可能值为2, 3)所以随机变量的分布列是2 3 lb随机变量0, 1, 2,4960(k=0, 1,31] 30 X 的数学期望 E47+3X7^^.5210 30 5本题考查古典概型及其概率公式,互斥事件,离散型随机变量的分布列与数学期望,考查应用概率解决实际问题的能力. 由 x€[- 所以,所求的最大值为丄,_]得,2x €[-sin 〔2蛊 - ¥ 1时, ],周期公式17. ( 13 分)(2014?天津)如图,在四棱锥 P- ABCD 中,PA 丄底面 ABCD ,AD 丄 AB ,AB // DC , AD=DC=AP=2 , AB=1,点 E 为棱 PC 的中点.(I )证明:BE 丄DC ;(II )求直线BE 与平面PBD 所成角的正弦值;(川)若F 为棱PC 上一点,满足 BF 丄AC ,求二面角F -AB - P 的余弦值.考点: 专题: 分析: 与二面角有关的立体几何综合题;直线与平面所成的角. 空间位置关系与距离;空间角;空间向量及应用;立体几何.(1)以A 为坐标原点,建立如图所示的空间直角坐标系, 求出BE , DC 的方向向量,根据二了? |-0 ,可得BE 丄DC ;(II )求出平面PBD 的一个法向量,代入向量夹角公式,可得直线 BE 与平面PBD所成角的正弦值;(川)根据BF 丄AC ,求出向量IT 的坐标,进而求出平面 FAB 和平面ABP 的法向量, 代入向量夹角公式,可得二面角 F - AB - P 的余弦值. 解答: 证明:(1) •/ PA 丄底面ABCD , AD 丄AB ,以A 为坐标原点,建立如图所示的空间直角坐标系,••• AD=DC=AP=2 , AB=1,点 E 为棱 PC 的中点.••• B ( 1, 0 , 0), C (2 , 2 , 0), D ( 0 , 2 , 0),P(0 , 0 , 2), E (1 , 1 , 1)-- ■- - N=(0 , 1 , 1), 1'= (2 , 0 , 0) I '=0 ,• BE 丄 DC ;(n ) v | i= ( - 1, 2, 0),可;=(1, 0, - 2),设平面PBD 的法向量| = (x , y , z ),令 y=1,则 >■= ( 2, 1, 1), 则直线BE 与平面PBD 所成角B 满足:(出)V|,■-= (1 , 2, 0),心(-2,- 2, 2), i= (2, 2, 0),由F 点在棱PC 上,设CF =疋P = (- 2入,-2入2 X) (0三入1) 故E?=^+EF = (1 - 2 人 2 - 2X, 2X (0W 入1 炙, 由 BF 丄 AC ,得 BF ?AC =2 (1 - 2 X +2 (2- 2 X =0,设平面FBA 的法向量为ii= (a , b , c ),令 c=1,则「i= ( 0,- 3, 1), 取平面ABP 的法向量| i = (0, 1, 0), 则二面角F - AB - P 的平面角 a 满足:故二面角F - AB - P 的余弦值为:— 10点评:本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向 量夹角问题,是解答的关键.ID 尸 BD-m*PB=0,得-s+2y=0 x - 2 z=0sin 0=in故直线BE 与平面PBD 所成角的正弦值为Vsn * AB = 0 n*BF=0COS a == 3I i | ■|n | 7103v'TC i10 即芋=(-,得18. (13分)(2oi4?天津)设椭圆亠+ 二=1 (a > b > o )的左、右焦点分别为 F i 、F 2,右顶a 2b 2点为A ,上顶点为B ,已知|AB|=丄丄|F i F 2|.2(I )求椭圆的离心率;(n )设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点 F 1,经过原点O 的直线I 与该圆相切,求直线I 的斜率.考点:直线与圆锥曲线的综合问题. 专题:圆锥曲线的定义、性质与方程.分析:(I )设椭圆的右焦点为F 2 ( c , o ),由|AB|=V3|F 1F 2|.可得Qj + b 巫容x 2c , 再利用b 2=a 2 - c 2, e=即可得出.aj - ] ■ 1 . - =c (x o +c ) +cy o =0,(n )由(i )可得b 2=c 2 •可设椭圆方程为? 2亠;亡二1 ,设 P (x o , y o ),由 F i (-c , o ) , B( o , c ),可^得卩利用圆的性质可得-,于是I卜=。
2014天津高考数学理科2014年天津高考数学理科试题一、填空题1. 已知集合 A = {2, 4, 6, 8},B = {x | x 是不小于3的奇数},则A ∩ B = ______。
2. 设∠ABC = 60°,AD 是 BC 延长线上的一点,且 AD = DC,则∠CDA = ______。
3. 2000 mL 饮料含有对人体每日需要的80 mg 维生素 C。
某厂使用一种浓度更高的饮料来生产新产品,则相同容积的新产品中维生素 C 的含量将是________mg。
4. 若 5 + ab= − 2,则数对(a,b) = ______。
二、选择题1. 已知若 f(x) = x - 1,则 f(-a) - f(1 - a) = ______。
A. 0B. 2aC. -2D. a + 12. 设函数 y = (1 + x - x^2) / (1 + x^3),则 y 的定义域为____。
A. (-∞,∞)B. (-∞,-1]∪[-1,∞)C. (-∞, -1)∪(-1, ∞)D. (-1, 1)3. 已知线段 AB 长度为 a,BC 长度为 b,三角形 ABC 的面积为 S,则 ______。
A. S > (a+b)^2B. S < (a+b)^2C. S = (a+b)^2D. 无法确定4. 在△ABC 中,∠B = 90°,BM 是 AC 的中线,连结 BM,交 AC 于 D,则AD/DC = ______。
A. 1B. 2C. 3/2D. 3三、解答题1. 若 log2 (x + y) = log2 (x - y),且 x > y > 0,求 x:y 的值。
2. 已知函数 f(x) = 2x^2 - (a + 1)x - a^2 + a + 2。
确定 a 的取值范围使得f(x) > 0 对一切实数 x 成立。
3. 函数y = ax^2 + bx + c (a ≠ 0) 的图像与 x 轴交于两个不同点,相应的二次函数对应的直接变换图像与 x 轴交于两个不同点,证明:其中|a| ≠ |c|。
2014年天津市高考数学试卷(理科)一、选择题(共8小题,每小题5分)1.(5分)(2014?天津)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i2.(5分)(2014?天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.53.(5分)(2014?天津)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.9454.(5分)(2014?天津)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)5.(5分)(2014?天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=16.(5分)(2014?天津)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD?FA;③AE?CE=BE?DE;④AF?BD=AB?BF.所有正确结论的序号是()A.①②B.③④C.①②③ D.①②④7.(5分)(2014?天津)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.(5分)(2014?天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若?=1,?=﹣,则λ+μ=()A.B.C.D.二、填空题(共6小题,每小题5分,共30分)9.(5分)(2014?天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.10.(5分)(2014?天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.(5分)(2014?天津)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为.12.(5分)(2014?天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为.13.(5分)(2014?天津)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为.14.(5分)(2014?天津)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为.三、解答题(共6小题,共80分)15.(13分)(2014?天津)已知函数f(x)=cosx?sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.16.(13分)(2014?天津)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.17.(13分)(2014?天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.18.(13分)(2014?天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.19.(14分)(2014?天津)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.20.(14分)(2014?天津)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.2014年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分)1.(5分)(2014?天津)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】将复数的分子与分母同时乘以分母的共轭复数3﹣4i,即求出值.【解答】解:复数==,故选A.【点评】本题考查了复数的运算法则和共轭复数的意义,属于基础题.2.(5分)(2014?天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.5【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.3.(5分)(2014?天津)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.945【考点】程序框图.【专题】算法和程序框图.【分析】算法的功能是求S=1×3×5×…×(2i+1)的值,根据条件确定跳出循环的i值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=1×3×5×…×(2i+1)的值,∵跳出循环的i值为4,∴输出S=1×3×5×7=105.故选:B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.4.(5分)(2014?天津)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)【考点】复合函数的单调性.【专题】函数的性质及应用.【分析】令t=x2﹣4>0,求得函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),且函数f (x)=g(t)=log t.根据复合函数的单调性,本题即求函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.再利用二次函数的性质可得,函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.【解答】解:令t=x2﹣4>0,可得x>2,或x<﹣2,故函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),当x∈(﹣∞,﹣2)时,t随x的增大而减小,y=log t随t的减小而增大,所以y=log(x2﹣4)随x的增大而增大,即f(x)在(﹣∞,﹣2)上单调递增.故选:D.【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.5.(5分)(2014?天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】双曲线的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.6.(5分)(2014?天津)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD?FA;③AE?CE=BE?DE;④AF?BD=AB?BF.所有正确结论的序号是()A.①②B.③④C.①②③ D.①②④【考点】与圆有关的比例线段;命题的真假判断与应用.【专题】直线与圆.【分析】本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.【解答】解:∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵AD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD?FA.即结论②成立.由,得AF?BD=AB?BF.即结论④成立.正确结论有①②④.故答案为D【点评】本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度不大,属于基础题.7.(5分)(2014?天津)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若a>b,①a>b≥0,不等式a|a|>b|b|等价为a?a>b?b,此时成立.②0>a>b,不等式a|a|>b|b|等价为﹣a?a>﹣b?b,即a2<b2,此时成立.③a≥0>b,不等式a|a|>b|b|等价为a?a>﹣b?b,即a2>﹣b2,此时成立,即充分性成立.若a|a|>b|b|,①当a>0,b>0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)>0,因为a+b>0,所以a﹣b >0,即a>b.②当a>0,b<0时,a>b.③当a<0,b<0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)<0,因为a+b<0,所以a﹣b >0,即a>b.即必要性成立,综上“a>b”是“a|a|>b|b|”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的性质结合分类讨论是解决本题的关键.8.(5分)(2014?天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若?=1,?=﹣,则λ+μ=()A.B.C.D.【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由?=1,求得4λ+4μ﹣2λμ=3 ①;再由?=﹣,求得﹣λ﹣μ+λμ=﹣②.结合①②求得λ+μ的值.【解答】解:由题意可得若?=(+)?(+)=+++=2×2×cos120°++λ?+λ?μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.?=﹣?(﹣)==(1﹣λ)?(1﹣μ)=(1﹣λ)?(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于中档题.二、填空题(共6小题,每小题5分,共30分)9.(5分)(2014?天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.【考点】分层抽样方法.【专题】概率与统计.【分析】先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.【解答】解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.【点评】本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.10.(5分)(2014?天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.【考点】由三视图求面积、体积.【专题】立体几何.【分析】几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.【解答】解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.11.(5分)(2014?天津)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为﹣.【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】由条件求得,S n=,再根据S1,S2,S4成等比数列,可得=S1?S4,由此求得a1的值.【解答】解:由题意可得,a n=a1+(n﹣1)(﹣1)=a1+1﹣n,S n==,再根据若S1,S2,S4成等比数列,可得=S1?S4,即=a1?(4a1﹣6),解得a1=﹣,故答案为:﹣.【点评】本题主要考查等差数列的前n项和公式,等比数列的定义和性质,属于中档题.12.(5分)(2014?天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为﹣.【考点】余弦定理;正弦定理.【专题】解三角形.【分析】由条件利用正弦定理求得a=2c,b=,再由余弦定理求得cosA=的值.【解答】解:在△ABC中,∵b﹣c= a ①,2sinB=3sinC,∴2b=3c ②,∴由①②可得a=2c,b=.再由余弦定理可得cosA===﹣,故答案为:﹣.【点评】本题主要考查正弦定理、余弦定理的应用,属于中档题.13.(5分)(2014?天津)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为3.【考点】简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】把极坐标方程化为直角坐标方程,求出B的坐标的值,代入x2+(y﹣2)2=4,可得a的值.【解答】解:直线ρsinθ=a即y=a,(a>0),曲线ρ=4sinθ,即ρ2=4ρsinθ,即x2+(y﹣2)2=4,表示以C(0,2)为圆心,以2为半径的圆,∵△AOB是等边三角形,∴B(a,a),代入x2+(y﹣2)2=4,可得(a)2+(a﹣2)2=4,∵a>0,∴a=3.故答案为:3.【点评】本题考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,求出B 的坐标是解题的关键,属于基础题.14.(5分)(2014?天津)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为(0,1)∪(9,+∞).【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=a|x﹣1|的图象利用数形结合即可得到结论.【解答】解:由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=g(x)=a|x﹣1|的图象,当a≤0,两个函数的图象不可能有4个交点,不满足条件,则a>0,此时g(x)=a|x﹣1|=,当﹣3<x<0时,f(x)=﹣x2﹣3x,g(x)=﹣a(x﹣1),当直线和抛物线相切时,有三个零点,此时﹣x2﹣3x=﹣a(x﹣1),即x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a=0,即a2﹣10a+9=0,解得a=1或a=9,当a=9时,g(x)=﹣9(x﹣1),g(0)=9,此时不成立,∴此时a=1,要使两个函数有四个零点,则此时0<a<1,若a>1,此时g(x)=﹣a(x﹣1)与f(x),有两个交点,此时只需要当x>1时,f(x)=g(x)有两个不同的零点即可,即x2+3x=a(x﹣1),整理得x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a>0,即a2﹣10a+9>0,解得a<1(舍去)或a>9,综上a的取值范围是(0,1)∪(9,+∞),方法2:由f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,若x=1,则4=0不成立,故x≠1,则方程等价为a===||=|x﹣1++5|,设g(x)=x﹣1++5,当x>1时,g(x)=x﹣1++5≥,当且仅当x﹣1=,即x=3时取等号,当x<1时,g(x)=x﹣1++5=5﹣4=1,当且仅当﹣(x ﹣1)=﹣,即x=﹣1时取等号,则|g(x)|的图象如图:若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则满足a>9或0<a<1,故答案为:(0,1)∪(9,+∞)【点评】本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.三、解答题(共6小题,共80分)15.(13分)(2014?天津)已知函数f(x)=cosx?sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【专题】三角函数的图像与性质.【分析】(Ⅰ)根据两角和差的正弦公式、倍角公式对解析式进行化简,再由复合三角函数的周期公式求出此函数的最小正周期;(Ⅱ)由(Ⅰ)化简的函数解析式和条件中x的范围,求出的范围,再利用正弦函数的性质求出再已知区间上的最大值和最小值.【解答】解:(Ⅰ)由题意得,f(x)=cosx?(sinx cosx)====所以,f(x)的最小正周期=π.(Ⅱ)由(Ⅰ)得f(x)=,由x∈[﹣,]得,2x∈[﹣,],则∈[,],∴当=﹣时,即=﹣1时,函数f(x)取到最小值是:,当=时,即=时,f(x)取到最大值是:,所以,所求的最大值为,最小值为.【点评】本题考查了两角和差的正弦公式、倍角公式,正弦函数的性质,以及复合三角函数的周期公式应用,考查了整体思想和化简计算能力,属于中档题.16.(13分)(2014?天津)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.【考点】古典概型及其概率计算公式;离散型随机变量及其分布列.【专题】概率与统计.【分析】(Ⅰ)利用排列组合求出所有基本事件个数及选出的3名同学是来自互不相同学院的基本事件个数,代入古典概型概率公式求出值;(Ⅱ)随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)列出随机变量X的分布列求出期望值.【解答】(Ⅰ)解:设“选出的3名同学是来自互不相同学院”为事件A,则,所以选出的3名同学是来自互不相同学院的概率为.(Ⅱ)解:随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)所以随机变量X的分布列是X 0 1 2 3P随机变量X的数学期望.【点评】本题考查古典概型及其概率公式,互斥事件,离散型随机变量的分布列与数学期望,考查应用概率解决实际问题的能力.17.(13分)(2014?天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.【考点】与二面角有关的立体几何综合题;直线与平面所成的角.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】(I)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC的方向向量,根据?=0,可得BE⊥DC;(II)求出平面PBD的一个法向量,代入向量夹角公式,可得直线BE与平面PBD所成角的正弦值;(Ⅲ)根据BF⊥AC,求出向量的坐标,进而求出平面FAB和平面ABP的法向量,代入向量夹角公式,可得二面角F﹣AB﹣P的余弦值.【解答】证明:(I)∵PA⊥底面ABCD,AD⊥AB,以A为坐标原点,建立如图所示的空间直角坐标系,∵AD=DC=AP=2,AB=1,点E为棱PC的中点.∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)∴=(0,1,1),=(2,0,0)∵?=0,∴BE⊥DC;(Ⅱ)∵=(﹣1,2,0),=(1,0,﹣2),设平面PBD的法向量=(x,y,z),由,得,令y=1,则=(2,1,1),则直线BE与平面PBD所成角θ满足:sinθ===,故直线BE与平面PBD所成角的正弦值为.(Ⅲ)∵=(1,2,0),=(﹣2,﹣2,2),=(2,2,0),由F点在棱PC上,设=λ=(﹣2λ,﹣2λ,2λ)(0≤λ≤1),故=+=(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1),由BF⊥AC,得?=2(1﹣2λ)+2(2﹣2λ)=0,解得λ=,即=(﹣,,),设平面FBA的法向量为=(a,b,c),由,得令c=1,则=(0,﹣3,1),取平面ABP的法向量=(0,1,0),则二面角F﹣AB﹣P的平面角α满足:cosα===,故二面角F﹣AB﹣P的余弦值为:【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.18.(13分)(2014?天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.【考点】直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|.可得,再利用b2=a2﹣c2,e=即可得出.(Ⅱ)由(Ⅰ)可得b2=c2.可设椭圆方程为,设P(x0,y0),由F1(﹣c,0),B(0,c),可得,.利用圆的性质可得,于是=0,得到x0+y0+c=0,由于点P在椭圆上,可得.联立可得=0,解得P.设圆心为T(x1,y1),利用中点坐标公式可得T,利用两点间的距离公式可得圆的半径r.设直线l的方程为:y=kx.利用直线与圆相切的性质即可得出.【解答】解:(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|,可得,化为a2+b2=3c2.又b2=a2﹣c2,∴a2=2c2.∴e=.(Ⅱ)由(Ⅰ)可得b2=c2.因此椭圆方程为.设P(x0,y0),由F1(﹣c,0),B(0,c),可得=(x0+c,y0),=(c,c).∵,∴=c(x0+c)+cy0=0,∴x0+y0+c=0,∵点P在椭圆上,∴.联立,化为=0,∵x0≠0,∴,代入x0+y0+c=0,可得.∴P.设圆心为T(x1,y1),则=﹣,=.∴T,∴圆的半径r==.设直线l的斜率为k,则直线l的方程为:y=kx.∵直线l与圆相切,∴,整理得k2﹣8k+1=0,解得.∴直线l的斜率为.【点评】本题中考查了椭圆与圆的标准方程及其性质、点与椭圆的位置关系、直线与圆相切问题、点到直线的距离公式、中点坐标公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.19.(14分)(2014?天津)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.【考点】数列与不等式的综合;数列的求和.【专题】等差数列与等比数列;点列、递归数列与数学归纳法.【分析】(Ⅰ)当q=2,n=3时,M={0,1},A={x|,x i∈M,i=1,2,3}.即可得到集合A.(Ⅱ)由于a i,b i∈M,i=1,2,…,n.a n<b n,可得a n﹣b n≤﹣1.由题意可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1],再利用等比数列的前n项和公式即可得出.【解答】(Ⅰ)解:当q=2,n=3时,M={0,1},A={x|,x i∈M,i=1,2,3}.可得A={0,1,2,3,4,5,6,7}.(Ⅱ)证明:由设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.a n<b n,∴a n﹣b n≤﹣1.可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1]=<0.∴s<t.【点评】本题考查了考查了集合的运算及其性质、等比数列的前n项和公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.20.(14分)(2014?天津)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.【考点】利用导数研究函数的单调性;函数零点的判定定理.【专题】导数的综合应用.【分析】(Ⅰ)对f(x)求导,讨论f′(x)的正负以及对应f(x)的单调性,得出函数y=f (x)有两个零点的等价条件,从而求出a的取值范围;(Ⅱ)由f(x)=0,得a=,设g(x)=,判定g(x)的单调性即得证;(Ⅲ)由于x1=a,x2=a,则x2﹣x1=lnx2﹣lnx1=ln,令=t,整理得到x1+x2=,令h(x)=,x∈(1,+∞),得到h(x)在(1,+∞)上是增函数,故得到x1+x2随着t的减小而增大.再由(Ⅱ)知,t随着a的减小而增大,即得证.【解答】解:(Ⅰ)∵f(x)=x﹣ae x,∴f′(x)=1﹣ae x;下面分两种情况讨论:①a≤0时,f′(x)>0在R上恒成立,∴f(x)在R上是增函数,不合题意;②a>0时,由f′(x)=0,得x=﹣lna,当x变化时,f′(x)、f(x)的变化情况如下表:x (﹣∞,﹣lna)﹣lna (﹣lna,+∞)f′(x)+0 ﹣f(x)递增极大值﹣lna﹣1 递减∴f(x)的单调增区间是(﹣∞,﹣lna),减区间是(﹣lna,+∞);∴函数y=f(x)有两个零点等价于如下条件同时成立:①f(﹣lna)>0;②存在s1∈(﹣∞,﹣lna),满足f(s1)<0;③存在s2∈(﹣lna,+∞),满足f(s2)<0;由f(﹣lna)>0,即﹣lna﹣1>0,解得0<a<e﹣1;取s1=0,满足s1∈(﹣∞,﹣lna),且f(s1)=﹣a<0,取s2=+ln,满足s2∈(﹣lna,+∞),且f(s2)=(﹣)+(ln﹣)<0;∴a的取值范围是(0,e﹣1).(Ⅱ)证明:由f(x)=x﹣ae x=0,得a=,设g(x)=,由g′(x)=,得g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,并且当x∈(﹣∞,0)时,g(x)≤0,当x∈(0,+∞)时,g(x)≥0,x1、x2满足a=g(x1),a=g(x2),a∈(0,e﹣1)及g(x)的单调性,可得x1∈(0,1),x2∈(1,+∞);对于任意的a1、a2∈(0,e﹣1),设a1>a2,g(X1)=g(X2)=a1,其中0<X1<1<X2;g(Y1)=g(Y2)=a2,其中0<Y1<1<Y2;∵g(x)在(0,1)上是增函数,∴由a1>a2,得g(X i)>g(Y i),可得X1>Y1;类似可得X2<Y2;又由X、Y>0,得<<;∴随着a的减小而增大;(Ⅲ)证明:∵x1=a,x2=a,∴lnx1=lna+x1,lnx2=lna+x2;∴x2﹣x1=lnx2﹣lnx1=ln,设=t,则t>1,∴,解得x1=,x2=,∴x1+x2=…①;令h(x)=,x∈(1,+∞),则h′(x)=;令u(x)=﹣2lnx+x﹣,得u′(x)=,当x∈(1,+∞)时,u′(x)>0,∴u(x)在(1,+∞)上是增函数,∴对任意的x∈(1,+∞),u(x)>u(1)=0,∴h′(x)>0,∴h(x)在(1,+∞)上是增函数;∴由①得x1+x2随着t的增大而增大.由(Ⅱ)知,t随着a的减小而增大,∴x1+x2随着a的减小而增大.【点评】本题考查了导数的运算以及利用导数研究函数的单调性与极值问题,也考查了函数思想、化归思想、抽象概括能力和分析问题、解决问题的能力,是综合型题目.参与本试卷答题和审题的老师有:wdnah;maths;清风慕竹;caoqz;刘长柏;王老师;gongjy;翔宇老师;沂蒙松;szjzl(排名不分先后)菁优网2016年6月8日考点卡片1.命题的真假判断与应用【知识点的认识】判断含有“或”、“且”、“非”的复合命题的真假,首先要明确p、q及非p的真假,然后由真值表判断复合命题的真假.注意:“非p”的正确写法,本题不应将“非p”写成“方程x2﹣2x+1=0的两根都不是实根”,因为“都是”的反面是“不都是”,而不是“都不是”,要认真区分.【解题方法点拨】1.判断复合命题的真假,常分三步:先确定复合命题的构成形式,再指出其中简单命题的真假,最后由真值表得出复合命题的真假.2.判断一个“若p则q”形式的复合命题的真假,不能用真值表时,可用下列方法:若“p q”,则“若p则q”为真;而要确定“若p则q”为假,只需举出一个反例说明即可.3.判断逆命题、否命题、逆否命题的真假,有时可利用原命题与逆否命题同真同假,逆命题与否命题同真同假这一关系进行转化判断.【命题方向】该部分内容是《课程标准》新增加的内容,几乎年年都考,涉及知识点多而且全,多以小题形式出现.2.必要条件、充分条件与充要条件的判断【知识点的认识】正确理解和判断充分条件、必要条件、充要条件和非充分非必要以及原命题、逆命题否命题、逆否命题的概念是本节的重点;掌握逻辑推理能力和语言互译能力,对充要条件概念本质的把握是本节的难点.1.充分条件:对于命题“若p则q”为真时,即如果p成立,那么q一定成立,记作“p?q”,称p为q的充分条件.意义是说条件p充分保证了结论q的成立,换句话说要使结论q成立,具备条件p就够了当然q成立还有其他充分条件.如p:x≥6,q:x>2,p是q成立的充分条件,而r:x>3,也是q成立的充分条件.必要条件:如果q成立,那么p成立,即“q?p”,或者如果p不成立,那么q一定不成立,也就是“若非p则非q”,记作“¬p?¬q”,这是就说条件p是q的必要条件,意思是说条件p 是q成立的必须具备的条件.充要条件:如果既有“p?q”,又有“q?p”,则称条件p是q成立的充要条件,或称条件q是p 成立的充要条件,记作“p?q”.2.从集合角度看概念:如果条件p和结论q的结果分别可用集合P、Q 表示,那么①“p?q”,相当于“P?Q”.即:要使x∈Q成立,只要x∈P就足够了﹣﹣有它就行.②“q?p”,相当于“P?Q”,即:为使x∈Q成立,必须要使x∈P﹣﹣缺它不行.③“p?q”,相当于“P=Q”,即:互为充要的两个条件刻画的是同一事物.3.当命题“若p则q”为真时,可表示为,则我们称p为q的充分条件,q是p的必要条件.这里由,得出p为q的充分条件是容易理解的.但为什么说q是p的必要条件呢?事实上,与“”等价的逆否命题是“”.它的意义是:若q不成立,则p一定不成立.这就是说,q对于p 是必不可少的,所以说q是p的必要条件.4.“充要条件”的含义,实际上与初中所学的“等价于”的含义完全相同.也就是说,如果命题p等价于命题q,那么我们说命题p成立的充要条件是命题q成立;同时有命题q成立的充要条件是命题p成立.【解题方法点拨】1.借助于集合知识加以判断,若P?Q,则P是Q的充分条件,Q是的P的必要条件;若P=Q,则P与Q互为充要条件.2.等价法:“P?Q”?“¬Q?¬P”,即原命题和逆否命题是等价的;原命题的逆命题和原命题的否命题是等价的.3.对于充要条件的证明,一般有两种方法:其一,是用分类思想从充分性、必要性两种情况分别加以证明;其二,是逐步找出其成立的充要条件用“?”连接.【命题方向】充要条件主要是研究命题的条件与结论之间的逻辑关系,它是中学数学最重要的数学概念之一,它是今后的高中乃至大学数学推理学习的基础.在每年的高考中,都会考查此类问题.3.复合函数的单调性【知识点的认识】所谓复合函数就是由两个或两个以上的基本函数构成,这种函数先要考虑基本函数的单调性,然后再考虑整体的单调性.平常常见的一般以两个函数的为主.【解题方法点拨】求复合函数y=f(g(x))的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成两个基本初等函数;(3)分别确定两基本初等函数的单调性;(4)按“同增异减”的原则,确定原函数的单调区间.【命题方向】理解复合函数的概念,会求复合函数的区间并判断函数的单调性.4.函数零点的判定定理【知识点的知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)?f (b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)?f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.。
2014年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么 •如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()()P AB P A P B =.•圆柱的体积公式V Sh =. •圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积,h 表示圆柱的高. h 表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. (1)i 是虚数单位,复数734ii+=+( )(A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )(A )15 (B )105 (C )245 (D )945(4)函数()()212log 4f x x =-的单调递增区间是( )(A )()0,+¥ (B )(),0-¥ (C )()2,+¥(D )(),2-?ED CBA (5)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= (6)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF Ð;②2FB FD FA =?;③AE CEBE DE ??;④AF BD AB BF ??.则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ (7)设,a b R Î,则|“a b >”是“a a b b >”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 (8)已知菱形ABCD 的边长为2,120BAD? ,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF?,23CE CF?- ,则l m +=( ) (A )12 (B )23 (C )56 (D )712第Ⅱ卷注意事项: 1.用黑色墨水钢笔或签字笔将答案写在答题卡上。
2014年天津市高考数学试卷(理科)一、选择题(共8小题,每小题5分)1.(5分)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i2.(5分)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.53.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.9454.(5分)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)5.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=16.(5分)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC 于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④7.(5分)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件8.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC 上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.二、填空题(共6小题,每小题5分,共30分)9.(5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.10.(5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.(5分)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为.12.(5分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为.13.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为.14.(5分)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.16.(13分)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.17.(13分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.18.(13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.19.(14分)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.20.(14分)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.2014年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分)1.(5分)(2014•天津)i是虚数单位,复数=()A.1﹣i B.﹣1+i C.+i D.﹣+i【分析】将复数的分子与分母同时乘以分母的共轭复数3﹣4i,即求出值.【解答】解:复数==,故选A.2.(5分)(2014•天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A.2 B.3 C.4 D.5【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B(1,1)时,直线y=﹣的截距最小,此时z最小.此时z的最小值为z=1+2×1=3,故选:B.3.(5分)(2014•天津)阅读如图的程序框图,运行相应的程序,输出S的值为()A.15 B.105 C.245 D.945【分析】算法的功能是求S=1×3×5×…×(2i+1)的值,根据条件确定跳出循环的i值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=1×3×5×…×(2i+1)的值,∵跳出循环的i值为4,∴输出S=1×3×5×7=105.故选:B.4.(5分)(2014•天津)函数f(x)=log(x2﹣4)的单调递增区间为()A.(0,+∞)B.(﹣∞,0)C.(2,+∞)D.(﹣∞,﹣2)【分析】令t=x2﹣4>0,求得函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),且函数f(x)=g(t)=log t.根据复合函数的单调性,本题即求函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.再利用二次函数的性质可得,函数t在(﹣∞,﹣2)∪(2,+∞)上的减区间.【解答】解:令t=x2﹣4>0,可得x>2,或x<﹣2,故函数f(x)的定义域为(﹣∞,﹣2)∪(2,+∞),当x∈(﹣∞,﹣2)时,t随x的增大而减小,y=log t随t的减小而增大,所以y=log(x2﹣4)随x的增大而增大,即f(x)在(﹣∞,﹣2)上单调递增.故选:D.5.(5分)(2014•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【分析】先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.6.(5分)(2014•天津)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.所有正确结论的序号是()A.①②B.③④C.①②③D.①②④【分析】本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项.【解答】解:∵圆周角∠DBC对应劣弧CD,圆周角∠DAC对应劣弧CD,∴∠DBC=∠DAC.∵弦切角∠FBD对应劣弧BD,圆周角∠BAD对应劣弧BD,∴∠FBD=∠BAF.∵AD是∠BAC的平分线,∴∠BAF=∠DAC.∴∠DBC=∠FBD.即BD平分∠CBF.即结论①正确.又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.由,FB2=FD•FA.即结论②成立.由,得AF•BD=AB•BF.即结论④成立.正确结论有①②④.故答案为D7.(5分)(2014•天津)设a,b∈R,则“a>b”是“a|a|>b|b|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件【分析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若a>b,①a>b≥0,不等式a|a|>b|b|等价为a•a>b•b,此时成立.②0>a>b,不等式a|a|>b|b|等价为﹣a•a>﹣b•b,即a2<b2,此时成立.③a≥0>b,不等式a|a|>b|b|等价为a•a>﹣b•b,即a2>﹣b2,此时成立,即充分性成立.若a|a|>b|b|,①当a>0,b>0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)>0,因为a+b >0,所以a﹣b>0,即a>b.②当a>0,b<0时,a>b.③当a<0,b<0时,a|a|>b|b|去掉绝对值得,(a﹣b)(a+b)<0,因为a+b <0,所以a﹣b>0,即a>b.即必要性成立,综上“a>b”是“a|a|>b|b|”的充要条件,故选:C.8.(5分)(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.【分析】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由•=1,求得4λ+4μ﹣2λμ=3 ①;再由•=﹣,求得﹣λ﹣μ+λμ=﹣②.结合①②求得λ+μ的值.【解答】解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.二、填空题(共6小题,每小题5分,共30分)9.(5分)(2014•天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生.【分析】先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.【解答】解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.10.(5分)(2014•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.【分析】几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.【解答】解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.11.(5分)(2014•天津)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为﹣.【分析】由条件求得,S n=,再根据S1,S2,S4成等比数列,可得=S1•S4,由此求得a1的值.【解答】解:由题意可得,a n=a1+(n﹣1)(﹣1)=a1+1﹣n,S n==,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1﹣6),解得a1=﹣,故答案为:﹣.12.(5分)(2014•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为﹣.【分析】由条件利用正弦定理求得a=2c,b=,再由余弦定理求得cosA=的值.【解答】解:在△ABC中,∵b﹣c= a ①,2sinB=3sinC,∴2b=3c ②,∴由①②可得a=2c,b=.再由余弦定理可得cosA===﹣,故答案为:﹣.13.(5分)(2014•天津)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a 相交于A、B两点,若△AOB是等边三角形,则a的值为3.【分析】把极坐标方程化为直角坐标方程,求出B的坐标的值,代入x2+(y﹣2)2=4,可得a的值.【解答】解:直线ρsinθ=a即y=a,(a>0),曲线ρ=4sinθ,即ρ2=4ρsinθ,即x2+(y﹣2)2=4,表示以C(0,2)为圆心,以2为半径的圆,∵△AOB是等边三角形,∴B(a,a),代入x2+(y﹣2)2=4,可得(a)2+(a﹣2)2=4,∵a>0,∴a=3.故答案为:3.14.(5分)(2014•天津)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x ﹣1|=0恰有4个互异的实数根,则实数a的取值范围为(0,1)∪(9,+∞).【分析】由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=a|x ﹣1|的图象利用数形结合即可得到结论.【解答】解:由y=f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,作出函数y=f(x),y=g(x)=a|x﹣1|的图象,当a≤0,两个函数的图象不可能有4个交点,不满足条件,则a>0,此时g(x)=a|x﹣1|=,当﹣3<x<0时,f(x)=﹣x2﹣3x,g(x)=﹣a(x﹣1),当直线和抛物线相切时,有三个零点,此时﹣x2﹣3x=﹣a(x﹣1),即x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a=0,即a2﹣10a+9=0,解得a=1或a=9,当a=9时,g(x)=﹣9(x﹣1),g(0)=9,此时不成立,∴此时a=1,要使两个函数有四个零点,则此时0<a<1,若a>1,此时g(x)=﹣a(x﹣1)与f(x),有两个交点,此时只需要当x>1时,f(x)=g(x)有两个不同的零点即可,即x2+3x=a(x﹣1),整理得x2+(3﹣a)x+a=0,则由△=(3﹣a)2﹣4a>0,即a2﹣10a+9>0,解得a<1(舍去)或a>9,综上a的取值范围是(0,1)∪(9,+∞),方法2:由f(x)﹣a|x﹣1|=0得f(x)=a|x﹣1|,若x=1,则4=0不成立,故x≠1,则方程等价为a===||=|x﹣1++5|,设g(x)=x﹣1++5,当x>1时,g(x)=x﹣1++5≥,当且仅当x﹣1=,即x=3时取等号,当x<1时,g(x)=x﹣1++5=5﹣4=1,当且仅当﹣(x﹣1)=﹣,即x=﹣1时取等号,则|g(x)|的图象如图:若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则满足a>9或0<a<1,故答案为:(0,1)∪(9,+∞)三、解答题(共6小题,共80分)15.(13分)(2014•天津)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x ∈R.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.【分析】(Ⅰ)根据两角和差的正弦公式、倍角公式对解析式进行化简,再由复合三角函数的周期公式求出此函数的最小正周期;(Ⅱ)由(Ⅰ)化简的函数解析式和条件中x的范围,求出的范围,再利用正弦函数的性质求出再已知区间上的最大值和最小值.【解答】解:(Ⅰ)由题意得,f(x)=cosx•(sinx cosx)====所以,f(x)的最小正周期=π.(Ⅱ)由(Ⅰ)得f(x)=,由x∈[﹣,]得,2x∈[﹣,],则∈[,],∴当=﹣时,即=﹣1时,函数f(x)取到最小值是:,当=时,即=时,f(x)取到最大值是:,所以,所求的最大值为,最小值为.16.(13分)(2014•天津)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.【分析】(Ⅰ)利用排列组合求出所有基本事件个数及选出的3名同学是来自互不相同学院的基本事件个数,代入古典概型概率公式求出值;(Ⅱ)随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)列出随机变量X的分布列求出期望值.【解答】(Ⅰ)解:设“选出的3名同学是来自互不相同学院”为事件A,则,所以选出的3名同学是来自互不相同学院的概率为.(Ⅱ)解:随机变量X的所有可能值为0,1,2,3,(k=0,1,2,3)所以随机变量X的分布列是X0123P随机变量X的数学期望.17.(13分)(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.【分析】(I)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC 的方向向量,根据•=0,可得BE⊥DC;(II)求出平面PBD的一个法向量,代入向量夹角公式,可得直线BE与平面PBD 所成角的正弦值;(Ⅲ)根据BF⊥AC,求出向量的坐标,进而求出平面FAB和平面ABP的法向量,代入向量夹角公式,可得二面角F﹣AB﹣P的余弦值.【解答】证明:(I)∵PA⊥底面ABCD,AD⊥AB,以A为坐标原点,建立如图所示的空间直角坐标系,∵AD=DC=AP=2,AB=1,点E为棱PC的中点.∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)∴=(0,1,1),=(2,0,0)∵•=0,∴BE⊥DC;(Ⅱ)∵=(﹣1,2,0),=(1,0,﹣2),设平面PBD的法向量=(x,y,z),由,得,令y=1,则=(2,1,1),则直线BE与平面PBD所成角θ满足:sinθ===,故直线BE与平面PBD所成角的正弦值为.(Ⅲ)∵=(1,2,0),=(﹣2,﹣2,2),=(2,2,0),由F点在棱PC上,设=λ=(﹣2λ,﹣2λ,2λ)(0≤λ≤1),故=+=(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1),由BF⊥AC,得•=2(1﹣2λ)+2(2﹣2λ)=0,解得λ=,即=(﹣,,),设平面FBA的法向量为=(a,b,c),由,得令c=1,则=(0,﹣3,1),取平面ABP的法向量=(0,1,0),则二面角F﹣AB﹣P的平面角α满足:cosα===,故二面角F﹣AB﹣P的余弦值为:18.(13分)(2014•天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.【分析】(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|.可得,再利用b2=a2﹣c2,e=即可得出.(Ⅱ)由(Ⅰ)可得b2=c2.可设椭圆方程为,设P(x0,y0),由F1(﹣c,0),B(0,c),可得,.利用圆的性质可得,于是=0,得到x0+y0+c=0,由于点P在椭圆上,可得.联立可得=0,解得P.设圆心为T(x1,y1),利用中点坐标公式可得T,利用两点间的距离公式可得圆的半径r.设直线l的方程为:y=kx.利用直线与圆相切的性质即可得出.【解答】解:(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|,可得,化为a2+b2=3c2.又b2=a2﹣c2,∴a2=2c2.∴e=.(Ⅱ)由(Ⅰ)可得b2=c2.因此椭圆方程为.设P(x0,y0),由F1(﹣c,0),B(0,c),可得=(x0+c,y0),=(c,c).∵,∴=c(x0+c)+cy0=0,∴x0+y0+c=0,∵点P在椭圆上,∴.联立,化为=0,∵x0≠0,∴,代入x0+y0+c=0,可得.∴P.设圆心为T(x1,y1),则=﹣,=.∴T,∴圆的半径r==.设直线l的斜率为k,则直线l的方程为:y=kx.∵直线l与圆相切,∴,整理得k2﹣8k+1=0,解得.∴直线l的斜率为.19.(14分)(2014•天津)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.【分析】(Ⅰ)当q=2,n=3时,M={0,1},A={x|,x i∈M,i=1,2,3}.即可得到集合A.(Ⅱ)由于a i,b i∈M,i=1,2,…,n.a n<b n,可得a n﹣b n≤﹣1.由题意可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1],再利用等比数列的前n项和公式即可得出.【解答】(Ⅰ)解:当q=2,n=3时,M={0,1},A={x|,x i∈M,i=1,2,3}.可得A={0,1,2,3,4,5,6,7}.(Ⅱ)证明:由设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i ∈M,i=1,2,…,n.a n<b n,∴a n﹣b n≤﹣1.可得s﹣t=(a1﹣b1)+(a2﹣b2)q+…++≤﹣[1+q+…+q n﹣2+q n﹣1]=<0.∴s<t.20.(14分)(2014•天津)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.(Ⅰ)求a的取值范围;(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.【分析】(Ⅰ)对f(x)求导,讨论f′(x)的正负以及对应f(x)的单调性,得出函数y=f(x)有两个零点的等价条件,从而求出a的取值范围;(Ⅱ)由f(x)=0,得a=,设g(x)=,判定g(x)的单调性即得证;(Ⅲ)由于x1=a,x2=a,则x2﹣x1=lnx2﹣lnx1=ln,令=t,整理得到x1+x2=,令h(x)=,x∈(1,+∞),得到h(x)在(1,+∞)上是增函数,故得到x1+x2随着t的减小而增大.再由(Ⅱ)知,t随着a的减小而增大,即得证.【解答】解:(Ⅰ)∵f(x)=x﹣ae x,∴f′(x)=1﹣ae x;下面分两种情况讨论:①a≤0时,f′(x)>0在R上恒成立,∴f(x)在R上是增函数,不合题意;②a>0时,由f′(x)=0,得x=﹣lna,当x变化时,f′(x)、f(x)的变化情况如下表:x(﹣∞,﹣lna)﹣lna(﹣lna,+∞)f′(x)+0﹣f(x)递增极大值﹣lna﹣1递减∴f(x)的单调增区间是(﹣∞,﹣lna),减区间是(﹣lna,+∞);∴函数y=f(x)有两个零点等价于如下条件同时成立:①f(﹣lna)>0;②存在s1∈(﹣∞,﹣lna),满足f(s1)<0;③存在s2∈(﹣lna,+∞),满足f(s2)<0;由f(﹣lna)>0,即﹣lna﹣1>0,解得0<a<e﹣1;取s1=0,满足s1∈(﹣∞,﹣lna),且f(s1)=﹣a<0,取s2=+ln,满足s2∈(﹣lna,+∞),且f(s2)=(﹣)+(ln﹣)<0;∴a的取值范围是(0,e﹣1).(Ⅱ)证明:由f(x)=x﹣ae x=0,得a=,设g(x)=,由g′(x)=,得g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,并且当x∈(﹣∞,0)时,g(x)≤0,当x∈(0,+∞)时,g(x)≥0,x1、x2满足a=g(x1),a=g(x2),a∈(0,e﹣1)及g(x)的单调性,可得x1∈(0,1),x2∈(1,+∞);对于任意的a1、a2∈(0,e﹣1),设a1>a2,g(X1)=g(X2)=a1,其中0<X1<1<X2;g(Y1)=g(Y2)=a2,其中0<Y1<1<Y2;∵g(x)在(0,1)上是增函数,∴由a1>a2,得g(X i)>g(Y i),可得X1>Y1;类似可得X2<Y2;又由X、Y>0,得<<;∴随着a的减小而增大;(Ⅲ)证明:∵x1=a,x2=a,∴lnx1=lna+x1,lnx2=lna+x2;∴x2﹣x1=lnx2﹣lnx1=ln,设=t,则t>1,∴,解得x1=,x2=,∴x1+x2=…①;令h(x)=,x∈(1,+∞),则h′(x)=;令u(x)=﹣2lnx+x﹣,得u′(x)=,当x∈(1,+∞)时,u′(x)>0,∴u(x)在(1,+∞)上是增函数,∴对任意的x∈(1,+∞),u(x)>u(1)=0,∴h′(x)>0,∴h(x)在(1,+∞)上是增函数;∴由①得x1+x2随着t的增大而增大.由(Ⅱ)知,t随着a的减小而增大,∴x1+x2随着a的减小而增大.。
2014年普通高等学校招生全国统一考试(天津卷)数学(理工类)一、选择题,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1. i 是虚数单位,复数7+i 3+4i = ( ). A.1- i B.-1+i C.1725+3125 i D.- 177+257 i2.设变量x , y 满足约束条件{x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z= x+2y 的最小值为( ).A.2B.3C.4D.53.阅读下边的程序框图,运行相应的程序,输出S 的值为( ).A.15B.105C.245D.9454.函数f (x )=lo g 12(x 2-4)的单调递增区间为( ). A.(0,+∞) B.(-∞,0) C.(2,+∞) D.(-∞,-2)5.已知双曲线x 2a2−y 2b 2=1(a>0,b>0)的一条渐近线平行于直线 l :y=2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ). A.x 25−y 220=1 B.x 220−y 25=1 C.3x 225−3y 2100=1 D.3x 2100−3y 225=1 6.如图,△ABC 是圆的内接三角形,∠BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F.在上述条件下,给出下列四个结论:①BD 平分∠CBF ; ②FB 2=FD ·FA ;③AE ·CE=BE ·DE ; ④AF ·BD=AB ·BF.则所有正确结论的序号是( ).A.①②B.③④C.①②③D.①②④7.设a ,b ∈R ,则“a>b”是“a|a|>b|b|”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.已知菱形ABCD 的边长为2,∠BAD=120°,点E ,F 分别在边BC , DC , BE=λBC , DF=μDC.若AE ⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =1,CE ⃗⃗⃗⃗⃗ ·CF ⃗⃗⃗⃗⃗ = - 23,则 λ+μ=( ).A. 12B.23C.56D.712二、填空题:本大题共6小题,每小题5分,共30分.9.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取名学生.10.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.11.设{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和.若S1,S2,S4成等比数列,则a1的值为.12.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b-c=14a , 2sin B=3sin C,则cos A的值为.13.在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A,B两点,若△AOB 是等边三角形,则a的值为.14.已知函数f (x)=|x2+3x|,x∈R.若方程f (x)-a|x-1|=0恰有4个互异的实数根,则实数a的取值范围为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数f (x)=cos x·sin(x+π3)−√3cos2x+√34, x∈R.(1)求f (x)的最小正周期;(2)求f (x)在闭区间[-π4,π4]上的最大值和最小值.16.(本小题满分13分)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.17.(本小题满分13分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC, AD=DC=AP=2,AB=1,点E为棱PC的中点.(1)证明: BE⊥DC ;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.18.(本小题满分13分)设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=√32|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.。
绝密 ★ 启用前2014年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么ﻩﻩ•如果事件A ,B 相互独立,那么 ()()()P A B P A P B =+ﻩﻩ()()()P AB P A P B =. •圆柱的体积公式V Sh =. •圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积,h 表示圆柱的高. h 表示圆锥的高.ﻩ一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,复数734ii ( )(A )1i (B)1i (C)17312525i (D )172577i (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B)3 (C )4 (D)5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )学科网(A)15 (B)105E D C BA (C)245 (D )945(4)函数212log 4f xx 的单调递增区间是( ) (A)0,(B),0 (C)2, (D),2(5)已知双曲线22221x y a b 0,0a b 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) (A)221520x y (B)221205x y (C )2233125100x y (D )2233110025x y (6)如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF ;②2FBFD FA ;③AE CE BE DE ;④AF BD AB BF . 则所有正确结论的序号是( )(A )①② (B)③④ (C )①②③ (D)①②④(7)设,a b R ,则|“a b ”是“a a b b ”的( ) (A)充要不必要条件 (B )必要不充分条件(C)充要条件 (D)既不充要也不必要条件(8)已知菱形ABCD 的边长为2,120BAD,点,E F 分别在边,BC DC 上,BE BC ,DF DC .若1AE AF ,23CE CF ,则( )(A )12 (B)23 (C)56 (D )712第Ⅱ卷注意事项:学科网ﻩ1.用黑色墨水钢笔或签字笔将答案写在答题卡上。
2014年天津市高考数学试卷(理科)
一、选择题(共8小题,每小题5分)
1.(5分)(2014•天津)i是虚数单位,复数=()
+i +i 2.(5分)(2014•天津)设变量x,y满足约束条件,则目标函数z=x+2y的
3.(5分)(2014•天津)阅读如图的程序框图,运行相应的程序,输出S的值为()
4.(5分)(2014•天津)函数f(x)=log(x2﹣4)的单调递增区间为()
5.(5分)(2014•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:
.
﹣=1 ﹣=1
﹣=1 ﹣=1
6.(5分)(2014•天津)如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:
①BD平分∠CBF;
②FB2=FD•FA;
③AE•CE=BE•DE;
④AF•BD=AB•BF.
所有正确结论的序号是()
8.(5分)(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()
B
二、填空题(共6小题,每小题5分,共30分)
9.(5分)(2014•天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.
10.(5分)(2014•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.
11.(5分)(2014•天津)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为.
12.(5分)(2014•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b﹣c=a,2sinB=3sinC,则cosA的值为.
13.(5分)(2014•天津)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为.
14.(5分)(2014•天津)已知函数f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4个互异的实数根,则实数a的取值范围为.
三、解答题(共6小题,共80分)
15.(13分)(2014•天津)已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在闭区间[﹣,]上的最大值和最小值.
16.(13分)(2014•天津)某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;
(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.
17.(13分)(2014•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(Ⅰ)证明:BE⊥DC;
(Ⅱ)求直线BE与平面PBD所成角的正弦值;
(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
18.(13分)(2014•天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶
点为A,上顶点为B,已知|AB|=|F1F2|.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.
19.(14分)(2014•天津)已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q﹣1},集合A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.
(Ⅰ)当q=2,n=3时,用列举法表示集合A;
(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.
20.(14分)(2014•天津)设f(x)=x﹣ae x(a∈R),x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2.
(Ⅰ)求a的取值范围;
(Ⅱ)证明:随着a的减小而增大;(Ⅲ)证明x1+x2随着a的减小而增大.
2014年天津市高考数学试卷(理科)
参考答案
一、选择题(共8小题,每小题5分)
1.A 2.B 3.B 4.D 5.A 6.D 7.C 8.C
二、填空题(共6小题,每小题5分,共30分)
9.60 10.11.-12.-13.3 14.(0,1)∪(9,+∞)
三、解答题(共6小题,共80分)
15.16.17.18.19.20.。